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Abstract

With advances in data collection technologies, tensor
data is assuming increasing prominence in many appli-
cations and the problem of supervised tensor learning
has emerged as a topic of critical significance in the data
mining and machine learning community. Conventional
methods for supervised tensor learning mainly focus on
learning kernels by flattening the tensor into vectors or
matrices, however structural information within the ten-
sors will be lost. In this paper, we introduce a new
scheme to design structure-preserving kernels for super-
vised tensor learning. Specifically, we demonstrate how
to leverage the naturally available structure within the
tensorial representation to encode prior knowledge in
the kernel. We proposed a tensor kernel that can pre-
serve tensor structures based upon dual-tensorial map-
ping. The dual-tensorial mapping function can map
each tensor instance in the input space to another ten-
sor in the feature space while preserving the tensorial
structure. Theoretically, our approach is an extension
of the conventional kernels in the vector space to tensor
space. We applied our novel kernel in conjunction with
SVM to real-world tensor classification problems includ-
ing brain fMRI classification for three different diseases
(i.e., Alzheimer’s disease, ADHD and brain damage by
HIV). Extensive empirical studies demonstrate that our
proposed approach can effectively boost tensor classi-
fication performances, particularly with small sample
sizes.
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1 Introduction

Supervised learning is one of the most fundamental data
mining tasks. Conventional approaches on supervised
learning usually assume, explicitly or implicitly, that
data instances are represented as feature vectors. How-
ever, in many real-world applications, data instances are
more naturally represented as second-order (matrices)
or higher-order tensors, where the order of a tensor cor-
responds to the number of modes or ways. For example,
in computer vision, a grey-level image is inherently a 2-
D object, which can be represented as a second-order
tensor with the column and row modes [21]; in medical
neuroimaging, an MRI (Magnetic Resonance Imaging)
image is naturally a third-order tensor consisting of 3-D
voxels [3]. Supervised learning on this type of data is
called supervised tensor learning, where each instance
in the input space is represented as a tensor. With
the rapid proliferation of tensor data, supervised tensor
learning has drawn significant attention in recent years
in the machine learning and data mining communities.

A straightforward solution to supervised tensor
learning is to convert the input tensors into feature vec-
tors, and feed the feature vectors to a conventional su-
pervised learning algorithm. However, tensor objects
are commonly specified in high-dimensional space. For
example, a typical MRI image of size 256 × 256 × 256
voxels contains 16, 777, 216 features [23]. This makes
traditional methods prone to overfitting, especially for
small sample size problems [4]. On the other hand, ten-
sorial representations retain the information about the
structure of the high-dimensional space the data lie in,
such as about the spatial arrangement of the voxel-based
features in a 3-D image. When converting tensors into
vectors, such important structural information will be
lost. In particular, the entries of a tensor object are
often highly correlated with surrounding entries. For
example, in MRI image data, adjacent voxels usually
exhibit similar patterns, which means that the source
images contain redundant information at this voxel. It
is believed by many researchers that potentially more
compact and useful representations can be extracted
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from the original tensor data and thus result in more
accurate and interpretable models. Therefore, super-
vised learning algorithms operating directly on tensors
rather than their vectorized versions are much desired.

Formally, a major difficulty in supervised tensor
learning is how to build predictive models that can lever-
age the naturally available structure of tensor data to
facilitate the learning process. In the literature, several
solutions have been proposed. Previous work on super-
vised tensor learning mainly focuses on linear models
[1, 5, 6, 19, 23], which assume, explicitly or implicitly,
that data are linearly separable in the input space. How-
ever, in practice this assumption is often violated and
the linear decision boundaries do not adequately sepa-
rate the classes. Recently, several approaches try to ex-
ploit the tensor structure with nonlinear kernel models
[16, 17, 22], which first unfold the tensor along each of
its modes, and then use these unfolded matrices to con-
struct nonlinear kernels for supervised tensor learning
as shown in Figure 1(b). However, these methods can
only capture the relationships within each single mode
of the tensor data, because the structural information
about inter-mode relationships of tensor data is lost in
the unfolding procedures.

