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Abstract

Multi-label classification refers to the task of predicting
potentially multiple labels for a given instance. Con-
ventional multi-label classification approaches focus on
the single objective setting, where the learning algo-
rithm optimizes over a single performance criterion (e.g.
Ranking Loss) or a heuristic function. The basic as-
sumption is that the optimization over one single ob-
jective can improve the overall performance of multi-
label classification and meet the requirements of various
applications. However, in many real applications, an
optimal multi-label classifier may need to consider the
tradeoffs among multiple conflicting objectives, such as
minimizing Hamming Loss and maximizing Micro F1.
In this paper, we study the problem of multi-objective
multi-label classification and propose a novel solution
(called MoOML) to optimize over multiple objectives si-
multaneously. Note that optimization objectives may
be conflicting, thus one cannot identify a single solution
that is optimal on all objectives. Our MOML algorithm
finds a set of non-dominated solutions which are opti-
mal according to the different tradeoffs of the multiple
objectives. So users can flexibly construct various com-
bined predictive models from the solution set, which
helps to provide more meaningful classification results
in different application scenarios. Empirical studies on
real-world tasks demonstrate that the MoML can effec-
tively boost the overall performance of multi-label clas-
sification, not limiting to the optimization objectives.

1 Introduction

Traditional supervised learning works on the single label
scenario. That is, each instance is associated with
one single label within a finite set of labels. However,
in many applications, each instance can be associated
with more than one label simultaneously. For example,
in text categorization, one document can belong to
multiple categories [25]; in bioinformatics, one gene
sequence may serve multiple functions [9]. This setting
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is called multi-label classification, which corresponds
to the problem of classifying each instance with a set
of labels. Multi-label classification has been drawing
increasing attention from the machine learning and data
mining communities in the past decade [7, 16, 27].
Conventional multi-label classification approaches
focus on single objective setting, where the learning al-
gorithm trains one model that optimizes over one single
objective. The objective can be a performance evalu-
ation criterion (e.g. Hamming Loss [21]) or a heuris-
tic function (e.g. the posteriori principle in ML-KNN
[29]). The basic assumption of single objective multi-
label classification is that one single objective can eval-
uate the overall performance of a multi-label classifier.
Thus, the optimization over one single objective can
comprehensively improve classifier’s performance. How-
ever, in multi-label classification, many criteria are pro-
posed to evaluate the classification performance from
different perspectives (see Section IV.A.2) and some
criteria are uncorrelated or even negatively correlated.
Dembczyniski et al. [8] elaborate the connection among
these criteria and point out that some loss functions
are essentially conflicting, such as Hamming Loss [21]
and Subset 0/1 Loss [12]. So the optimization over one
single objective may not lead to the performance im-
provement on the other objectives. For example, in a
multi-label classification task where the performances
on Hamming Loss [21] and Micro F1 [12] are concerned,
one may minimize Hamming Loss, maximize Micro F1
(i.e. minimize 1 — Micro F1), or optimize both of them
simultaneously. An example of results is shown in Fig-
ure 1. Due to the intrinsic conflict between these two
objectives, only optimizing over Hamming Loss will lead
to very bad performance on Micro F1 (e.g. solution B),
or vice versa (e.g. solution A). However, it is obvious
that the solution C is better than A and B when we
concern the classification performances on both Ham-
ming Loss and Micro F1. As a consequence, it is neces-
sary to simultaneously optimize over multiple objectives
for multi-label classification in such condition where the
concerned objectives are conflicting or potential conflict-
ing. This helps to balance the tradeoff among these ob-
jectives and comprehensively improve performances of
multi-label classification, not limiting to one single cri-
terion. In addition, the simultaneous optimization over
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Figure 1: Illustration of optimizing over multiple objec-
tives.

multiple objectives is also practically needed in many
multi-label classification tasks [21]. For example, in a
news filtering application, users must be presented with
those interesting articles, but it is also important to
only see the most interesting one. So the performances
of the multi-label classifier on One Error [21] and Micro
F1 [12] both need to be considered.

In conventional multi-label classification (i.e. single
objective multi-label classification as shown in Figure
2(a)), one single solution is usually returned to satisfy
the requirements of all users. However, it is often
the case that users in different application scenarios
can have very different expectations on a multi-label
classifier [16]. With multiple optimization objectives
employed, there is usually no single best solution for
this multi-label classification task, but instead, a set
of non-dominated solutions that correspond to different
tradeoffs among those objectives, so that users can
flexibly select appropriate solutions in items of their
different applications. For example, in Figure 1, one can
select A in a Hamming Loss-aware application, or select
C'in a Hamming Loss and Micro F1 -aware application.

Formally, the multi-objective multi-label classifica-
tion (as shown in Figure 2(b)) corresponds to simultane-
ously optimizing over multiple objectives and obtaining
a set of multi-label classification models. Despite its
value and significance, the multi-objective multi-label
classification has not been studied in this context so far,
due to the following research challenges. (1) Most eval-
uation objectives in multi-label classification cannot be
directly optimized even in the single objective setting.
Among all the performance criteria for multi-label clas-
sification, only a small number of them (e.g. Ranking
Loss [21] and Hamming Loss [21]) can be used as the
optimization objective directly, since they are differen-
tiable. Most of the other criteria (e.g. Micro F1 [12]
and Average Precision [21]) are difficult to be optimized
directly. (2) Multi-objective optimization is much more
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Figure 2: Comparison of single and multiple objective
multi-label classification.

difficult than single objective optimization. It is not
easy to effectively tradeoff multiple objectives in multi-
label classification. Multi-objective optimization can be
converted into single objective optimization with the
scalarization method (e.g. weighted sum method [11])
and the tradeoffs among objectives can be exploited by
tuning weights. However, it not only is hard to choose
the weights in real applications but also cannot discover
the solutions in the concave Pareto front [10]. For ex-
ample, the weighted sum method can find A and B in
Figure 1, but it cannot discover C.

