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Abstract

Mining discriminative features for graph data has at-
tracted much attention in recent years due to its im-
portant role in constructing graph classifiers, generat-
ing graph indices, etc. Most measurement of interest-
ingness of discriminative subgraph features are defined
on certain graphs, where the structure of graph objects
are certain, and the binary edges within each graph
represent the “presence” of linkages among the nodes.
In many real-world applications, however, the linkage
structure of the graphs is inherently uncertain. There-
fore, existing measurements of interestingness based
upon certain graphs are unable to capture the struc-
tural uncertainty in these applications effectively. In
this paper, we study the problem of discriminative sub-
graph feature selection from uncertain graphs. This
problem is challenging and different from conventional
subgraph mining problems because both the structure
of the graph objects and the discrimination score of each
subgraph feature are uncertain. To address these chal-
lenges, we propose a novel discriminative subgraph fea-
ture selection method, Dug, which can find discrim-
inative subgraph features in uncertain graphs based
upon different statistical measures including expecta-
tion, median, mode and ϕ-probability. We first compute
the probability distribution of the discrimination scores
for each subgraph feature based on dynamic program-
ming. Then a branch-and-bound algorithm is proposed
to search for discriminative subgraphs efficiently. Ex-
tensive experiments on various neuroimaging applica-
tions (i.e., Alzheimers Disease, ADHD and HIV) have
been performed to analyze the gain in performance by
taking into account structural uncertainties in identify-
ing discriminative subgraph features for graph classifi-
cation.
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1 Introduction

Graphs arise naturally in many scientific applications
which involve complex structures in the data, e.g.,
chemical compounds, program flows, etc. Different from
traditional data with flat features, these data are usu-
ally not directly represented as feature vectors, but
as graphs with nodes and edges. Mining discrimina-
tive features for graph data has attracted much atten-
tion in recent years due to its important role in con-
structing graph classifiers, generating graph indices, etc.
[22, 11, 4, 14, 20]. Much of the past research in discrim-
inative subgraph feature mining has focused on certain
graphs, where the structure of the graph objects are
certain, and the binary edges represent the “presence”
of linkages between the nodes. Conventional subgraph
mining methods [22] utilize the structures of the certain
graphs to find discriminative subgraph features. How-
ever, in many real-world applications, there is inherent
uncertainty about the graph linkage structure. Such
uncertainty information will be lost if we directly trans-
form uncertain graphs into certain graphs.

For example, in neuroimaging, the functional con-
nectivities among different brain regions are highly un-
certain [6, 8, 7, 25]. In such applications, each human
brain can be represented as an uncertain graph as shown
in Figure 1, which is also called the “brain network”
[2]. In such brain networks, the nodes represent brain
regions, and edges represent the probabilistic connec-
tions, e.g., resting-state functional connectivity in fMRI
(functional Magnetic Resonance Imaging). Since these
functional connectivities are derived based upon pro-
cessing steps, such as temporal correlations in sponta-
neous blood oxygen level-dependent (BOLD) signal os-
cillations, each edge of the brain network is associated
with a probability to quantify the likelihood that the
functional connection exists in the brain. Resting-state
functional connectivity has shown alterations related
to many neurological diseases, such as ADHD (Atten-
tion Deficit Hyperactivity Disorder), Alzheimer’s dis-
ease and virus infections that may affect the brain func-
tioning, such as HIV [21]. Researchers are interested
in analyzing the complex structure and uncertain con-
nectivities of the human brain to find biomarkers for
neurological diseases. Such biomarkers are clinically im-



(a) positive uncertain graph (b) negative uncertain graph

Figure 1: An example of uncertain graph classification
task.

perative for detecting injury to the brain in the earliest
stages before it is irreversible. Valid biomarkers can be
used to aid diagnosis, monitor disease progression and
evaluate effects of intervention.

Motivated by these real-world neuroimaging appli-
cations, in this paper, we study the problem of min-
ing discriminative subgraph features in uncertain graph
datasets. Discriminative subgraph features are funda-
mental for uncertain graphs, just as they are for cer-
tain graphs. They serve as primitive features for the
classification tasks on uncertain graph objects. Despite
the value and significance, the discriminative subgraph
mining for uncertain graph classification has not been
studied in this context. If we consider discriminative
subgraph mining and uncertain graph structures as a
whole, the major research challenges are as follows:
Structural Uncertainty: In discriminative subgraph
mining, we need to estimate the discrimination score
of a subgraph feature in order to select a set of sub-
graphs that are most discriminative for a classification
task. In conventional subgraph mining, the discrimina-
tion scores of subgraph features are defined on certain
graphs, where the structure of each graph object is cer-
tain, and thus the containment relationships between
subgraph features and graph objects are also certain.
However, when uncertainty is presented in the struc-
tures of graphs, a subgraph feature only exists within
a graph object with a probability. Thus the discrimi-
nation scores of a subgraph feature are no longer deter-
ministic values, but random variables with probability
distributions.

Thus, the evaluation of discrimination scores for
subgraph features in uncertain graphs is different from
conventional subgraph mining problems. For example,
in Figure 2, we show an uncertain graph dataset con-
taining 4 uncertain graphs G̃1, · · · , G̃4 with their class
labels, + or −. Subgraph g1 is a frequent pattern among
the uncertain graphs, but it may not relate to the class
labels of the graphs. Subgraph g2 is a discriminative
subgraph features when we ignore the edge uncertain-
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Figure 2: Different types of subgraph features for
uncertain graph classification

ties. However, if such uncertainties are considered, we
will find that g2 can rarely be observed within the uncer-
tain graph dataset, and thus will not be useful in graph
classification. Accordingly, g3 is the best subgraph fea-
ture for uncertain graph classification.
Efficiency & Robustness: There are two additional
problems that need to be considered when evaluating
features for uncertain graphs: 1) In an uncertain graph
dataset, there are an exponentially large number of
possible instantiations of a graph dataset [26]. How
can we efficiently compute the discrimination score of
a subgraph feature without enumerating all possible
implied datasets? 2) When evaluating the subgraph
features, we should choose a statistical measure for
the probablity disctribution of discrimination scores
which is robust to extreme values. For example, given
a subgraph feature with (score, probability) pairs as
(0.01, 99.99%) and (+∞, 0.01%), the expected score
of the subgraph is +∞, although this value is only
associated with a very tiny probability.

In order to address the above problems, we pro-
pose a general framework for mining discriminative sub-
graph features in uncertain graph datasets, which is
called Dug (Discriminative feature selection for Uncer-
tain Graph classification). The Dug framework can ef-
fectively find a set of discriminative subgraph features
by considering the relationship between uncertain graph
structures and labels based upon various statistical mea-
sures. We propose an efficient method to calculate the
probability distribution of the scoring function based on
dynamic programming. Then a branch-and-bound algo-
rithm is proposed to search for the discriminative sub-
graphs efficiently by pruning the subgraph search space.
Empirical studies on resting-state fMRI images of dif-
ferent brain diseases (i.e., Alzheimer’s Disease, ADHD
and HIV) demonstrate that the proposed method can
obtain better accuracy on uncertain graph classification



tasks than alternative approaches.
For the rest of the paper, we first introduce prelim-

inaries in Section 2. Then we introduce our Dug sub-
graph mining framework in Section 3. Discrimination
score functions based upon different statistic measures
are discussed in Section 3.1. An efficient algorithm for
computing the score distribution based upon dynamic
programming is proposed in Section 3.2. Experimen-
tal results are discussed in Section 4. In Section 6, we
conclude the paper.