In this paper, we study the problem of supervised
tensor learning with nonlinear kernels which can ade-
quately preserve and utilize the structure of the ten-
sor data. The major research challenges of supervised
tensor learning with structure-preserving kernels can be
summarized as follows:
•High-dimensional tensors: One fundamental prob-
lem in supervised tensor learning lies in the intrinsic
high dimensionality of tensor objects. Traditional su-
pervised learning algorithms assume that the instances
are represented as vectors. However, in the context of
tensors, each data object is usually not represented as a
vector but a high-dimensional multi-mode (also known
as multi-way) array. If we reshape the tensor into a
vector, the number of features is extremely high. Both
computability and theoretical guarantee of the tradi-
tional models are compromised by this ultra-high di-
mensionality.
• Complex tensor structure: Another fundamental
problem in supervised tensor learning lies in complex
structure of tensors. Conventional tensor-based kernel
approaches focus on unfolding tensor data into matri-
ces [16, 17, 22] which can only preserve the one-way
relationships within the tensor data. However, in many
real-world applications, the tensor data have multi-way
structures. Such prior knowledge about multi-way re-
lationships among features should be incorporated to
build more accurate and interpretable models, espe-
cially in the case of high dimensional tensor data with
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Figure 1: Schematic view of the key difference among
three kernel learning schemes. Standard kernel (a)
works on the vectorized representation and conventional
tensor-based kernel (b) applies tensor-to-matrix align-
ment first, which may lead to loss of structural informa-
tion. Our method (c) works on the tensor representation
directly.

small sample size.
• Nonlinear separability: In real-world applications,
the data is usually not linearly separable in the input
space. Conventional supervised tensor learning meth-
ods which can preserve tensor structures are often based
upon linear models. Thus these methods cannot effi-
ciently solve nonlinear learning problems on tensor data.

In this paper, we propose a novel approach to su-
pervised tensor learning, called DuSK (Dual Structure-
preserving Kernels). Our framework is illustrated in
Figure 1(c). Different from conventional methods, our
approach is based upon kernel methods and tensor fac-
torization techniques that can fully capture the multi-
way structures of tensor data. We first extract a more
compact and informative representation from the orig-
inal data using a tensor factorization method, i.e.,
CANDECOMP/PARAFAC (CP) [10]. Then we de-
fine a structure-preserving feature mapping to derive
the DuSK kernels in the tensor product feature space,



used in conjunction with kernel machines to solve the
supervised tensor learning problems. Empirical studies
on real-world tasks (classifying fMRI images of differ-
ent brain diseases, i.e., Alzheimer’s disease, ADHD and
HIV) demonstrate that the proposed approach can sig-
nificantly boost the classification performances on ten-
sor datasets.

2 PRELIMINARIES

Before presenting our approach, we introduce some
related concepts and notation of tensors. Table 1 lists
some basic symbols defined in this study. We first give
a formal mathematical definition of the tensor, which
provides an intuitive understanding of the algebraic
structure of the tensor that tensor object has the tensor
product structure.

Definition 1. (Tensor) An N th-order tensor is an
element of the tensor product of N vector spaces, each
of which has its own coordinate system.

We use A = (ai1,i2,...,iN ) ∈ RI1×I2×···×IN to denote
a tensor A of N order. For n = 1, 2, · · · , N , In is the
dimension of A along the n-th mode. Based on the
above definition, we define inner product, tensor norm,
tensor product, and rank of a tensor and give CP model
as follows:

Definition 2. (Inner product) The inner product
of two same-sized tensors A,B ∈ RI1×I2×···×IN is
defined as the sum of the products of their entries:

(2.1) 〈A,B〉 =

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

ai1,i2,...,iN bi1,i2,...,iN .

Definition 3. (Tensor norm) The norm of a tensor
A is defined to be the square root of the sum of all entries
of the tensor squared, i.e.,
(2.2)

‖A‖F =
√
〈A,A〉 =

√√√√
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

a2
i1,i2,...,iN

.

As we see the norm of a tensor is a straightforward
generalization of the usual Frobenius norm for matrices
and of the l2 norm for vectors.