In this paper, we study the problem of multi-
objective multi-label classification and propose a novel
solution, called MoML (Multi-Objective Multi-Label al-
gorithm). Different from conventional multi-label classi-
fication approaches, the proposed MOML can simultane-
ously optimize over multiple objectives based on Evo-
lutionary Multi-objective Optimization (EMO). EMO
has unique properties to effectively solve the above chal-
lenges. (1) EMO does not require optimization objec-
tives to be differentiable, and thus any evaluation met-
ric in multi-label classification can be used as optimiza-
tion objectives in our MOML. (2) It can automatically
balance the tradeoffs among multiple objectives with
population optimization. Due to multiple optimization
objectives, MOML returns a set of classification models
with different preferences on these objectives, so users
can flexibly select different models based on their pref-
erences in different applications. One simple but effec-
tive model selection strategy in MOML is to select the
top k& models over the most preferred objectives on the
training data and then make predictions on the test-
ing data. Experiments on seven real-world multi-label
classification tasks justify the effectiveness of our MOML
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with nine popular performance evaluation criteria. Re-
sults show that MOML can comprehensively boost the
multi-label classification performance on most of the
performance criteria. Moreover, MOML can effectively
adapt to the user’s preferences in different applications
by achieving much better performances on the preferred
objectives.

The rest of the paper is organized as follows. Sec-
tion 2 proposes the multi-objective multi-label classifi-
cation problem, and then we present the MOML solution
in Section 3. We validate the effectiveness of MoML
through extensive experiments in Section 4. Section 5
briefly compares MOML with those most related works.
Finally, Section 6 concludes this paper.

2 Problem Definition

Let x = R? be the d-dimensional input space and
L=1{1,2,---,L} be the finite set of L possible classes.
Given a multi-label training set D = {(x;,Y;)|1 < i <
m}, where x; € x is an instance and Y; C L is the label
set associated with x;. The task of multi-label learning
is to learn a multi-label classifier h : Y — 2% from D
which predicts a set of labels for each unseen instance.
Conventional multi-label classification approaches
can be roughly classified into two categories: (1) One
type of the approaches train one single model by ex-
plicitly or implicitly optimizing a performance crite-
rion. For example, ML-RBF [26] explicitly optimizes
the Hamming Loss, while Ranking Loss is optimized in
BP-MLL [28] and RANK-svM [9]. (2) The second type
of approaches do not explicitly optimize those perfor-
mance criteria, but they implicitly optimize one single
heuristic function which is not directly related to any
performance criteria. For example, Ecc [18] and LEAD
[27] optimize the generalization risk for multi-label pre-
dictions by encoding label correlations, and ML-KNN
[29] maximizes the posteriori principle in multi-label
learning. In both types of approaches, the multi-label
learning is regarded as a Single objective Optimization
Problem (SOP), which can be defined as follows:

DEFINITION 1. Single objective multi-label classifica-
tion. It determines a model M™ for which

(2.1) O(M™) = min O1(M)

MeQ

) is the set of feasible models, M is a predictive model
in Q. O7 : © — R is an objective function, which can be
a performance criterion (e.g. metrics in Section IV.A.2)
or any other implicit heuristic function. Without loss of
generality, we assume O; is to be minimized. Most of
conventional algorithms are based on solving this SOP.
Different algorithms may vary in the objective function
O, and optimization techniques.
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This paper first formulates multi-label learning as
a Multi-objective Optimization Problem (MOP), which
can be defined as follows.

DEFINITION 2. Multi-objective multi-label classifica-
tion. It determines models M* for which

(2.2)  O(M*) = min (01(M),02(M),--- ,0,(M))

MeQ
t is the number of objectives and O; represents the i-th
objective.

For the MOP, each objective corresponds to an op-
timal solution. We have to incorporate the different
tradeoffs among the multiple objectives. One funda-
mental difference between SOP and MOP is that, for a
MOP, we can find a set of optimal solutions where no
single solution can be said to be better than any other.
Solving a MOP often implies to search for the set of op-
timal solutions as opposed to one single solution for a
SOP. Here, we define the concept of domination relation
to compare the performance of multi-label classification
models, similar as in [5].

DEFINITION 3. Domination. For two models My, M2 €
Q, My dominates Mz (denoted as My = Mz) if and only
if

0;(Maz) A

) st Oif( My i
(2.3) el & Oil 1) Os(Ma)

<
Jie{l,-,t} Oi(M1) <
Similarly, if M; A Ms and My £ M;, M is non-
dominated with Msy. A model M € Q is said to be
Pareto optimal [5] if and only if M is not dominated
by any other model in 2. The set of all Pareto optimal
models is called the Pareto optimal set, or Pareto front.
An example is shown in Figure 1. Model C' dominates
the model D, and C is non-dominated with A and B.
A, B, and C are the Pareto optimal set or Pareto front.

3 The MOML Algorithm

In order to solve the multi-objective multi-label clas-
sification problem, the traditional approaches on MOP
convert multiple objectives into a single objective by us-
ing certain schemes and user-specified parameters, such
as the weighted sum method [11]. However, these meth-
ods cannot be directly applied to multi-label classifica-
tion problem, since many objectives may not be eas-
ily optimized even in SOP setting and the parameter
settings are very difficult for these methods. More-
over, these methods cannot effectively solve the con-
cave Pareto front problem [10]. Evolutionary Algorithm
(EA) [14] has been proven to be an effective method
to solve MOP, which is called the Evolutionary Multi-
objective Optimization (EMO) technique [5]. EMO
simultaneously optimizes multiple objectives through
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Figure 3: Ilustration of non-dominated-sort and
diversity-estimate.

population evolution, in which individuals reproduce
through evolutionary operation (e.g. crossover and mu-
tation) and obey the Darwinian evolution: survival of
the fittest. EMO has many unique advantages: simul-
taneously generating a set of candidate solutions on one
run, easily dealing with the discontinuous and concave
Pareto fronts, and no requirement on differentiable opti-
mization objectives [5]. EMO has also effectively solved
many data mining problems [3, 10, 20], such as data
clustering [15] and marketing predictions [2]. However,
it is seldom applied in classification, since the classifier
model is difficult to be effectively encoded in EA. More-
over, it is far more difficult to tradeoff the self-learning
of classifiers and information exchange among classifiers
in EMO.