2 Problem Formulation

In this section, we formally define the model of uncertain
graphs and the problem of discriminative subgraph
mining in uncertain graph datasets. Suppose we are
given an uncertain graph dataset D̃ = {G̃1, · · · , G̃n}
that consists of n uncertain graphs. G̃i is the i-th
uncertain graph in D̃. y = [y1, · · · , yn]! denotes the
vector of class labels, where yi ∈ {+1,−1} is the
class label of G̃i. We also denote the subset of D̃
that contains only positive/negative graphs as D̃+ =
{G̃i|G̃i ∈ D̃

∧
yi = +1} and D̃− = {G̃i|G̃i ∈ D̃

∧
yi =

−1} respectively.

Definition 1. (Certain Graph) A certain graph is
an undirected and deterministic graph represented as
G = (V,E). V = {v1, · · · , vnv} is the set of vertices.
E ⊆ V × V is the set of deterministic edges.

Definition 2. (Uncertain Graph) An uncertain
graph is an undirected and nondeterministic graph
represented as G̃ = (V,E, p). V = {v1, · · · , vnv} is the
set of vertices. E ⊆ V × V is the set of nondetermin-
istic edges. p : E → (0, 1] is a function that assigns a
probability of existence to each edge in E. p(e) denotes
the existence probability of edge e ∈ E.

Consider an uncertain graph G̃(V,E, p) ∈ D̃, where
each edge e ∈ E is associated with a probability
p(e) of being present. As in previous works [27, 26],
we assume that the uncertainty variables of different
edges in an uncertain graph are independent from each
other, though most of our results are still applicable
to graphs with edge correlations. We further assume
that all uncertain graphs in a dataset D̃ share a same
set of nodes V and each node in V has a unique node
label, which is reasonable in many applications like
neuroimaging, since each human brain consists of the
same number of regions. The main difference between
different uncertain graphs is on their linkage structures,
i.e., the edge sets E(G̃) and the edge probabilities p(e).

Possible instantiations of an uncertain graph G̃ are
usually referred to as worlds of G̃, where each world

corresponds to an implied certain graph G. Here G is
implied from uncertain graph G̃ (denoted as G̃ ⇒ G),
iff all edges in E(G) are sampled from E(G̃) according
to their probabilities of existence in p(e) and E(G) ⊆

E(G̃). There are 2|E(G̃)| possible worlds for uncertain
graph G̃, denoted as W(G̃) = {G|G̃ ⇒ G}. Thus,
each uncertain graph G̃ corresponds to a probability
distribution over W(G̃). We denote the probability of
each certain graph G ∈ W(G̃) being implied by the
uncertain graph G̃ as Pr(G̃ ⇒ G), and we have

Pr
[
G̃ ⇒ G

]
=

∏

e∈E(G)

PrG̃(e)
∏

e∈E(G̃)−E(G)

(
1− PrG̃(e)

)

Similarly, possible instantiations of an uncertain
graph dataset D̃ = {G̃1, · · · , G̃n} are referred to as
worlds of D̃, where each world corresponds to an
implied certain graph dataset D = {G1, · · · , Gn}. A
certain graph dataset D is called as being implied from
uncertain graph dataset D̃ (denoted as D̃ ⇒ D), iff
|D| = |D̃| and ∀i ∈ {1, · · · , |D|}, G̃i ⇒ Gi. There

are
∏|D̃|

i=1 2
|E(G̃i)| possible worlds for uncertain graph

dataset D̃, denoted as W(D̃) = {D | D̃ ⇒ D}. An
uncertain graph dataset D̃ corresponds to a probability
distribution over W(D̃). We denote the probability of
each certain graph dataset D ∈ W(D̃) being implied by
D̃ as Pr(D̃ ⇒ D). By assuming that different uncertain
graphs are independent from each other, we have

Pr
[
D̃ ⇒ D

]
=

|D̃|∏

i=1

Pr[G̃i ⇒ Gi]

The concept of subgraph is defined based upon
certain graphs. Different from conventional subgraph
mining problems where each subgraph feature can have
multiple embeddings within one graph object, in our
data model, each subgraph feature g can only have one
unique embedding within a certain graph G.

Definition 3. (Subgraph) Let g = (V ′, E′) and G =
(V,E) be two certain graphs. g is a subgraph of G
(denoted as g ⊆ G) iff V ′ ⊆ V and E′ ⊆ E. We use
g ⊆ G to denote that graph g is a subgraph of G. We
also say that G contains subgraph g.

For an uncertain graph G̃, the probability of G̃ contain-
ing a subgraph feature g is defined as follows:

Pr(g ⊆ G̃) =
∑

G∈W(G̃)

Pr(G̃ ⇒ G) · I(g ⊆ G)

=

{∏
e∈E(g) p(e) if E(g) ⊆ E(G̃)

0 otherwise



Table 1: Important Notations.
Symbol Definition

D̃ = {G̃1, · · · , G̃n} uncertain graph dataset, G̃i denotes the i-th uncertain graph in the dataset.
y = [y1, · · · , yn]

! class label vector for graphs in D̃, yi ∈ {+1,−1}.
D̃+ and D̃− the subset of D̃ with only positive/negative graphs, D̃+ = {G̃i|G̃i ∈ D̃, yi = +1}.
n+ and n− number of positive graphs and number of negative graphs in D̃, n+ = |D̃+| and n− = |D̃−|.
D = {G1, · · · , Gn} a certain graph dataset implied from D̃, Gi denotes the certain graph implied from G̃i.
g ⊆ G graph G contains subgraph feature g
ng
+ and ng

− number of graphs in D+ / D− that contains subgraph g, ng
+ = |{Gi|g ⊆ Gi, Gi ∈ D+}|.

G̃⇒ G and D̃ ⇒ D certain graph G is implied from uncertain graph G̃; D is implied from D̃.
W(G̃) and W(D̃) the possible worlds of G̃ and D̃, W(G̃) = {G|G̃⇒ G}, W(D̃) = {D|D̃ ⇒ D}.
E(G̃i) and E(Gi) the set of edges in G̃i and Gi

D̃+(k) and D̃−(k) the first k graphs in D̃+ or D̃−

which corresponds to the probability that a certain
graph G implied by G̃ contains subgraph g.

We focus on mining a set of discriminative subgraph
features to define the feature space of graph classifi-
cation. It is assumed that a graph object G̃i is rep-
resented as a feature vector xi = [x1

i , · · · , x
m
i ]! asso-

ciated with a set of subgraph features {g1, · · · , gm}.
Here, xk

i = Pr(gk ⊆ G̃i) is the probability that G̃i

contains the subgraph feature gk. Now suppose the
full set of subgraph features in the graph dataset D̃ is
S = {g1, · · · , gm}, which we use to predict the class la-
bels of the graph objects. The full feature set S is very
large. Only a subset of the subgraph features (T ⊆ S) is
relevant to the graph classification task, which is the tar-
get feature set we want to find within uncertain graphs.