Definition 4. (Tensor product) The tensor prod-
uct A ⊗ B of tensors A ∈ RI1×I2×···×IN and B ∈
RI′1×I′2×···×I′M is defined by
(2.3)

(A⊗ B)i1,i2,...,iN ,i′1,i′2,...,i′M
= ai1,i2,··· ,iN bi′1,i′2,··· ,i′M

for all values of the indices.

Table 1: List of symbols
Symbol Definition and Description

s each lower-case represents a scale
v each boldface lowercase letter represents a vector
M each boldface capital letter represents a matrix
T each calligraphic letter represents a tensor
G each gothic letter represent a general set or space
⊗ denotes tensor product
〈., .〉 denotes the inner product in some feature space
R =Rank(A) is the rank of tensor A
φ(.) denotes the feature mapping
κ(., .) represents a kernel function

It is worth mentioning that a rank-one tensor, is still
analogously to the matrix case, a tensor that is a
tensor product of vectors (Nth-order tensor requires N
vectors). Additionally, notice that for rank-one tensors
A = a(1) ⊗ a(2) ⊗ · · · ⊗ a(N) and B = b(1) ⊗b(2) ⊗ · · · ⊗
b(N), it holds that
(2.4)

〈A,B〉 =
〈
a(1),b(1)

〉〈
a(2),b(2)

〉
· · ·
〈
a(N),b(N)

〉
.

Definition 5. (Tensor rank) The rank of a tensor
A is the minimum number of rank-one tensor to fit A
exactly.

Definition 6. (CP factorization) Given a tensor
A ∈ RI1×I2×···×IN and an integer R, if it can be
expressed as

(2.5) A =

R∑

r=1

a(1)
r ⊗ a(2)

r ⊗ · · · ⊗ a(N)
r ,

we call it CP factorization (see Figure 2 for graphical
representations). For convenience, in the following we

write
∏N
n=1⊗a(n) for a(1) ⊗ a(2) ⊗ · · · ⊗ a(N).

3 APPROACH

In this section, we first formulate the problem of tensor-
based kernel learning and then elaborate on our DuSK.
For the sake of brevity, hereafter we restrict our discus-
sion to classification problems.

3.1 Problem statement Considering a training set
of M pairs of samples {Xi, yi}Mi=1 for binary tensor
classification problem, where Xi ∈ RI1×I2×···×IN are
the input of the sample and yi ∈ {−1,+1} are the
corresponding class labels of Xi. In [6], it was noted
that the problem of tensor classification can be stated
as a convex quadratic optimization problem in the
framework of the standard linear SVM. Based on this
result, we show how it can be modeled as a kernel
learning problem.

Suppose we are given the optimization problem of
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Figure 2: CP factorization of a third-order tensor

linear tensor classification as

min
W,b,ξ

1

2
‖W‖2F + C

M∑

i=1

ξi,(3.6)

s.t. yi (〈W,Xi〉+ b) ≥ 1− ξi,(3.7)

ξi ≥ 0,∀i = 1, · · · ,M.(3.8)

Where W is the weight tensor of the separating hyper-
plane, b is the bias, ξi is the error of the ith training
sample, and C is the trade-off between the classification
margin and misclassification error.

Obviously, the optimization problem in (3.6)-(3.8)
is the generalization of the problem of the standard
linear SVM to tensor patterns in tensor space. When
the input samples Xi are vectors, it degenerates into
the standard linear SVM. As such, based on the kernel
method for the extension of linear SVM to the nonlinear
case−by introducing a nonlinear feature mapping φ :
x→ φ (x) ∈ H ⊂ RH , we develop a nonlinear extension
of (3.6)-(3.8) in the following, which is critical for the
derivation of the model for tensor-based kernel learning.

Given a tensor X ∈ RI1×I2×···×IN , we assume it is
mapped into the Hilbert space H by

(3.9) φ : X → φ (X ) ∈ RH1×H2×···×HP .