This paper first proposes a novel method based on
EMO to solve the multi-objective multi-label classifica-
tion problem. The method is called Multi-Objective
Multi-Label algorithm (MoML) which includes two
phases: model training and selection. Briefly, MoML
designs the effective multi-objective optimization mech-
anism and the novel method of generating new solu-
tions based on a modified RBF base model in the model
training phase. In the model selection phase, users can
flexibly select their preferred models in terms of their
application scenarios.

3.1 Model Training A good EMO algorithm needs
to generate a set of solutions that uniformly distribute
along the Pareto front [23], which includes two key
issues: (1) solutions prone to converge to the Pareto
front and maintain diversity in the evolutionary process;
(2) generating promising solutions in each generation.
In order to make EMO fit for multi-label learning, we
design many novel mechanisms in the following two
sections.

3.1.1 Multi-objective Optimization Mechanism
Since a good solution is expected to converge to the
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Pareto front and maintain diversity, the fitness of the
solution can be determined by its convergence and diver-
sity. We propose the non-dominated-sort and diversity-
estimate process to effectively evaluate these two mea-
sures. Furthermore, the proposed select-individuals pro-
cess selects the best solutions as the next generation
population in terms of these measures.
Non-dominated-sort. The non-dominated-sort
process sorts solutions according to their raw fitness
(i.e. objective value O;). The different value range of
objectives (e.g. Coverage > 1 and HammingLoss <
1) may lead to the situation that some base models
reproduce too rapidly. Instead of the raw fitness, this
paper employs the rank-based fitness assignment [14] to
reassign the fitness (i.e. a rank value) to the solutions,
because this method behaves in a more robust manner.
In the rank-based fitness assignment, the solution set
is divided into different fronts with different ranks.
The solutions in the same front are non-dominated to
each other and solutions in the higher front are always
dominated by some solutions in the lower front. Figure
3 shows an example that 12 solutions are divided into
three fronts according to their domination relations. In
this way, each solution (i.e. model) M; in a front F,
has a rank value M7"* = q. Tt is evident that solution
M, is better than solution M; when Mk < M;“"’“.
Diversity-estimate. Along with convergence to
the Pareto front, it is also desired that an EA maintains
a good spread of solutions. So the solution in the
crowded region is more likely to be deleted. To get a
diversity estimate of solutions surrounding a particular
solution in the population, we design the diversity-
estimate process that calculates the average distance
of two solutions on either side of this solution along
each of objectives. It is simple and effective to estimate
the diversity of solutions. The diversity estimation of
solution M;, Mdistance  serves as the perimeter of the
cuboid formed by using the nearest neighbors as the
vertices. As shown in Figure 3, the diversity of this -
th solution in its front is the average side length of the
cuboid. The small M¥stance means solution M; is in a
more crowded region, which implies a bad diversity.
Select-individuals. Every solution M; in the
population has two feature values: (1) non-domination
rank M?Zenk: (2) diversity estimation Mdistance  We
define a partial order < to compare two solutions, which
comprehensively considers both of features.

DEFINITION 4. partial order <. For two solutions M,

and Mj, M; < Mj, if and only if
M;‘ank < Mrunk vV

(3.4) '

’ (M;jank _ M;ank /\M?istance > M;ﬁstance)

That is, between two solutions with different non-
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domination ranks, we prefer the solution with the lower
rank. Otherwise, if both solutions belong to the same
front, then we prefer the solution that is located in a
lesser crowded region. After sorting the population with
<, the select-individuals process selects top solutions,
which guarantees that good solutions (with low rank
and high diversity) will be kept. At the meantime, those
promising solutions are also likely to be contained in the
population.

The multi-objective optimization mechanism real-
izes the essence of EA: survival of the fittest. In the
optimization process, those solutions performing good
on multiple objectives are more likely to survive, while
those solutions performing bad or only performing good
on some of the optimization objects are more likely to
eliminate. As a consequence, solutions in the popula-
tion automatically tradeoff multi-objectives and make a
good balance among them.

3.1.2 Base Model and Evolutionary Operations
In the framework of MOML, many classification models
can be used, such as decision tree [19], BP [28] and
RBF [26] neural network. Different base models will
lead to different genetic representation and operation.
Because the structure can be effectively encoded and
the weights can be efficiently calculated in close form,
the RBF neural network in ML-RBF [26] is selected as
the base model in MoML, however with an additional
regularization term added to reduce overfitting risks as
explained later.

The architecture of RBF is shown in Figure 4(a).
It can be briefly summarized as follows: (1) The input
of a RBF corresponds to a d-dimension feature vector.
(2) The hidden layer of RBF is composed of L sets of
prototype vectors, i.e. U1L:1 C). Here, C; consists of k;
prototype vectors < cll,clz,~-- ,c,l,w >. For each class
l € L, the popular k-means clustering is performed
on the set of instances U; with label [. Thereafter,
k; clustered groups are formed for class [ and the j-th
centroid (1 < j < k) is regarded as a prototype vector
¢} of basis function ¢4(-). (3) Each output neuron is
related to a possible class. In the hidden layer of RBF,
the number of clusters k; is settled to be a fraction « of
the number of instances in U;:

(3.5) ki = a x |U|

The scale coefficient o controls the structure and com-
plexity of RBF model.