The key issues of discriminative subgraph mining
for uncertain graphs can be described as follows:
(P1) How can one properly evaluate the discrimination
scores of a subgraph feature considering the uncertainty
of the graph structures?
(P2) How can one efficiently compute the probability
distribution of a subgraph’s discrimination score by
avoiding the exhaustive enumeration of all possible
worlds of the uncertain graph dataset? Moreover,
since the subgraph enumeration is NP-hard, it is also
infeasible to fully enumerate all the subgraph features
for an uncertain graph dataset.

In the following sections, we will introduce the pro-
posed framework for mining discriminative subgraphs
from uncertain graphs.

3 The Proposed Framework

3.1 Discrimination Score Distribution In this
subsection, we address the problem (P1) discussed in
the previous section. In conventional discriminative
subgraph mining, the discrimination scores of subgraph
features are usually defined for certain graph datasets,
e.g., information gain and G-test score [22]. The score
of a subgraph feature is a fixed value indicating the dis-

criminative power of the subgraph feature for the graph
classification task. However, such concepts don’t make
sense to uncertain graph datasets, since an uncertain
graph only contains a subgraph feature in a probabilis-
tic sense. Now we extend the concept of discriminative
subgraph features in uncertain graph datasets. Suppose
we have an objective function F (g,D) which measures
the discrimination score of a subgraph g in a certain
graph dataset D. The corresponding objective func-
tion on an uncertain graph dataset D̃ can be written as
F (g, D̃) accordingly. Note that F (g, D̃) is no longer a
deterministic function. F (g, D̃) corresponds to a ran-
dom variable over all possible outcomes of F (g,D) (i.e.,
Range(F )) with probability distribution:

s1 s2 · · ·

Pr[F (g, D̃) = s1] Pr[F (g, D̃) = s2] · · ·

where si ∈ Range(F ).
The probability distribution of the discrimination

score values can be defined as follows:

Pr
[
F (g, D̃) = s

]
=

∑

D∈W(D̃)

Pr[D̃ ⇒ D] · I (F (g,D) = s)

where I(π) ∈ {0, 1} is an indicator function, and
I(π) = 1 iff π holds. In other words, ∀s ∈ Range(F ),
Pr[F (g, D̃) = s] is the summation over the probabilities
of all worlds of D̃ in which the discrimination score
F (g,D) is exactly s. Based on the discrimination score
function on uncertain graphs, we define four statistical
measures that evaluate the properties of the distribution
of F (g, D̃) from different perspectives.

Definition 4. (Mean-Score) Given an uncertain
graph dataset D̃, a subgraph feature g and a discrim-
ination score function F (·, ·), we define the expected
discrimination score Exp(F (g, D̃)) as the mean score



among all possible worlds of D̃:

Exp
(
F (g, D̃)

)
=

∑

D∈W(D̃)

Pr[D̃ ⇒ D] · F (g,D)

=
+∞∑

s=−∞

s · Pr[F (g, D̃) = s]

The mean discrimination score is the expectation
of the random variable F (g, D̃). The expectation is
usually used in conventional frequent pattern mining on
uncertain datasets [27, 26]. However, it’s worth noting
that the expectation of discrimination scores may not be
robust to extreme values. In discriminative subgraph
mining, the value of a score function (e.g., frequency
ratio[10], G-test score[22]) can be +∞. Such cases can
easily dominate the computation of expectation, even
if the probabilities are extremely small. For example,
suppose we have a subgraph feature with the (score,
probability) pairs as (0.01, 99.99%) and (+∞, 0.01%).
The expected score will be +∞. In order to address
this problem, we either need to bound the maximum
value of the objective function like min(F (g, D̃), 1

ε ), or
we need to introduce other statistical measures which
are robust to extreme values.

Definition 5. (Median-Score) Given an uncertain
graph dataset D̃, a subgraph feature g and a discrimina-
tion score function F (·, ·) on certain graphs, we define
the median discrimination score Median(F (g, D̃)) as
the median score among all possible worlds of D̃:

Median
(
F (g, D̃)

)
= arg max

S






S∑

s=−∞

Pr
[
F (g, D̃) = s

]
≤

1

2






The median score is relatively more robust to extreme
values than expectation, although in some cases the
median score can still be infinite. The same results can
also hold for any quantile or k-th order statistic.

Another commonly used statistic is the mode score,
i.e., the score value that has the largest probability. The
mode score of a distribution means that the score is most
likely to be observed within all possible worlds of D̃.

Definition 6. (Mode-Score) Given an uncertain
graph dataset D̃, a subgraph feature g and a discrim-
ination score function F (·, ·), we define the mode dis-
crimination score Mode(F (g, D̃)) as the score that is
most likely among all possible worlds of D̃:

Mode
(
F (g, D̃)

)
= argmax

s
Pr

[
F (g, D̃) = s

]

Next we consider the probability of a subgraph fea-
ture being observed as a discriminative pattern within
all possible worlds of D̃, i.e., Pr[F (g, D̃) ≥ ϕ]. It is

Table 2: Summary of Discrimination Score Functions.
Name f(ng

+, ng
−, n+, n−)

confidence
n
g
+

n
g
++n

g
−

frequency ratio

∣∣∣∣log
n
g
+·n−

n
g
−

·n+

∣∣∣∣

G-test 2ng
+ · ln

n
g
+·n−

n
g
−

·n+
+ 2(n+ − ng

+) · ln
n−·(n+ − n

g
+)

n+·(n− − n
g
−

)

HSIC(linear)
(ng

+·n−−n
g
−

·n+)2

(n++n−−1)2(n++n−)2

called ϕ-probability. The higher the value, the more
likely that the subgraph feature is a discriminative pat-
tern with a score larger or equals to a threshold ϕ.

Definition 7. (ϕ-Probability) Given an uncertain
graph dataset D̃, a subgraph feature g and a discrimi-
nation score function F (·, ·), we define the ϕ-probability
for discrimination score function F (g, D̃) as the sum of
probabilities for all possible worlds of D̃, where the score
is greater than or equals to ϕ:

ϕ-Pr
(
F (g, D̃)

)
=

∑

D∈W(D̃)

Pr[D̃ ⇒ D] · I (F (g,D) ≥ ϕ)

=
+∞∑

s=ϕ

Pr[F (g, D̃) = s]

The ϕ-probability is robust to extreme values
of the objective function. For the previous exam-
ple, we have a subgraph feature with score distribu-
tion: (0.01, 99.99%), (+∞, 0.01%). The ϕ-probability
is 0.01%, when ϕ = 1.

We have already introduced four statistical mea-
sures of the distribution of a discrimination score func-
tion. Now the central problem for calculating all these
measures is how to calculate Pr[F (g, D̃) = s] efficiently,
which we will discuss in the following section.

3.2 Efficient Computation In this subsection, we
address the problem (P2) discussed in Section 2. Given
a certain graph dataset D, we denote the subsets of all
positive graphs and all negative graphs as D+ and D−,
respectively. Suppose the supports of subgraph feature
g in D+ and D− are ng

+ and ng
−. n

g
+ = |{G;G ∈ D+, g ⊆

G}|. Most of the existing discrimination score functions
can be written as a function of ng

+, n
g
−, n+ and n−:

(3.1) F (g,D) = f
(
ng
+, n

g
−, n+, n−

)

The definition in Eq. 3.1 covers many discrim-
ination score functions including confidence[5], fre-
quency ratio[10], information gain, G-test score[22] and
HSIC[13], as shown in Table 2. For example, frequency
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Figure 3: The dynamic programming process for com-

puting Pr
[
ng
+, D̃+

]
. The same process applies for

Pr
[
ng
−, D̃−

]
.

ratio can be written as r(g) = | log
ng
+·n−

ng
−·n+

|. The G-test

score can be written as G-test(g) = 2ng
+ · ln

ng
+·n−

ng
−·n+

+

2
(
n+ − ng

+

)
· ln

n−·(n+−n
g
+)

n+·(n−−n
g
−)

. Because n+ and n− are

fixed numbers for different subgraph features, we sim-
ply use f(ng

+, n
g
−) for f

(
ng
+, n

g
−, n+, n−

)
.