Note that the project tensor φ (X ) in space H may
have different order with X , and each mode dimension
is higher even an infinite dimension depending on the
feature mapping function φ(.). Such a Hilbert space
is called the high-dimensional tensor feature space or
simply a tensor feature space. According to the same
principle as the construction of linear classification
model in the original tensor space, we construct the
following model in this space:

min
W,b,ξ

1

2
‖W‖2F + C

M∑

i=1

ξi,(3.10)

s.t. yi (〈W, φ (Xi)〉+ b) ≥ 1− ξi,(3.11)

ξi ≥ 0,∀i = 1, · · · ,M.(3.12)

From the viewpoint of high-dimensional tensor feature
space, this model is a linear model. However, from the
viewpoint of the original tensor space, it is a nonlinear
model. When the input samples Xi are vectors, it
degenerates into the standard nonlinear SVM. When the
feature mapping function φ(.) is an identical function,

i.e., φ(X ) = X , it is the same as that in (3.6)-(3.8).
Thus, we say that the optimization model (3.10)-(3.12)
is the nonlinear counterpart of (3.6)-(3.8).

Let us now show how this model can be exploited to
obtain tensor-based kernel optimization model. Using
Lagrangian relaxation method [2], it is easy to check
that the dual problem of (3.10)-(3.12) is

max
α1,α2,··· ,αM

M∑

i=1

αi −
1

2

M∑

i,j=1

αiαjyiyj〈φ (Xi) , φ (Xj)〉

(3.13)

s.t.

M∑

i=1

αiyi = 0,(3.14)

0 ≤ αi ≤ C, ∀i = 1, · · · ,M.(3.15)

Where αi are the Lagrangian multipliers and
〈φ (Xi) , φ (Xj)〉 are the inner product between the
mapped tensors of Xi and Xj in the tensor feature
space.

The advantage of formulation (3.13)-(3.15) over
(3.10)-(3.12) is that the training data only appear in
the form of inner products. Based on the fundamental
principle of kernel method, by substituting the inner
product 〈φ (Xi) , φ (Xj)〉 with a suitable tensor kernel
function κ (Xi,Xj), we thus get the tensor-based kernel
model. The resulting decision function is

(3.16) f (X ) = sign

(
M∑

i=1

αiyiκ (Xi,X ) + b

)
.

3.2 DuSK From the above statement, we can see
that tensor-based kernel learning degenerates into the
study of kernel function, and the success of kernel
methods depends strongly on the data representation
encoded into the kernel function. Now we propose the
DuSK. Our target is to leverage the naturally available
structure of the tensor to facilitate kernel learning.

Tensors provide a natural and efficient representa-
tion for multi-way data, but there is no guarantee that
such representation will be good for kernel learning.
Since learning will only be successful if the regularities
that underlie the data can be discerned by the kernel.
As with the previous analysis for the characteristics of
tensor object, we know that the essential information in
the tensor is embedded in its multi-way structure. Thus,
one important aspect of kernel learning for such complex
objects is to represent them by sets of key structural fea-
tures easier to manipulate, and design kernels on such
sets.

According to the mathematical definition of tensor,
we can gain a further understanding of the structure
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Figure 3: Dual-tensorial mapping

of the tensor that tensor object has the tensor prod-
uct structure. In previous work, it was found that CP
factorization is particularly effective for extracting this
structure. Motivated by these observations, we investi-
gate how to exploit the benefits of CP factorization to
learn a structure-preserving kernel in the tensor prod-
uct feature space. More specifically, we will represent
each tensor object as a sum of rank-one tensors in the
original space and map them into the tensor product
feature space for our kernel learning. In the following,
we illustrate how to design the feature mapping.

We start by defining the following mapping on a
rank-one tensor

∏N
n=1⊗x(n) ∈ RI1×I2×···×IN .

(3.17)

φ :

N∏

n=1

⊗x(n) →
N∏

n=1

⊗φ
(
x(n)

)
∈ RH1×H2×···×HN .