Different from the error function in the original
RBF, we add a regularization term into the error
function. The regularization term greatly reduces the
overfitting risk and improves the stability of solutions
as observed in the experiments.
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(3.6)

where y;(x;) represents the predicted value of instance
x; on label [, tf is the real value of instance i on
label I, K = Zlel ki, and « is the regularization
coefficient. Similar to the derivation of minimizing the
error function by scaled-conjugate-gradient descent in
[4], the optimal output weights W can be computed in
closed form by
(3.7) W= (®'® +~I)"'0'T

Here @ = [@ij]mx(x4+1) With elements ¢;; = ¢;(x;),
W = [wji](k+1)x . With elements wj;, and T' = [ti]mxr
with elements ¢;; = t]. Through extensive experiments,
the regularization coefficient v is fixed at 0.1 in this
paper.

Genetic representation. According to the
structure of RBF, we propose a novel genetic rep-
resentation that is the sequence of prototypes <
bias,ct,c3,- - c,?L >. An example is shown in Figure
4(a). The genetic representation has the following ad-
vantages. (1) When the prototypes (¢) are determined,
the basis functions (¢) and the weights (W) can be effi-
ciently computed, which means the performance of RBF
mostly depends on the selection of the prototypes. (2)
It is easy to design the crossover and mutation operators
by tuning these prototypes.

Initialization. When the base model is RBF, the
initialization operation of MOML generates a set of RBF
models with different scale coefficient a (see Equation
5). As suggested in [26], « is randomly selected
from [0.01, 0.02] in the experiments. An advantage
of this Initialization is that it generates a set of RBF
models with different structures, which contributes to
the population diversity.

Generate-individuals. Generating new solutions
is realized by the generate-individuals process. The
basic idea is to randomly select parent solutions from
the current population based on the roulette wheel
selection [1] and do crossover and mutation operation
to generate new solutions with the ratio of cro_Rat and
1 — cro_Rat, respectively. Following the general rule in
EA, cro_Rat is fixed at 0.8, which helps to converge to
the Pareto front and maintain the appropriate diversity
of the population. MoML applies the roulette wheel
selection [1] to assign each solution with an appropriate
selection pressure. It guarantees that the better solution
has a high yet appropriate selection probability.

Since different RBFs may have different numbers
of prototypes, this paper adapts the cut and splice
crossover [13] which randomly chooses a crossover point
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Figure 4: (a) Architecture of RBF and its genetic representation. (b) The crossover operation. The crossover

point j is selected between two prototype vectors.

for two RBFs and swaps their prototypes beyond this
point. Different from the traditional cut and splice
crossover, the crossover point in MOML is randomly
selected between two prototype vectors, rather than
in an arbitrary position. Figure 4(b) shows such an
example, in which the crossover point j is selected

between the prototype vector < ¢, --- ,Co, > and
< ciﬂ, e 7Ci—f+11 >. It guarantees that each prototype

vector in the newly generated RBF is unabridged cluster
centroid. The width of the centroid of the new RBF
is recalculated as in [26]. The weights are calculated
following Equation 7.

Algorithm 1 MoML-Training
Input:
D: training data
N: # base models

procedure TRAINING
Generate P = {M1, Ms,--+ , My} randomly
fort=1:G do
Q=generate-individuals(P)
R=PUQ
F = (Fy,Fa, - - - )=non-dominated-sort(R)
diversity-estimate(F)
P=select-individuals(F)
end for
return P
end procedure

M: base model
G: # generations

According to the structure of RBF, two mutation
operations are designed. The mutation operator ran-
domly selects some prototype vectors in a RBF and does
the following two structural mutation operations with
the same probability. (1) Deleting one prototype. Ran-
domly select one prototype and delete it. (2) Adding
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one prototype. The center of the new prototype is de-
termined by a random combination of all centroids in
this prototype vector.

Although the crossover and mutation operations
may not generate the optimal combination of proto-
types, they provide an effective method to search the
space of prototypes of RBF. The crossover operator re-
assembles the prototypes of parent solutions, which not
only maintains the good genes but also generates new
combinations. The mutation operator deletes and adds
new prototypes, which helps to extend the search space
and maintain diversity. Once a good solution is found
in the space of prototypes, it will be kept in population
until it becomes a bad one.

3.1.3 Algorithm Framework The training phase
of MoML is described in Algorithm 1. MOML trans-
forms the ¢ optimization objectives to a fitness mea-
sure by the creation of a number of fronts, sorted ac-
cording to mon-dominated-sort. After the fronts have
been created, diversity-estimate assigns its members
density value later to be used for diversity mainte-
nance. In each generation, N new solutions are gen-
erated with generate-individuals. Of the 2N solutions,
select-individuals selects the N best solutions for the
next generation. In this way, a huge elite can be kept
from generation to generation.

In MoMmL, the multi-objective optimization mech-
anism guides the solutions to converge to Pareto front
and maintain the diversity. The genetic operations effec-
tively search the prototypes space of RBF and generate
promising solutions. A particular advantage of MOML
is that any function can be used as the optimized ob-
jective, only if the function can be calculated, without
the requirement of being differentiable.
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Figure 5: Illustration of model selection.