Based on the above definitions, we find that the
number of possible outcomes of F (g, D̃) is bounded by
n+×n−, because 0 ≤ ng

+ ≤ n+ and 0 ≤ ng
− ≤ n−. Thus,

the probabilities Pr[F (g, D̃) = s] can be exactly com-
puted via dynamic programming in O(n2) time, with-
out enumerating all possible worlds of D̃. Instead, we
can just enumerate all possible combinations of (ng

+, n
g
−)

and calculate the probability for each pair (ng
+, n

g
−),

denoted as Pr[ng
+, n

g
−, D̃] = Pr

[
F (g, D̃) = f(ng

+, n
g
−)

]
.

Then the values of F (g, D̃) in all possible worlds with
non-zero probabilities can be covered by the n+ × n−
cases.

Moreover, because different uncertain graphs are
independent from each other, we have

(3.2) Pr[ng
+, n

g
−, D̃] = Pr[ng

+, D̃+] · Pr[n
g
−, D̃−]

where Pr[ng
+, D̃+] denotes the probability of the cases

when there are ng
+ graphs in D̃+ that contain the

subgraph g. Pr[ng
−, D̃−] corresponds to the cases when

there are ng
− graphs in D̃− that contain subgraph

g. Now we just need to compute the probabilities
Pr[ng

+, D̃+] (∀ng
+, 0 ≤ ng

+ ≤ n+) and Pr[ng
−, D̃−]

(∀ng
−, 0 ≤ ng

− ≤ n−) separately.

Let D̃(k) denote the first k uncertain graphs in
D̃, i.e., D̃(k) = {G̃1, · · · , G̃k}. D̃+(k) and D̃−(k)

denote the first k graphs in D̃+ and D̃− respectively.
All the values of Pr[ng

+, D̃+] and Pr[ng
−, D̃−] can be

calculated using the recursive equation in Figure 5. The
Pr[i, D̃(k)] denotes the probability when there are i

graphs containing g in D̃(k). And the target values
to calculate are Pr[i, D̃+(n+)] (∀i, 0 ≤ i ≤ n+) and
Pr[i, D̃−(n−)] (∀i, 0 ≤ i ≤ n−) by substituting the D̃+

and D̃− into the Eq. 3.3, respectively. In Figure 4, we
showed the dynamic programing algorithm to compute
the target values using Eq. 3.3. Figure 3 illustrates
the computation process of the dynamic programing
algorithm for Pr[ng

+, D̃+], while the same process also

applies for Pr[ng
−, D̃−].

For details of the recursive equations in Figure 5, we
have the base cases, Pr[0, D̃0] = 1 and Pr[i, D̃(k)] = 0
(if i > k or i < 0). For other cases, the probability
value can be calculated through the recursive equation
in Eq. 3.3. Then, Pr[ng

+, n
g
−, D̃] can be calculated via

Eq. 3.2. Thus all the statistical measures mentioned
in Section 3.1 can be calculated within O(n2) time as
follows:
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We will show later that the dynamic programming
process is highly efficient in all the applications studied
in Section 4. For dataset with even larger number of
graphs, the divid-and-conquer method in [19] could also
be used here to further optimize the computational cost.

3.3 Upper-Bounds for Subgraph Pruning In
order to avoid the exhaustive enumeration of sub-
graph features, we derive some subgraph pruning
methods. One natural pruning bound for subgraph
search is the expected frequency of a subgraph feature,

Exp-Freq(g, D̃) =
∑n

i Pr(g⊆G̃i)
n , since it’s can be easily

proved with anti-monotonic property. For the expec-
tation and ϕ-probability, we can also derive additional
bounds for subgraph pruning. Let F̂ (g,D) = f̂(ng

+, n
g
−)

be the estimated upper-bound function for g and its su-
pergraphs in certain graph dataset D. We can derive



(3.3) Pr
[
i, D̃(k)

]
=






(
1 − Pr[g ⊆ G̃k]

)
· Pr[i, D̃(k − 1)] + Pr[g ⊆ G̃(k)] · Pr[i− 1, D̃(k − 1)] if i ≤ k

1 if i = k = 0

0 if i > k or i < 0

Figure 5: Recursive equation for dynamic programming.

Input:

D̃: the uncertain graph dataset {G̃1, · · · , G̃n} t: the maximum number of subgraphs.
y: the vector of class labels for uncertain graphs, min sup: the minimum expected frequency.
M : the statistic measure (Expectation/Median/Mode/ϕ-Pr)

Recursive Subgraphs Mining:
- Depth-first search the gSpan’s code tree and update the feature list as follows:

1. Update the candidate feature list using the current subgraph feature gc:
Calculate the probability vector Pr[ngc

+ , D̃+ ] and Pr[ngc
− , D̃− ] using the dynamic programing algorithm in Figure 4

Compute the statistic measure M
(
F (gc, D̃)

)
based on the discrimination score function F (gc, D̃).

If the score is larger than the worst feature in T , replace it and update θ = ming∈T M
(
F (g, D̃)

)

2. Test pruning criteria for the sub-tree rooted from node g as follows:
if Exp-Freq(gc) ≤ min sup, prune the sub-tree of gc

if Bound-M
(
F (gc, D̃)

)
≤ θ, prune the sub-tree of gc

3. Recursion: Depth-first search the sub-tree rooted from node gc

Output:
T : the discriminative subgraph features for uncertain graph classification.

Figure 6: The Dug framework for discriminative subgraph mining.

Input:

D̃+: the set of positive graphs
D̃−: the set of negative graphs

Dynamic Programming:
for ng

+ ← 0 to n+

for k ← ng
+ to n+

compute Pr[ ng
+, D̃+(k) ] via Eq. 3.3;

for ng
− ← 0 to n−

for k ← n
g
− to n−

compute Pr[ ng
−, D̃−(k) ] via Eq. 3.3;

Output:

Pr[ng
+, D̃+ ] (∀ ng

+, 0 ≤ ng
+ ≤ n+)

Pr[ng
−, D̃− ] (∀ n

g
−, 0 ≤ n

g
− ≤ n−)

Figure 4: The dynamic programming algorithm for
probability computation.

the corresponding upper-bounds as follows:
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For the median and mode measures, it is difficult to
derive a meaningful bound, thus we simply use the
expected frequency to perform the subgraph pruning.

We now utilize the above bounds to prune the
DFS-code tree in gSpan [23] by the branch-and-bound
pruning. The top-t best features are maintained in

a candidate list. During the subgraph mining, we
calculate the upper-bound of each subgraph feature
in the search tree. If a subgraph feature with its
children pattern cannot update the candidate feature
list, we can prune the subtree of gSpan rooted from this
node. It is guaranteed by the upper-bounds that we
will not miss any better subgraph features. Thus, the
subgraph mining process can be speeded up without loss
of performance. The algorithm of Dug is summarized
in Figure 6.