Let the CP factorization of X ,Y ∈ RI1×I2×···×IN be

X =
∑R
r=1

∏N
n=1⊗x

(n)
r and Y =

∑R
r=1

∏N
n=1⊗y

(n)
r re-

spectively. By using the concept of the kernel function,
we see that the kernel can be defined directly with inner
product in the feature space. Thus, when R = 1, based
on the above mapping and Eq. 2.4, we can directly de-
rive the naive tensor product kernels, i.e.,

κ (X ,Y) =

N∏

n=1

κ
(
x(n),y(n)

)
.(3.18)

Despite this, many authors has demonstrated that a
simple rank-one tensor cannot provide compact and
informative presentation for original data [24]. The key
point is how to design feature mapping when the value
of R is more than one.

Based on the definition of the kernel function,
it is easy to find that the feature space is a high-
dimensional space of the original space, equipped with
the same operations. Thus, we can factorize tensor data
directly in the feature space the same as original space.
This is formally equivalent to performing the following

mapping:

(3.19) φ :

R∑

r=1

N∏

n=1

⊗x(n)
r →

R∑

r=1

N∏

n=1

⊗φ
(
x(n)
r

)
.

In this sense, it corresponds to mapping tensors into
high-dimensional tensors that retain the original struc-
ture. More precisely, it can be regarded as mapping the
original data into tensor feature space and then conduct-
ing the CP factorization in the feature space. We call it
the dual-tensorial mapping function (see Figure 3).

After mapping the CP factorization of the data into
the tensor product feature space, the kernel itself is just
the standard inner product of tensors in that feature
space. Thus, we derive our DuSK:

κ

(
R∑

r=1

N∏

n=1

⊗x(n)
r ,

R∑

r=1

N∏

n=1

⊗y(n)
r

)

=

R∑

i=1

R∑

j=1

N∏

n=1

κ
(
x

(n)
i ,y

(n)
j

)(3.20)

From its derivation, we know such a kernel can take the
multi-way structure flexibility into account. In general,
the DuSK is an extension of the conventional kernels in
the vector space to tensor space, and each vector kernel
can be used in this framework for supervised tensor
learning in conjunction with kernel machines.

3.3 Efficiency We consider the case of Gaussian
RBF kernel in our framework, which is one of the most
popular kernels that have been proven successful in
many different contexts. Assume that a set of tensor
data {(Xi, yi)}Mi=1 is given, where Xi ∈ RI1×I2×···×IN .
The time complexity of computing a Gaussian RBF ker-

nel matrix is O
(
M2

∏N
n=1 In

)
and our method DuSK

is thus O
(
M2R2

∑N
n=1 In

)
. A typical characteristic

associated with tensor data is very high dimensional
while R is often very small, which indicates our pro-
posed method is significantly more efficient than its
vector counterpart. It is also worth mentioning that
our method depends on CP factorization technique,
but it is backed with rapid implementation [13]. The

storage complexity is reduced from O
(
M
∏N
n=1 In

)
to

O
(
M
∑N
n=1 In

)
, where the data is compressed without

quality loss and can be recovered quickly. Furthermore,
since the constituent kernels are Gaussian RBF kernels,
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Figure 4: (a) An illustration of a three-order tensor
(fMRI image), (b) An visualization of fMRI image.

we can thus reformulate Eq. 3.20 to

κ (X ,Y) =

R∑

i=1

R∑

j=1

N∏

n=1

κ
(
x

(n)
i ,y

(n)
j

)

=

R∑

i=1

R∑

j=1

exp

(
−σ

N∑

n=1

‖x(n)
i − y

(n)
j ‖2

)(3.21)

where σ is used to set an appropriate bandwidth. We
denote this kernel as DuSKRBF.

4 Experiment Evaluation

In this study, we validate the effectiveness of the
DuSKRBF kernel within standard SVM framework for
tensor classification, which we refer to as DuSKRBF. As
an application we consider an example of neuroimaging
mining.