3.2 Model Selection The model training phase of
MoML returns a solution set, which is a unique feature
of the multi-objective multi-label classification. The
user can make full use of these solutions in terms of
their applications. For example, a “best” model can
be selected with Gap statistic [15], or the ensemble
method can be applied on all models [18]. We can
utilize all found models or only the models in the Pareto
front. In order to validate the benefits of multiple
objectives and the effect of objectives on performances,
this paper proposes a dynamic model selection method.
That is, we select the top k& models on optimization
objectives and then make predictions with a majority
vote. Assume that instances are independent identical
distribution, these selected models will also perform well
on the corresponding objective on the testing data. This
dynamic model selection method has two advantages:
(1) users can flexibly select the preferred models in
terms of their applications; (2) the ensemble of the top
k models can improve the generalization performances.
As shown in Figure 5, the top 5 models are selected from
the obtained solution set based on the user preference.
The model selection algorithm of MoOML is shown in
Algorithm 2, in which M;(x,l) means the output of
model M; on label [ for instance x.

Algorithm 2 MoML-Testing

Input:
U: testing data O: optimization objective set
P: model set k: # top models

procedure TESTING
for optimization objective O; € O do
Sort P in an ascending order by O;
Select top-k models {My, -, My} from P

for x e U4 do
Y(x) = {lI§ S, Milx,1) > 0,1 € £}
end for
end for

end procedure
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3.3 Complexity Analysis Let d be the number of
features of instances, m and n be the number of training
and testing instances respectively, L be the number of
labels. We consider the time complexity of RBF first.
Two main time-consuming components of RBF are the
k-means clustering and calculating ® = [@i;]mx (x+1)
for all training instances. For simplicity, suppose each
label has the same number of instances 7, and thus
the number of centroid is . The complexity of a

k-means clustering is O(a(%)Q) (the iteration number

in k-means is fixed, so it is omitted here). L k-
means clustering are needed, so the total complexity
is O(am?/L). ¢;; needs to calculate the distance to
each prototype vector c; for each instance x;, and thus
its complexity is O(adm?). In all, the RBF has the
following complexity:

(3.8) O(am?/L + adm?)

For MowMmL, it needs to generate N RBFs and
evaluate NG new RBFs. The complexity of MOML in
RBF is O(aNm?/L+aNGdm?). The complexity of the
genetic operation in MOML is O(GN?). Since N < m,
the total time complexity of MOML in the training phase
is

(3.9) O(aNm?/L + aNGdm?)

There are k£ models to make predictions on the testing
data, so the time complexity of the testing phase is

(3.10) O(akdn?)
Since k <« NG, the testing phase is much faster than
the training phase.

4 Experiments

4.1 Experimental Setup

4.1.1 Data Collection We tested our algorithm on
seven real-world multi-label datasets from three differ-
ent domains as summarized in Table 1. The first dataset
is Yeast [18, 26, 27, 28] in biology, where the task
is to predict the gene functional classes of the Yeast
Saccharomyces cerevisiae. The second dataset Image
[18, 26, 27, 28] involves the task of automatic image an-
notation for scene images. The other five dataset RCV1-
1-RCV1-5 are from RCV1-v2 [25, 27], where the task is
to predict topic categories of each text document.

4.1.2 Evaluation Metrics The performance evalu-
ation for multi-label learning is much more complicated
than single-label problems. Here, we adopt nine state-
of-the-art multi-label evaluation metrics which are most
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Table 1: Summary of the experimental datasets.

Dataset
Property Yeast Image RCV1(1-5)
# instance 2417 2000 3000
# feature 103 944 101
# label 14 294 5
Domain biology media text

popular in the literature. To the best of our knowledge,
few works on multi-label learning have conducted exper-
imental evaluation on such comprehensive comparisons
over the nine metrics. These metrics are briefly sum-
marized here, where “|” indicates the smaller the value
the better the performance; “1” indicates the larger the
value the better the performance.

e Hamming Loss (HL)] [21]: evaluates the average
error rate over all the binary labels.

e Micro F1 (MicF1)1 [12]: evaluates a classifier’s
label set prediction performance, which considers both
micro-average of precision and recall on all binary labels
with equal importance.

e Macro F1 (MacF1)7 [12]: evaluates a classifier’s
label set prediction performance, which considers both
macro-average of precision and recall with equal impor-
tance.

e Subset 0/1 Loss (SL)| [7, 12]: evaluates the aver-
age percentage when a classifier’s label set prediction is
exactly correct.

o Accuracy (Acc)l [21]: evaluates the average
fraction of correct labels across all examples.

e Ranking Loss (RL)| [21]: evaluates the average
fraction of label pairs that are disordered for an exam-
ple.

e One Error (OE)| ]9, 21]: evaluates how many
times the top-ranked label by a classifier is not in the
true label set of an example.

e Coverage (Cov)| [9, 21]: evaluates how many
steps are needed, on average, to move down the label
list in order to cover all the true labels of an example.

o Average Precision (AP)7 [9, 21]: evaluates the
average fraction of true labels ranked above a particular
label.

4.1.3 Compared Methods We compare our
method with four baseline methods which optimize
over different single objectives. In MOML, any subset
of metrics listed above can be used as the optimization
objectives. Here, we employ two pairs representa-
tive subsets of evaluation metrics, ie. {HL,RL}
and {MicF1,AP}. The {HL,RL} objective subset
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includes two popular objectives that have already
been directly optimized in previous single objective
approaches [9, 26, 28]. The {MicF1, AP} objective
subset includes two most useful performance criteria
which have not yet been directly optimized before. In
addition, these two pairs of objectives are potentially
conflicting. These compared methods are summarized
as follows.

e MoMLiyr rry: The proposed MOML approach
with the first objective subset ({HL, RL}), which out-
puts a set of models with different preferences on each
objective. In order to verify the quality of the outputted
solution set, we report two versions of model selection
based on the top k£ models in terms of HL and RL,
respectively. The corresponding algorithms are called
MoMLi g rry and MOMLygy, rry. These two com-
bined models correspond to the two application pref-
erences over the two objectives.