4 Experiments

In order to evaluate the performance of the proposed
approach for uncertain graph classification, we tested
our algorithm on real-world fMRI brain images as
summarized in Table 3.

4.1 Data Collection In order to evaluate the per-
formance of the proposed approach for uncertain graph
classification, we tested our algorithm on real-world
fMRI brain images.
• Alzheimer’s Disease (ADNI): The first dataset is col-
lected from the Alzheimer’s Disease Neuroimaging Ini-
tiative1. The dataset consists of records of patients
with Alzheimer’s Disease (AD) and Mild Cognitive Im-
pairment (MCI). We downloaded all records of resting-
state fMRI images and treated the normal brains as

1http://adni.loni.ucla.edu/



negative graphs, and AD+MCI as the positive graphs.
We applyed Automated Anatomical Labeling (AAL2)
to extract a sequence of responds from each of of the
116 anatomical volumes of interest (AVOI), where each
AVOI represents a different brain region. The correla-
tions of brain activities among different brain regions
are computed. Positive correlations are used as uncer-
tain links among brain regions. For details, we used
SPM8 toolbox3, and functional images were realigned
to the first volume, slice timing corrected, and normal-
ized to the MNI template and spatially smoothed with
an 8-mm Gaussian kernel. Resting-State fMRI Data
Analysis Toolkit (REST4) was then used to remove the
linear trend of time series and temporally band-pass fil-
tering (0.01-0.08 Hz). Before the correlation analysis,
several sources of spurious variance were then removed
from the data through linear regression: (i) six param-
eters obtained by rigid body correction of head motion,
(ii) the whole-brain signal averaged over a fixed region
in atlas space, (iii) signal from a ventricular region of
interest, and (iv) signal from a region centered in the
white matter. Each brain is represented as an uncer-
tain graph with 90 nodes corresponding to 90 cerebral
regions, excluding 26 cerebellar regions.
• Attention Deficit Hyperactivity Disorder (ADHD):
The second dataset is collected from ADHD-200 global
competition dataset 5. The dataset contains records of
resting-state fMRI images for 776 subjects, which are
labeled as real patients (positive) and normal controls
(negative). Similar to the ADNI dataset, the brain
images are preprocessed using Athena Pipeline6. The
original dataset is unbalanced, we randomly sampled
100 ADHD patients and 100 normal controls from the
dataset for performance evaluation.
• Human Immunodeficiency Virus Infection (HIV): The
third dataset is collected from the Chicago Early HIV
Infection Study in Northwestern University [21]. The
dataset contains fMRI brain images of patients with
early HIV infection (positive) as well as normal controls
(negative). The same preprocessing steps as in ADNI
dataset were used to extract a functional connectivity
network from each image.

4.2 Comparative Methods We compared our
method using different statistical measures and discrim-
ination score functions summarized as follows:

2http://www.cyceron.fr/web/aal__anatomical_automatic_

labeling.html
3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
4http://resting-fmri.sourceforge.net
5http://neurobureau.projects.nitrc.org/ADHD200/
6http://www.nitrc.org/plugins/mwiki/index.php/

neurobureau:AthenaPipeline

Table 3: Summary of experimental datasets.

|D̃| |D̃+| |D̃−| |V | avg. |E| avg. edge prob

ADHD 200 100 100 116 484.7 0.55
ADNI 36 18 18 90 2019.8 0.59
HIV 50 25 25 90 480.48 0.88

• Frequent Subgraphs + Expectation (Exp+Freq): The
first baseline method is finding frequent subgraph fea-
tures within uncertain graphs. This baseline is similar
to the method introduced in [27]. In our data model,
this baseline method computes the exact expected fre-
quency of each subgraph features, instead of approx-
imated values. The top ranked frequent patterns are
extracted as used as features for graph classification.
• Dug with HSIC based discrimination scores : we com-
pare with four different versions of our Dug method
based upon HSIC criterion, which maximize the de-
pendence between subgraph features and graph labels
[13]. “Exp-HSIC” computes the expected HSIC value
for each subgraph feature, and find the top-k subgraphs
with the largest values. “Med-HSIC” computes the me-
dian HSIC value for each subgraph feature, while “Mod-
HSIC” computes the mode HSIC value. “ϕPr-HSIC”
computes the ϕ-probability of HSIC value for each sub-
graph feature.
• Dug with Frequency Ratio based discrimination
scores : we also compare our method based upon Fre-
quency Ratio, i.e., “Exp-Ratio”, “Med-Ratio”, “Mod-
Ratio” and “ϕPr-Ratio”.
• Dug with G-test based discrimination scores : we then
compare our method based upon G-test criterion, i.e.,
“Exp-Gtest”, “Med-Gtest”, “Mod-Gtest” and “ϕPr-
Gtest”.
•Dug with Confidence based discrimination scores : the
5th group of methods are based upon G-test criterion,
i.e., “Exp-Conf”, “Med-Conf”, “Mod-Conf” and “ϕPr-
Conf”.
• Simple Thresholding: Another group methods we
have compared are the feature selection methods for
certain graphs. In order to get the certain graphs
from the uncertain graphs in the dataset, we perform
simple tresholding over the weights of the links to
get the binary links. These baseline methods include:
“Freq”, “HISC”, “Ratio”, “Gtest” and “Conf”, which
correspond to the discrimination scores used in previous
5 groups separately.

LibSVM [3] with the linear kernel is used as the base
classifier for all compared methods. The min sup in the
gSpan for ADHD, ADNI and HIV datasets are 20%,
40% and 40% respectively. Since the range of different
discrimination functions can be extremely different. We
set the default ϕ for HSIC criterion, G-test score,



Table 4: Results on the ADNI (Alzheimer’s Disease) dataset with different number of features(t = 100, · · · , 500).
The results are reported as “average performance + (rank)”.

Error Rate ↓ F1 ↑ Avg.

Methods t = 100 t = 200 t = 300 t = 400 t = 500 t = 100 t = 200 t = 300 t = 400 t = 500 Rank

Exp-HSIC 0.400 (9) 0.367 (8) 0.367 (10) 0.317 (4) 0.333 (9) 0.699 (9) 0.725 (9) 0.725 (9) 0.753 (6) 0.743 (10) (8.3)
Med-HSIC 0.433 (14) 0.350 (5) 0.333 (6) 0.350 (8) 0.317 (7) 0.667 (13) 0.741 (7) 0.757 (4) 0.734 (9) 0.766 (7) (8.0)
Mod-HSIC 0.367 (6) 0.333 (3) 0.300 (1)* 0.317 (4) 0.300 (2) 0.703 (8) 0.750 (4) 0.776 (3) 0.766 (3) 0.775 (4) (3.8)
ϕPr-HSIC 0.283 (1)* 0.283 (1)* 0.333 (6) 0.333 (7) 0.300 (2) 0.778 (1)* 0.785 (1)* 0.757 (4) 0.750 (7) 0.776 (3) (3.3)

HSIC 0.450 (16) 0.467 (19) 0.467 (17) 0.500 (18) 0.500 (18) 0.615 (18) 0.597 (19) 0.622 (17) 0.583 (18) 0.584 (18) (18.1)