4.1 Data collection We use three real-world fMRI
datasets in our experimental evaluation as follows.
• Alzheimer’s Disease (ADNI): The first dataset is col-
lected from the Alzheimer’s Disease Neuroimaging Ini-
tiative1. The dataset consists of records of patients with
Alzheimer’s Disease (AD) and Mild Cognitive Impair-
ment (MCI). We downloaded all records of resting-state
fMRI images and apply SPM8 toolbox2 to preprocess
the data. We deleted the first ten volumes for each in-
dividual, and functional images were realigned to the
first volume, slice timing corrected, and normalized to
the MNI template and spatially smoothed with an 8-
mm FWHM Gaussian kernel. Resting-State fMRI Data
Analysis Toolkit (REST3) was then used to remove the
linear trend of time series and temporally band-pass fil-
tering (0.01− 0.08 Hz). The average value of each sub-
ject over time series was calculated within each of those
boxes, thereby resulting in 33 samples and a sum total
of 61× 73× 61 = 271633 voxels (or features). We treat
the normal brains as negative class, and AD+MCI as

1http://adni.loni.usc.edu/
2http://www.l.ion.ucl.ac.uk/spm/software/spm8/
3http://resting-fmri.sourceforge.net

the positive class. Each individual is linearly rescaled
to [0, 1]. Feature normalization is an important proce-
dure, since the brain of every individual is different.
• Attention Deficit Hyperactivity Disorder (ADHD):
The second dataset is collected from ADHD-200 global
competition dataset4. The dataset contains records
of resting-state fMRI images for 776 subjects with
58× 49× 47 = 133574 voxels, which are labeled as real
patients (positive) and normal controls (negative). The
original dataset is unbalanced, we randomly sampled
100 ADHD patients and 100 normal controls from the
dataset for performance evaluation and the average over
time series is conducted. Such dataset are quite special,
all algorithms perform bad with normalization, we use
non-normalized dataset.
• Human Immunodeficiency Virus Infection (HIV): The
third dataset is collected from the Department of Ra-
diology in Northwestern University [20]. The dataset
contains fMRI brain images of patients with early HIV
infection (positive) as well as normal controls (negative).
The same preprocessing steps as in ADNI dataset were
given. This contains 83 samples with 61 × 73 × 61 =
271633 voxels.

4.2 Baselines and Metrics In order to establish a
comparative study, we use seven state-of-the-art meth-
ods as baselines, each representing a different strat-
egy. We here focus on SVM classifier, since it has been
proven successful in many applications.
• Gaussian-RBF: a Gaussian-RBF kernel-based SVM,
which is now the most widely used vector-based method
for classification. In the following methods, if not stated
explicitly, we use SVM with Gaussian RBF kernel as the
classifier.
• Factor kernel: a matrix unfolding based tensor kernel,
which is recently proposed in [16] and the constituent
kernels belong to a class of Gaussian RBF kernels.
• K3rd kernel: a class of vector-based tensor kernels,
aiming at representing the tensor in each vector space
to capture structural information and have been applied
to analyze fMRI images in conjunction with Gaussian
RBF kernel [14].
• Linear SHTM: a linear support higher-order tensor
machine [6], which is one of the most effective meth-
ods for tensor classification that generalizes linear SVM
to tensor pattern using CP factorization and can be
regarded as a special case of DuSK, namely the con-
stituent kernels are linear kernels. This baseline is used
to test the ability of our proposed method to cope with
complex (possibly nonlinear) structured data.
• Linear kernel: linear SVM has also been increasingly

4http://neurobureau.projects.nitrc.org/ADHD200/



Table 2: Average classification accuracy comparison: mean (standard deviation).
Dataset DuSKRBF Gaussian RBF Factor kernel K3rd kernel linear SHTM linear SVM PCA+SVM MPCA+SVM

ADNI 0.75 (0.18) 0.49 (0.23) 0.51 (0.21) 0.55 (0.14) 0.52 (0.31) 0.42 (0.27) 0.50 (0.02) 0.51 (0.02)
ADHD 0.65(0.01) 0.58 (0.00) 0.50 (0.00) 0.55 (0.00) 0.51 (0.03) 0.51 (0.01) 0.63 (0.01) 0.64 (0.01)
HIV 0.74 (0.00) 0.70 (0.00) 0.70 (0.01) 0.75 (0.02) 0.70 (0.01) 0.74 (0.01) 0.73 (0.25) 0.72 (0.02)
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Figure 5: Test accuracy vs. R on (a) ADNI, (b) ADHD, and (c) HIV, where the red triangles indicate the peak
positions.