® MOML{sicr1,4p}: The proposed MOML approach
with the second objective subset {MicF'1, AP}. Simi-
larly, we report two versions of model selection in terms
of MicF'1 and AP and the corresponding algorithms are
called MOML{psicr1,4py and MOML{ vr5cF1, AP}, TESPEC-
tively. Note that, in order to be fit for the minimization
problem, 1 — MicF1 and 1 — AP are used in MOML.

e ML-RBF [26]: Based on RBF neural network, the
method explicitly optimizes the HL criterion.

e BP-MLL [28]: This method is based on BP neural
network, which explicitly optimizes the RL criterion.

o ML-KNN [29]: The KNN based lazy multi-label
learning method optimizes a posterior principle which is
not directly related to any single performance criterion.

e Ecc [18]: Tt is an ensemble of classifier chains
which encode the multi-label correlations in the multi-
label classification process.

The population size and running generation of
MoML are set as 30 and 10. k is 9 (i.e. 30% of the
population size) in the top k model selection. ML-RBF
is implemented with fixed parameters of @ = 0.01 and
u = 1.0, as suggested in the literature [26]. For BP-
MLL, as indicated in the literature [28], the number of
hidden neurons is set to be 20% of the number of input
neurons, and the number of training epochs is fixed
at 100 with learning rate of 0.05. For ML-KNN, the
number of nearest neighbors considered is set to 10 and
Euclidean distance is used as the distance measure [29].
For Ecc, the ensemble size is set to 10 and sampling
ratio is set to 67% [18].

4.2 Performance Comparison Ten-fold cross-
validation is performed on each experimental dataset.
On each dataset, we report the average values of each
algorithm with the ranks based on its results. All
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Table 2: Results on the Yeast dataset. The results are reported as “average performance + (rank)”, where “|” indicates
that the smaller the value, the better the performance; “1” indicates the larger the better.

Methods
Criteria MOML {1 rL} MOML g1 rL} MOML ¢ picF1, AP} MOML{ picF1,AP} ML-RBF BP-MLL ML-KNN Ecc
HL | 0.1883 (1)* 0.1887 (3) 0.1885 (2) 0.1889 (4) 0.1935 (5)  0.2120 (8) 0.1949 (6) 0.2056 (7)
RL | 0.1596 (2) 0.1595 (1)* 0.1600 (3) 0.1603 (4) 0.1621 (5) 0.1723 (7)  0.1669 (6) 0.2776 (8)
SL | 0.8051 (5) 0.8039 (3) 0.7997 (2) 0.8047 (4) 0.8163 (6)  0.8519 (8) 0.8167 (7)  0.7968 (1)*
OF | 0.2197 (6) 0.2172 (2) 0.2193 (5) 0.2180 (3) 0.2189 (4)  0.2308 (8) 0.2304 (7) 0.1742 (1)*
Cov | 6.2027 (3) 6.2122 (4) 6.1868 (2) 6.1861 (1)* 6.2465 (5)  6.3562 (7) 6.2647 (6) 7.1431 (8)
MicF1 7 0.6572 (3) 0.6562 (5) 0.6576 (1)* 0.6569 (4) 0.6486 (6) 0.6468 (7)  0.6398 (8) 0.6574 (2)
AP 7 0.7752 (4) 0.7753 (3) 0.7756 (2) 0.7759 (1)* 0.7720 (5) 0.7534 (7)  0.7650 (6) 0.7313 (8)
Acc 7 0.5267 (2) 0.5248 (5) 0.5261 (3) 0.5257 (4) 0.5170 (7)  0.5185 (6) 0.5087 (8)  0.5404 (1)*
MacF1 T 0.3888 (3) 0.3871 (4) 0.3889 (2) 0.3897 (1)* 0.3668 (6)  0.3457 (8) 0.3737 (5)  0.3647 (7)
AveRank| (3.22) (3.33) (2.44) (2.89) (5.44) (7.33) (6.56) (4.78)

Table 3: Results on the Image dataset. The results are reported as “average performance + (rank)”, where “|” indicates
that the smaller the value, the better the performance; “1” indicates the larger the better.

Methods
Criteria MOML{pr rL} MOML {1 rL} MOML { picF1, AP} MOML ¢ pficr1,AP} ML-RBF BP-MLL ML-KNN Ecc
HL | 0.1581 (1)* 0.1591 (4) 0.1589 (3) 0.1583 (2) 0.1653 (5) 0.2559 (8)  0.1703 (6) 0.1786 (7)
RL | 0.1468 (2) 0.1454 (1)* 0.1476 (3) 0.1479 (4) 0.1558 (5) 0.3532 (8)  0.1708 (6) 0.2411 (7)
SL | 0.5695 (2) 0.5750 (4) 0.5765 (6) 0.5745 (3) 0.6020 (7) 0.7890 (8)  0.5755 (5) 0.5385 (1)*
OF | 0.2695 (4) 0.2655 (2) 0.2680 (3) 0.2650 (1)* 0.2860 (5) 0.5700 (8)  0.3150 (7) 0.2935 (6)
Cov | 0.8615 (3) 0.8610 (2) 0.8650 (4) 0.8570 (1)* 0.8955 (5) 1.6790 (8)  0.9500 (6) 0.9715 (7)
MicF1 7 0.6062 (3) 0.6038 (5) 0.6067 (2) 0.6052 (4) 0.5798 (7) 0.3524 (8)  0.5925 (6) 0.6380 (1)*
AP 7T 0.8223 (3) 0.8232 (2) 0.8219 (4) 0.8241 (1)* 0.8118 (5) 0.6139 (8) 0.7967 (7) 0.7977 (6)
Acc 1 0.5126 (2) 0.5083 (6) 0.5084 (5) 0.5096 (4) 0.4778 (7) 0.2769 (8)  0.5097 (3) 0.5985 (1)*
MacF1 T 0.6065 (2) 0.6033 (5) 0.6048 (4) 0.6054 (3) 0.5773 (7) 0.2687 (8)  0.5936 (6) 0.6441 (1)*
AveRank | (2.44) (3.44) (3.78) (2.56) (5.89) (8.00) (5.56) (4.33)

Table 4: Results on the RCV1-1 dataset. The results are reported as “average performance + (rank)”, where “|” indicates
that the smaller the value, the better the performance; “1” indicates the larger the better.