Exp-Ratio 0.433 (14) 0.383 (10) 0.317 (4) 0.300 (2) 0.300 (2) 0.667 (13) 0.715 (10) 0.756 (6) 0.766 (3) 0.766 (7) (7.1)
Med-Ratio 0.450 (16) 0.417 (15) 0.450 (16) 0.383 (11) 0.383 (11) 0.639 (17) 0.653 (16) 0.608 (20) 0.689 (12) 0.684 (11) (14.5)
Mod-Ratio 0.317 (3) 0.350 (5) 0.433 (15) 0.417 (13) 0.467 (15) 0.776 (2) 0.744 (6) 0.659 (13) 0.657 (13) 0.612 (15) (9.9)
ϕPr-Ratio 0.400 (9) 0.317 (2) 0.300 (1)* 0.300 (2) 0.267 (1)* 0.692 (10) 0.764 (2) 0.784 (1)* 0.778 (2) 0.809 (1)* (3.1)

Ratio 0.500 (19) 0.483 (20) 0.533 (22) 0.567 (22) 0.533 (20) 0.581 (20) 0.603 (18) 0.533 (21) 0.519 (22) 0.550 (20) (20.4)

Exp-Gtest 0.300 (2) 0.367 (8) 0.317 (4) 0.350 (8) 0.383 (11) 0.774 (3) 0.693 (11) 0.729 (9) 0.702 (10) 0.672 (12) (7.8)
Med-Gtest 0.517 (21) 0.450 (18) 0.400 (11) 0.500 (18) 0.483 (17) 0.562 (21) 0.597 (19) 0.655 (14) 0.567 (19) 0.589 (17) (17.5)
Mod-Gtest 0.517 (21) 0.550 (22) 0.500 (21) 0.500 (18) 0.517 (19) 0.531 (22) 0.491 (22) 0.527 (22) 0.545 (20) 0.558 (19) (20.6)
ϕPr-Gtest 0.450 (16) 0.417 (15) 0.417 (13) 0.383 (11) 0.300 (2) 0.648 (16) 0.675 (14) 0.665 (12) 0.701 (11) 0.768 (6) (11.6)

Gtest 0.500 (19) 0.500 (21) 0.467 (17) 0.433 (14) 0.550 (21) 0.583 (19) 0.580 (21) 0.612 (19) 0.656 (14) 0.547 (21) (18.6)

Exp-Conf 0.367 (7) 0.333 (3) 0.300 (1)* 0.283 (1)* 0.300 (2) 0.744 (6) 0.762 (3) 0.780 (2) 0.795 (1)* 0.780 (2) *(2.8)
Med-Conf 0.333 (4) 0.350 (5) 0.350 (8) 0.350 (8) 0.317 (7) 0.760 (4) 0.747 (5) 0.752 (7) 0.740 (8) 0.770 (5) (6.1)
Mod-Conf 0.417 (12) 0.383 (10) 0.350 (8) 0.317 (4) 0.333 (9) 0.690 (11) 0.728 (8) 0.742 (8) 0.759 (5) 0.750 (9) (8.4)
ϕPr-Conf 0.400 (9) 0.417 (15) 0.467 (17) 0.467 (16) 0.433 (13) 0.685 (12) 0.648 (17) 0.619 (18) 0.592 (17) 0.632 (13) (14.7)

Conf 0.400 (9) 0.400 (13) 0.417 (13) 0.450 (15) 0.467 (15) 0.655 (15) 0.667 (15) 0.645 (15) 0.618 (15) 0.610 (16) (14.1)

Exp-Freq 0.383 (8) 0.383 (10) 0.400 (11) 0.467 (16) 0.433 (13) 0.705 (7) 0.685 (13) 0.675 (11) 0.607 (16) 0.632 (13) (11.8)
Freq 0.350 (5) 0.400 (13) 0.483 (20) 0.550 (21) 0.550 (21) 0.747 (5) 0.692 (12) 0.627 (16) 0.539 (21) 0.547 (21) (15.5)

Table 5: Results on the ADHD (Attention Deficit Hyperactivity Disorder) dataset with different number of
features (t = 100, · · · , 500). The results are reported as “average performance + (rank)”.

Error Rate ↓ F1 ↑ Avg.

Methods t = 100 t = 200 t = 300 t = 400 t = 500 t = 100 t = 200 t = 300 t = 400 t = 500 Rank

Exp-HSIC 0.423 (10) 0.438 (13) 0.455 (14) 0.455 (11) 0.448(12) 0.593 (10) 0.564 (13) 0.543 (14) 0.547 (11) 0.549 (12) (12.0)
Med-HSIC 0.420 (9) 0.405 (8) 0.413 (8) 0.448 (10) 0.433 (6) 0.569 (13) 0.597 (7) 0.593 (5) 0.549 (10) 0.562 (7) (8.3)
Mod-HSIC 0.390 (4) 0.405 (8) 0.403 (4) 0.393 (1)* 0.410 (2) 0.614 (3) 0.599 (6) 0.596 (4) 0.594 (1)* 0.584 (2) *(3.5)
ϕPr-HSIC 0.432 (12) 0.470 (17) 0.475 (16) 0.513 (22) 0.503 (21) 0.597 (7) 0.563 (14) 0.554 (13) 0.508 (17) 0.525 (18) (15.7)

HSIC 0.529 (22) 0.510 (20) 0.488 (17) 0.455 (11) 0.485 (17) 0.505 (22) 0.494(18) 0.498 (18) 0.538 (13) 0.526 (17) (17.5)

Exp-Ratio 0.388 (3) 0.400 (5) 0.415 (10) 0.440 (8) 0.420 (4) 0.613 (4) 0.604 (5) 0.587 (9) 0.556 (8) 0.576 (4) (6.0)
Med-Ratio 0.450 (16) 0.418 (11) 0.388 (1)* 0.428 (6) 0.410 (2) 0.554 (15) 0.586 (12) 0.619 (1)* 0.571 (5) 0.579 (3) (7.2)
Mod-Ratio 0.400 (7) 0.370 (1)* 0.408 (5) 0.435 (7) 0.428 (5) 0.595 (8) 0.634 (1)* 0.591 (7) 0.558 (7) 0.560 (9) (5.7)
ϕPr-Ratio 0.372 (1)* 0.430 (12) 0.410 (7) 0.415 (2) 0.408 (1)* 0.630 (1)* 0.589 (9) 0.590 (8) 0.591 (2) 0.589 (1)* (4.4)

Ratio 0.515 (20) 0.520 (21) 0.490 (18) 0.475 (17) 0.498 (19) 0.550 (16) 0.461 (22) 0.461 (21) 0.503 (19) 0.517 (20) (19.3)

Exp-Gtest 0.393 (6) 0.403 (7) 0.413 (8) 0.420 (3) 0.435 (9) 0.610 (5) 0.588 (10) 0.582 (10) 0.586 (3) 0.563 (5) (6.6)
Med-Gtest 0.437 (13) 0.400 (5) 0.408 (5) 0.420 (3) 0.453 (15) 0.559 (14) 0.590 (8) 0.600 (2) 0.580 (4) 0.551 (10) (7.9)
Mod-Gtest 0.448 (15) 0.383 (4) 0.398 (2) 0.428 (5) 0.433 (6) 0.571 (12) 0.622 (4) 0.593 (5) 0.565 (6) 0.551 (10) (6.9)
ϕPr-Gtest 0.450 (16) 0.445 (14) 0.443(12) 0.455 (11) 0.433 (6) 0.544 (19) 0.555 (16) 0.552 (12) 0.538 (13) 0.562 (7) (12.6)