used to handle fMRI data. In some cases, it outper-
forms SVM using nonlinear kernels.
• PCA+SVM: Principal component analysis (PCA) is
a vector-based subspace learning algorithms, which are
commonly used for dealing with high-dimensional data,
in particular fMRI data.
• MPCA+SVM: Multilinear principal component anal-
ysis (MPCA) [12] is a natural extension of PCA to ten-
sors, which are used to handle high-dimensional tensor
data.

The first three baselines are used to show the
improvement of our proposed method over current
kernel approaches to tensor classification. The last
two baselines are used to test the effectiveness of our
proposed method compared to unsupervised methods
for tensor classification.

The effectiveness of an algorithm is always evalu-
ated by test accuracy, we utilize it as metrics in the ex-
periments. For our proposed method and linear SHTM,
we choose the most popular and widely used enhanced
linear search method [13] as its CP factorization strat-
egy. All of the related methods select the optimal trade-
off parameter from C ∈ {2−5, 2−4, · · · , 29} and kernel
width parameter from σ ∈ {2−4, 2−3, · · · , 29}. Consid-
ering the fact that there is no known closed-form solu-
tion to determine the rank R of a tensor a priori [9], and
rank determination of a tensor is still an open problem
[18], in our method and linear SHTM, we use grid search
to determine the optimal rank and the optimal trade-off
parameter together, where the rank R ∈ {1, 2, · · · , 12}.
The influence of different rank parameters on the clas-
sification performance of our method is also given.

All the experiments are conducted on a computer
with Intel Core2TM1.8GHz processor and 3.5GB RAM
memory running Microsoft Windows XP.

4.3 Classification Performance In our experi-
ments, we first randomly sample 80% of the whole data

as the training set, and the remaining samples as the
test set. This random sampling experiment was re-
peated 50 times for all methods. The average perfor-
mances of each method are reported. Table 2 shows the
average classification accuracy and standard deviation
of seven algorithms on three datasets, where the best
result is highlighted in bold type.

From the experimental results in Table 2, we can
observe that the classification accuracy of each method
on different dataset can be quite different. However,
the best method that outperforms other methods in all
datasets is DuSKRBF, especially for ADNI dataset. It is
worth noting that in neuroimaging task it is very hard
for classification algorithms to achieve even moderate
classification accuracy on ADNI dataset since this data
is extremely high dimensional but with small sample
size. While we can observe an 20% gain over comparison
methods. Based on this result, we can conclude that
operation on tensors is much more effective than on
matrices and vectors for high-dimensional tensor data
analysis.

So far we have demonstrated that our proposed
method is effective for tensor classification. However,
it is still interesting to show how the data structure
for tensor is actually used in our method. We focus
on ADNI dataset to conduct an analysis. Figure 6
shows the visualization of original ADNI object and
reconstruction result from our chosen CP factorization.
As illustrated, CP factorization can fully capture the
multi-way structure of the data, thus our method take
it into account in the learning process.

4.4 Parameter Sensitivity Although the optimal
rank parameter R , the optimal trade-off parameter
C and kernel width parameter σ are found by a grid
search in DuSKRBF, it is still important to see the
sensitivity of DuSKRBF to the rank parameter R. For
this purpose, we demonstrate a sensitivity study over



(a) original data (b) reconstruction

Figure 6: (a) is visualization of original ADNI object (a
cross section is shown on the left and a 3D plot on the
right) and (b) is reconstruction result from our chosen
CP factorization.

different R ∈ {1, 2, · · · , 12} in this section, where the
optimal trade-off parameter and kernel width parameter
are still selected from C ∈ {2−5, 2−4, · · · , 29} and
σ ∈ {2−4, 2−3, · · · , 29} respectively. According to the
aforementioned analysis, we know that the efficiency
of DuSKRBF is reduced when R is increased because a
higher value of R implies that more items are included
into kernel computations. Thus, we only demonstrate
the variation in test accuracy over different R on three
datasets. As shown in Figure 5, we can observe that
the rank parameter R has a significant effect on the
test accuracy and the optimal value of R depends on
the data, while the optimal value of R lies in the range
2 ≤ R ≤ 5, which may provide a good guidance for
selection of the R in advance.