Methods

Criteria MOML {1, RL} MOML 1, rL} MOML ¢ picF1, AP} MOML{ picF1, AP} ML-RBF BP-MLL ML-KNN Ecc
HL | 0.0147 (1)* 0.0149 (3) 0.0148 (2) 0.0150 (4) 0.0165 (5)  0.0320 (8) 0.0222 (7)  0.0214 (6)
RL | 0.0180 (1)* 0.0181 (2) 0.0183 (4) 0.0182 (3) 0.0196 (5)  0.0826 (7) 0.0684 (6)  0.2506 (8)
SL | 0.6423 (4) 0.6410 (2) 0.6373 (1)* 0.6411 (3) 0.6873 (6) 1.0000 (8) 0.7770 (7) 0.6673 (5)
OF | 0.0647 (3) 0.0650 (4) 0.0640 (2) 0.0637 (1)* 0.0743 (5) 0.5340 (8) 0.2850 (7) 0.1033 (6)
Cov | 6.7567(1)* 6.7630 (2) 6.7893 (3) 6.7993 (4) 6.9390 (5) 20.597 (7) 17.523 (6) 35.973 (8)
MicF1 7 0.7097 (2) 0.7082 (3) 0.7098 (1)* 0.7081 (4) 0.6774 (5)  0.4177 (8) 0.5421 (7)  0.6483 (6)
AP 7 0.8620 (4) 0.8629 (1)* 0.8624 (3) 0.8628 (2) 0.8443 (5) 0.4717 (8) 0.6666 (7) 0.6990 (6)
Acc 1 0.6070 (2) 0.6063 (3) 0.6079 (1)* 0.6058 (4) 0.5689 (6) 0.2655 (8) 0.4113 (7)  0.5820 (5)
MacF1 T 0.2546 (2) 0.2537 (4) 0.2553 (1)* 0.2543 (3) 0.2203 (5) 0.0539 (8) 0.1960 (7)  0.2177 (6)
AveRank | (2.22) (2.67) (2.00) (3.11) (5.22) (7.78) (6.78) (6.22)

Table 5: The average ranks (mean+std) for each method over 7 datasets, including Yeast, Image and RCV1 (subset 1-5).

Methods

Criteria ~ MOML{py rL} MOML 1, rLY MOML ¢ picF1, 4P} MOML ¢ picF1,4P} ML-RBF BP-MLL ML-KNN Ecc

HL 1.1440.38* 3.1440.38 2.00£0.58 3.71+0.76 5.00+£0.00  8.00+0.00 6.714+0.49  6.2940.49
RL 1.71+£0.49 1.2940.49* 3.57+0.53 3.4340.53 5.00+0.00 7.14£0.38  6.00+0.00 7.86+0.38
SL 3.43+1.40 2.4340.98 2.14+1.77* 3.2940.49 6.144+0.38  8.00£0.00 6.71+0.76  3.86+1.95
OFE 3.57+1.13 3.431+0.98 2.57+1.13 1.2940.76* 4.86+0.38  8.00+0.00 6.86+£0.38  5.43+1.99
Cov 2.00+1.29%* 2.29+0.76 3.00+£0.58 2.71£1.60 5.00+£0.00  7.144+0.38  6.004+0.00  7.86+0.38
MicF1 2.14£0.38 3.57+0.98 1.2940.49* 4.00+0.67 5.43+0.79  7.86£0.38  7.00+0.58  4.71+2.21
AP 3.86+0.38 1.86+0.69 2.86+0.69 1.43+£0.79* 5.00£0.00  7.57+0.53  6.43+0.53  7.00%1.00
Acc 2.00£1.32 3.71+1.25 1.86+1.57* 4.00+0.58 6.2940.49  7.71£0.76 6.57+1.62 3.86+1.95
MacF1 2.1440.69 4.1440.38 1.57+1.13* 2.71+0.76 5.71+£0.76  8.00+0.00  6.574+0.79  5.1441.95
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Table 6: Average running time (second).

Methods
Data MOMLy g1, RLY ML-RBF BP-MLL ML-KNN Ecc
Set Training  Testing Training  Testing Training  Testing Training  Testing Training  Testing
Yeast 757 3.9 15.6 0.6 12,100 17.5 2.5 1.2 39.7 5.9
Image 343 1.6 2.8 0.2 12,500 5.3 9.1 1.2 39.3 4.2
RCV1-1 34,400 89 816 10.5 62,300 164 149 4.2 273 137

experiments are conducted on machines with Intel
Xeon Quad-Core CPUs of 2.26 GHz and 24 GB RAM.

Due to the limited space, we only show the results
of the average values of 9 metrics on Yeast, Image and
RCV1-1 in Tables 2-4, where "*’ indicates the best result
on each criterion and ’_’ indicates the performance of
MoOML on its optimization objective. The other four
datasets on RCV1 have very similar results with RCV1-
1. From these tables, we can observe that the four
versions of the MOML method rank first four on most
metrics and they always have the best average ranks
on each dataset. Furthermore, Table 5 summarizes
the mean and standard deviation of the rank values
for each method over 9 metrics on all seven datasets.
Although each MOML only optimizes two objectives, it
always performs better than the baselines on all metrics.
Moreover, Table 5 shows that each variant of the four
MoML algorithms does provide the best average rank
on its primary objective, such as MOML{gr rry on
HL, MOML;g, rpy on RL, etc. Other methods may
occasionally outperform our approach on some of the
metrics in a few of the datasets, but not consistently.
These results validate our intuition that the multi-
objective optimization in our MOML can effectively
tradeoff among multiple objectives and avoid the local
optimal to improve the overall performance almost on
all metrics. It is worth noticing that each version
of MOML can achieve the best average performance
on its primary objective, which supports the quality
of the outputted solution set and the flexibility of
our approach to different application scenarios with
different preferences.