Gtest 0.440 (14) 0.505 (19) 0.501 (21) 0.486 (19) 0.471 (16) 0.542 (20) 0.492 (19) 0.490 (20) 0.499 (21) 0.534 (16) (18.5)

Exp-Conf 0.405 (8) 0.415 (10) 0.453 (13) 0.455 (11) 0.448 (12) 0.595 (8) 0.587 (11) 0.539 (15) 0.543 (12) 0.535 (15) (11.5)
Med-Conf 0.378 (2) 0.373 (2) 0.438 (11) 0.463 (15) 0.435 (9) 0.629 (2) 0.632 (2) 0.555 (11) 0.536 (15) 0.545 (13) (8.2)
Mod-Conf 0.392 (5) 0.373 (2) 0.400 (3) 0.440 (8) 0.435 (9) 0.606 (6) 0.627 (3) 0.600 (2) 0.556 (8) 0.563 (5) (5.1)
ϕPr-Conf 0.468 (19) 0.460 (15) 0.495 (20) 0.505 (21) 0.485 (17) 0.547 (18) 0.556 (15) 0.519 (16) 0.507 (18) 0.540 (14) (17.3)

Conf 0.455 (18) 0.500 (18) 0.460 (15) 0.464 (16) 0.450 (14) 0.514 (21) 0.479 (20) 0.510 (17) 0.498 (22) 0.519 (19) (18.0)

Exp-Freq 0.423 (10) 0.465 (16) 0.508 (22) 0.498 (20) 0.505 (22) 0.579 (11) 0.549 (17) 0.496 (19) 0.513 (16) 0.498 (22) (17.5)
Freq 0.515 (20) 0.520 (21) 0.490 (18) 0.475 (17) 0.498 (19) 0.550 (16) 0.461 (21) 0.461 (21) 0.503 (19) 0.517 (20) (19.2)

frequency ratio and confidence as 0.03, 200, 1 and 0.5,
respectively.

4.3 Performance on Uncertain Graph Classifi-
cation In our experiments, we first randomly sample
80% of the uncertain graphs as the training set, and the
remaining graphs as the test set. This random sampling
experiment was repeated 20 times. The average perfor-
mances with the rank of each method are reported. The
reason for using classification performances to evaluate
the quality of subgraph features is that classification
methods can usually achieve higher accuracy with fea-
tures of better discriminative powers. We measure the
classification performance by error rate and F1 score.

Table 5 and Table 4 show the evaluation results in

terms of classification error rates and F1 scores with
different number of selected subgraph features (t =
100, · · · , 500). The results of each method are shown
with average performance values and their ranks among
all the other methods. Values with ∗ stand for the best
performance for the corresponding evaluation criterion.
It is worth noting that the neuroimaging tasks are gen-
erally very hard to predict very accurately. According
to a global competition on ADHD dataset7, the aver-
age performance of all winning teams is about 8% over
the prediction accuracy of chance (i.e., randomly as-
signing diagnoses). Thus in neuroimaging tasks, it is

7http://www.childmind.org/en/posts/press-releases/2011-10-
12-johns-hopkins-team-wins-adhd-200-competition
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Table 6: Results on the HIV (Human Immunodeficiency Virus) dataset with different number of features
(t = 100, · · · , 500). The results are reported as “average performance + (rank)”.

Error Rate ↓ F1 ↑ Avg.

Methods t = 100 t = 200 t = 300 t = 400 t = 500 t = 100 t = 200 t = 300 t = 400 t = 500 Rank

Exp-HSIC 0.480 (15) 0.470 (10) 0.489 (12) 0.505 (16) 0.498 (13) 0.526 (13) 0.531 (8) 0.517 (11) 0.491 (14) 0.492 (13) (12.5)
Med-HSIC 0.498 (17) 0.500 (18) 0.470 (7) 0.484 (11) 0.507 (16) 0.501 (18) 0.493 (18) 0.526 (8) 0.510 (10) 0.474 (16) (13.9)
Mod-HSIC 0.502 (18) 0.489 (15) 0.482 (11) 0.498 (14) 0.500 (14) 0.501 (18) 0.501 (16) 0.495 (14) 0.481 (17) 0.467 (19) (15.6)
ϕPr-HSIC 0.523 (19) 0.511 (19) 0.516 (18) 0.525 (19) 0.523 (20) 0.484 (20) 0.492 (19) 0.481 (16) 0.474 (19) 0.482 (14) (18.3)

HSIC 0.464 (6) 0.495 (17) 0.566 (21) 0.500 (15) 0.505 (15) 0.526 (13) 0.460 (20) 0.405 (21) 0.489 (15) 0.471 (18) (16.1)

Exp-Ratio 0.475 (13) 0.477 (11) 0.491 (13) 0.516 (18) 0.484 (8) 0.541 (8) 0.533 (7) 0.509 (13) 0.477 (18) 0.519 (8) (11.3)
Med-Ratio 0.466 (8) 0.464 (8) 0.470 (7) 0.457 (5) 0.473 (6) 0.541 (8) 0.528 (9) 0.524 (9) 0.534 (6) 0.521 (6) (7.2)
Mod-Ratio 0.450 (3) 0.452 (5) 0.466 (4) 0.480 (9) 0.484 (8) 0.558 (5) 0.547 (5) 0.528 (6) 0.509 (11) 0.500 (12) (6.8)
ϕPr-Ratio 0.473 (11) 0.480 (12) 0.466 (4) 0.470 (8) 0.468 (5) 0.544 (7) 0.519 (13) 0.538 (5) 0.531 (7) 0.538 (5) (7.7)

Ratio 0.530 (21) 0.486 (13) 0.589 (22) 0.411 (1)* 0.520 (19) 0.456 (21) 0.495 (17) 0.376 (22) 0.562 (4) 0.443 (20) (16)

Exp-Gtest 0.468 (9) 0.466 (9) 0.468 (6) 0.466 (7) 0.482 (7) 0.562 (4) 0.565 (4) 0.548 (4) 0.537 (5) 0.520 (7) (6.2)
Med-Gtest 0.464 (6) 0.461 (7) 0.507 (17) 0.507 (17) 0.511 (17) 0.534 (11) 0.520 (11) 0.480 (17) 0.483 (16) 0.474 (16) (10.9)
Mod-Gtest 0.477 (14) 0.486 (13) 0.475 (10) 0.491 (13) 0.489 (11) 0.529 (12) 0.507 (14) 0.523 (10) 0.497 (13) 0.501 (11) (12.1)
ϕPr-Gtest 0.430 (1)* 0.420 (2) 0.425 (1)* 0.418 (2) 0.425 (2) 0.617 (1)* 0.633 (1)* 0.630 (1)* 0.637 (1)* 0.633 (1)* *(1.3)

Gtest 0.473 (11) 0.550 (21) 0.493 (14) 0.534 (20) 0.493 (12) 0.514 (16) 0.426 (22) 0.491 (15) 0.509 (11) 0.477 (15) (15.7)