In summary, the parameter sensitivity study
indicates that the classification performance of
DuSKRBF+SVM relies on parameter R and it is
difficult to specify an optimal value for R in advance.
However, in most cases the optimal value of R lies in
a small range of values as demonstrated in [6] and it
is not time-consuming to find it using the grid search
strategy in practical applications.

5 Related Work

From the conceptual perspective, two topics can be seen
as closely related to our DuSK approach: supervised
tensor learning and tensor factorization. This section
gives a short overview of these areas and distinguishes
DuSK from other existing solutions.

Tensor factorizations: Tensor factorizations are
higher-order extensions of matrix factorization that
elicit intrinsic multi-way structures and capture the un-
derlying patterns in tensor data. These techniques have
been widely used in diverse disciplines to analyze and
process tensor data. A thorough survey of these tech-
niques and applications can be found in [10]. The two
most commonly factorizations are CP and Tucker. CP
is a special case of Tucker decomposition which forces
the core array to a (super)diagonal form. It is thus more
condensed than that of Tucker. In the supervised ten-

sor learning setting, CP is more frequently applied to ex-
plore tensor data because of its properties of uniqueness
and simplicity [6, 8, 19, 23]. However, in these applica-
tions, CP factorization is used either for exploratory
analysis or to deal with linear tensor-based models. In
this study, we employ the CP factorization to foster the
use of kernel methods for supervised tensor learning.

Supervised tensor learning: Supervised tensor
learning has been extensively studied in recent years
[1, 5, 11, 19, 23]. Most of previous work has concen-
trated on learning linear tensor-based models, whereas
the problem of how to build nonlinear models directly
on tensor data has not been well studied. A first at-
tempt in this direction focused on second-order tensors
and led to a non-convex optimization problem [15]. Sub-
sequently, the authors claimed that it can be extended
to deal with higher-order tensors at the cost of a higher
computational complexity, and proposed a factor kernel
for tensors of arbitrary order except for square matrices
based upon matrix unfoldings [16]. In the context of this
proposal, Signorette et al. [17] introduced a cumulant-
based kernel approach for classification of multichannel
signals. Zhao et al. [22] presented a kernel tensor par-
tial least squares for regression of lamb movements. A
drawback of the approaches in [16, 17, 22] is that they
can only capture the one-way relationships within the
tensor data, because the tensors are unfolded into ma-
trices. The multi-way structures within tensor data are
already lost before the kernel construction process. Dif-
ferent from these methods, we aim to directly exploit
the algebraic structure of the tensor to study structure-
preserving kernels.

Another recent work by Hardoon et al. [7], although
not directly performs supervised tensor learning, is
worth mentioning in this context. They introduced
the so-called tensor kernels to analyze neuroimaging
data from multiple sources, which demonstrated that
the tensor product feature space is useful for modeling
interactions between feature sets in different domains.
In this study, we make use of the tensor product feature
space to derive our kernels in vivo the incorporation of
CP model. The tensor kernels can be cast as a special
case of our framework.

6 Conclusion and Future work

In this paper we have introduced a new tensor-based
kernel methodology and first operate directly on ten-
sors. We have applied our method on the problem of
fMRI classification. The results indicate that the prior
structural information can indeed improve the classifi-
cation performance, particularly with small-sample size.
As previous work limited on learning with matrices and
vectors, this paper provides a new insight into the un-



derstanding of the principles and ideas underlying the
concept of tensor.

In the future, we will investigate the reconstruction
techniques of tensor data, so that our method can han-
dle high-dimensional vector data more effectively. An-
other interesting topic would be to design some spe-
cial method to address the parameter problem. Further
study on this topic will also include many applications of
DuSK kernels in real-world unsupervised learning with
tensor representations.
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