Table 6 shows the average running time. We only
show one result of four versions of MOML, since the
four versions have the same time complexity. Although
MowML is slower than ML-RBF, ML-KNN and Ecc, it is
still faster than BP-MLL in the training phase. In the
testing phase, MOML is faster than BP-MLL and Ecc.

4.3 Parameter Settings There are two genetic op-
eration related parameters governing the MoML, i.e.
the population size N and the running generations
G. Figure 6 illustrates the evolutionary characteris-
tics of MOML{y pry on the Yeast data with ten-fold
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cross-validation, under different parameter configura-
tions. Specifically, when the population size N increases
from 10 to 60 with an interval of 10, we report the aver-
age of performances, running time and weights (the sum
of absolute value of W) by combining all the models in
the population.

It is evident from Figure 6 that, when the popu-
lation size N is fixed, the performance (i.e. Hamming
Loss and Ranking Loss) of MOML consistently improves
as the running generation increases. At the meantime,
the weights of RBF and running time also increase. Fig-
ure 6 also clearly shows that the large population size
usually leads to better performances accompanying with
the increase of weights and running time. Observing the
trend of weight curves in Figure 6(c), we can find that,
although the weights consistently increase, the rate of
increase becomes small. If we do not add the regular-
ization term in the error function of RBF (see Equation
6), the weights will increase sharply, which means these
models are overfitting. Figure 6(d) illustrates that the
running time of MOML increases linearly with the popu-
lation size N and running generation G, which validates
the time complexity of MOML in Equation 11.

In addition, the number of top models k also affects
the performance of MoML. The larger & means ensem-
bling more classifiers, which usually leads to better per-
formances and longer running time. However, it has less
preference to the optimization objective. In the experi-
ments, we settled the appropriate, not optimal, parame-
ters for our MOML. It achieves good performances with
an acceptable running time. In real applications, users
can settle these parameters in terms of the tradeoff of
the effectiveness and efliciency.

4.4 Influence of The Number of Objectives Our
previous experiments only show the cases with a pair of
objectives. However, more objective functions also can
be included in MoOML. In order to study the perfor-
mances of MOML with different number of objectives,
here we consider four objective functions (i.e. HL, RL,
MicF'1, and AP) and three versions of MOML which op-
timize the first 2, 3 and 4 objectives respectively. The
corresponding algorithms are called MoML-I1I, MOML-
III, and MoML-IV. We also consider a special case of
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“i”

indicates the smaller the better; “7” indicates the larger the better.

MowmL, called MOML-S, where the running generation
of MoML is 0. That is, MOML-S does not do any genetic
operation and multi-objective optimization. So it is just
the ensemble of multiple RBFs, and its performances
are constant along the evolutionary process. Ten-fold
cross-validation are reported on the Yeast data.

The results are shown in Figure 7. It is obvious
that MoML-(ILIIT,IV) perform better than MOML-S on
all four objectives, which supports the effectiveness of
the genetic operation and multi-objective optimization
in MoML. We can also find that MOML has better per-
formance on the optimization objectives than on non-
optimization objectives. However, when more objec-
tives are included in MoML, the problem becomes even
more difficult, and the model space extends greatly.
Thus, the performances of MOML-IV are not as good
as MoML-II on HL and RL. However, MOML-IV can
achieve the better performance on MicF1 by including
MicF1 in its objective set.

5 Related Work

Our work is related to multi-label learning and evolu-
tionary multi-objective optimization. Here we briefly
discuss the most related work in these two domains.
MoML has the same base classifier with ML-RBF [26]:
RBF. However, MOML adds a regularization term in the
error function of RBF, which greatly reduces the over-
fitting risk of RBF. Similar to Ecc [18], Eps [17], and
RAKEL [22], MOML also employs the ensemble method
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in the model selection phase, whereas M OML generates
a solution set through evolutionary multi-objective op-
timization. Petterson and Caetano [16] have been aware
that the evaluation measures are as diverse as the ap-
plications. However, their method still optimizes a sin-
gle criterion by appropriate surrogate. Different from
ML-20KM [24] which also optimizes two particular ob-
jectives with an existing EMO, MOML’s optimization
objectives can be any evaluation metrics and its base
model is the multi-label classifier. Dembczynski et al.
[8] analyze the connection between loss functions in
multi-label classification, which helps to select appro-
priate optimization objectives in MOML.

Traditional evolutionary multi-objective optimiza-
tion focuses on numerical optimization problems [6]. It
is also a promising method for data mining [3, 5]. Han-
dle and Knowles [15] apply EMO to boost clustering
performance. Shi et al. [20] use EMO to generate a set
of classifiers, while their work focuses on the ensemble of
classifiers. Chen and Yao [4] employ the multi-objective
neural network ensemble to improve classification per-
formances, whereas it focuses on the single-label classi-
fication problem.

6 Conclusion

In this paper, we first studied the multi-objective multi-
label classification problem and proposed a novel Multi-
Objective Multi-Label algorithm (MoML). MOML can
simultaneously optimize over multiple objectives and
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return a set of solutions.

In applications, users can

select the top k models in terms of the preferred
objective and make predictions on the testing data.
Experiments show that MOML not only achieves best
performances on the optimization objectives, but also
improves the performances on most of the other state-
of-the-art criteria for multi-label classification.
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