Exp-Conf 0.457 (4) 0.430 (4) 0.441 (2) 0.443 (4) 0.441 (3) 0.576 (3) 0.590 (2) 0.572 (2) 0.570 (3) 0.573 (4) (3.1)
Med-Conf 0.445 (2) 0.427 (3) 0.441 (2) 0.441 (3) 0.443 (4) 0.579 (2) 0.588 (3) 0.572 (2) 0.579 (2) 0.574 (3) (2.6)
Mod-Conf 0.457 (4) 0.455 (6) 0.473 (9) 0.482 (10) 0.484 (8) 0.556 (6) 0.545 (6) 0.527 (7) 0.518 (9) 0.508 (9) (7.4)
ϕPr-Conf 0.534 (22) 0.552 (22) 0.545 (19) 0.548 (21) 0.541 (22) 0.454 (22) 0.443 (21) 0.444 (20) 0.443 (22) 0.438 (21) (21.2)

Conf 0.468 (9) 0.416 (1)* 0.502 (15) 0.489 (12) 0.339 (1)* 0.515 (15) 0.528 (9) 0.468 (19) 0.462 (20) 0.621 (2) (10.3)

Exp-Freq 0.525 (20) 0.520 (20) 0.548 (20) 0.550 (22) 0.527 (21) 0.503 (17) 0.520 (11) 0.473 (18) 0.457 (21) 0.423 (22) (19.2)
Freq 0.489 (16) 0.489 (15) 0.502 (15) 0.461 (6) 0.514 (18) 0.535 (10) 0.505 (15) 0.517 (11) 0.520 (8) 0.502 (10) (12.4)

very hard for classification algorithms to achieve even
moderate error rates. And in ADHD dataset, the best
performance that Dug can achieve is with error rate
37%, which is 13% improvement over the prediction er-
ror rate of chance.

We find that our discriminative subgraph mining
method with different settings outperforms the baseline
method (Exp-Freq) for frequent subgraph mining, which
selects subgraph features based upon expected frequen-
cies in the uncertain graph dataset. This is because that
frequent subgraph features in uncertain graph dataset
may not be relevant to the classification task.

Moreover, we can see that almost all the Dug
methods outperform the simple thresholding methods
which directly convert the uncertain graphs into certain
graphs and then use different discimination functions
to select subgraph features. This is because that simply
converting uncertain graphs into certain graph can loss
the uncertainty information about the linkage structures
of the graphs, thus the classification performances on
certain graphs are not as good as the performance of
uncertain graphs.

A third observation is that the performance of each
method on different dataset can be quite different. How-
ever, the best methods that consistently outperforms
other methods in all datasets are Med-Conf and ϕ-Pr-
Ratio. They both have their advantages in different
perspectives. Med-Conf method has one less parame-
ter than that of ϕ-Pr-Ratio. ϕ-Pr-Ratio method has an
additional subgraph pruning bound compared to Med-
Conf method, which can be important for datasets with
even larger graphs.

4.4 Influence of Parameter In the ϕ-Pr based
methods, there is an additional threshold parameter
than the other methods. In Figure 7(a) and Fig-
ure 7(b), we tested the ϕ-Pr-HSIC with ϕ values among
{0.01, 0.02, · · ·0.06} separately. We can see that the
method is not sensitive to the parameter ϕ. Gener-
ally, the performance of ϕ-Pr-HSIC with default setting
(ϕ = 0.03) is pretty good. If we try to optimize the
selection of ϕ value, the accuracy can be even better.

We also compare Dug models with and without
pruning in the subgraph search space as summarized
in Figure 7(c). The CPU time with different min sup
for Exp-HSIC in ADNI dataset is reported. Dug can
improve the efficiencies by pruning the subgraph search
space. In other datasets Dug shows similar trends.
Figure 8 shows the running time for mod-HISC with
different number of graphs in the dataset. In addition
to the dynamic programming method we used in Dug,
we also find that the brute-force searching method
that enumerates all possible worlds of the uncertain
graph dataset cannot work on small datasets with even
40 graphs. The running time of Dug scales almost
linearly with the number of graphs in the dataset.
Althought the dynamic programming process of Dug
is O(n2), which is quadratic to the number of graphs
in the dataset. However, in the ADHD dataset, the
main computational cost of Dug algorithm is for the
subgraph enumeration step, which is linear to the
number of the graphs in the dataset. In cases of
even larger datasets, the dynamic programming process
could eventually dominant the computational cost. In
these cases, the divide-and-conquer method in [19] could
be used to further optimize the computational cost.
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Figure 7: Parameter Studies (ADNI dataset).

5 Related Work

Our work is related to subgraph mining techniques for
both certain graphs and uncertain graphs. We briefly
discuss both of them.

Mining subgraph features in graph data has been
studied intensively in recent years [15]. Most of the
previous research has been focused on certain graph
datasets, where the edges of the graph objects are
binary/certain. The aim of these subgraph mining
method is to extract important subgraph features based
on the structure of the graphs. Depending on whether
the class labels are considered in the feature mining
steps, existing methods can roughly be categorized into
two types: frequent subgraph mining and discriminative
subgraph mining. In frequent subgraph mining, Yan
and Han proposed a depth-first search algorithm, gSpan
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Figure 8: Running time on ADNI dataset.

[23], which maps each graph to a unique minimum
DFS code and use right-most extension technique for
subgraph extension. There are also many other frequent
subgraph mining methods that have been proposed,
e.g., AGM [9], FSG [15], MoFa [1], and Gaston [16], etc.
Discriminative subgraph mining have also been studied
intensively in the literature, such as LEAP [22] and LTS
[10], where the task is to find discriminative subgraph
for graph classifications.

Recently, there has been a growing interest in ex-
ploiting data uncertainty, especially structural uncer-
tainty in graph data. There are some recent works on
mining frequent subgraph features for uncertain graphs
[27, 26, 28, 17]. The problem of mining frequent sub-
graph in uncertain graphs are more difficult to those of
certain graphs. The authors [27] proposed a method
to estimate approximately the expected support of a
subgraph feature in uncertain graph datasets. In [26],
the authors studies the ϕ-probabilities for frequent sub-
graph features within uncertain graph datasets. The
difference between these works and our paper are as
follows: 1) In this paper, we study how to find discrimi-
native subgraph features for uncertain graph data. The
class labels of the graph objects are considered during
the subgraph mining. 2) The graph model in our paper
is different from previous uncertain graph data, since
we assume different graph object shares the same set
of nodes as inspired by the neuroimaging applications.
Thus, our method compute the exact discrimination
scores of each subgraph features, instead of approximate
scores. There are also many other works on uncertain
graphs, which focus on different problems, e.g., reliable
subgraph mining [12], k-nearest neighbor discovery [18],
subgraph retrieval [24] etc.

Our work is also motivated by the recent advances
in analyzing neuroimaging data using data mining and
machine learning approaches [6, 8, 7, 25]. Huang
et. al. [6] developed a sparse inverse covariance
estimation method for analyzing brain connectivities in



PET images of patients with Alzheimer’s disease.

6 Conclusion

In this paper, we studied the problem of discriminative
subgraph feature selection for uncertain graph classifi-
cation. We proposed a general framework, called Dug,
for finding discriminative subgraph feature in uncertain
graphs based upon various statistical measures. The
probability distributions of the scoring function are ef-
ficiently computed based on dynamic programming.
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