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Abstract

A key step of graph classification is to identify informa-
tive subgraphs that encode label information. For in-
stance, in drug efficacy prediction, the drugs (chemical
compounds) effective against the same disease usually
contain similar chemical-subgraphs effective to control
the disease. Then, one can use such chemical subgraphs
to identify effective drugs. We call these subgraphs sig-
nificant subgraphs. In this paper, the aim is to utilize
the significant subgraphs from related graph datasets
to help label graphs of the target dataset. For exam-
ple, we utilize the breast cancer drug data, and trans-
fer the anti-cancer subgraphs to help label another set
of drug data against lung cancer. To do so, we pro-
pose a Bayesian-based transfer learning model. The key
idea is to first evaluate the similarity between the target
and source datasets by estimating the degree they share
on their significant subgraphs. This dataset similarity
is then used to judiciously select significant subgraphs
from similar (related) datasets to the target dataset.
An optimization problem is devised to maximize the
likelihood that the selected subgraphs are significant in
the target dataset. The objective function is further
proven to have the antimonotone property which can
help prune the search space significantly. Sixteen sets
of experiments show that the proposed algorithm can
effectively reduce the error rates by as much as 40%.
More importantly, it is 10 times faster than the compar-
ison models, which include unsupervised and supervised
significant subgraph mining algorithms.

1 Introduction

Transfer learning (e.g., [1]) attracts intensive attentions
in recent years. It aims at borrowing supervision
knowledge from one dataset to help the learning on
another dataset. In text classification and opinion
mining, transfer learning is applied to reuse related
words (e.g., [2, 3]) or sentiment words (e.g., [4]) to
improve the accuracy. However, for graph database
(e.g., chemical topology data, XML structure data),
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transfer learning is a difficult task.

• First, there is nothing obvious to transfer, or
anything known that can make a successful transfer
in graph database.

• Second, there is no obvious indicator to iden-
tify task relatedness between two graph datasets.
Hence, it is difficult to tell when transfer learning
works.

In this paper, we investigate these problems, and apply
transfer learning to improve the effectiveness and effi-
ciency of graph pattern mining and graph classification.

Motivation Note that one key issue in graph classifi-
cation is to find a set of subgraphs that encode label
information, and use the subgraphs as features. We
call these subgraphs significant subgraphs. Tradition-
ally, significant subgraphs can be obtained by two steps
sequentially or interactively: (a) perform frequent pat-
tern mining (e.g., [5, 6]); (b) view the frequent sub-
graphs as features, and perform supervised feature se-
lection to obtain significant graphs (e.g., [7, 8]). Con-
ventional feature selection assumes, explicitly or implic-
itly, there are a large amount of labeled examples.

However, class labels are sometimes extremely ex-
pensive and difficult to obtain. This is particularly true
in graph dataset. For example, in molecular medicine,
it requires time, efforts and excessive resources to test
drugs’ efficacies by preclinical studies and clinical tri-
als. Hence, in practice, there may be only a limited
number of labeled examples for a learning task. With-
out sufficient labeled data, it is difficult to find informa-
tive significant subgraphs. Hence, to improve significant
subgraph mining, it is desirable to obtain more super-
vision knowledge from other sources (datasets). Intu-
itively, if the source datasets are correlated with the
target dataset, the source significant subgraphs may
contain information also useful in the target dataset.
For example, Fig. 1 presents two drug data from dif-
ferent graph datasets in the National Cancer Institute
(NCI) database. The left graph is a drug fragment that
has anti-cancer property effective against leukemia, and
the right chemical is effective against lung cancer. We
highlight their significant subgraphs in Fig. 1 (mined by
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(a) Effective drug frag-
ment against leukemia

(b) Effective drug frag-
ment against lung cancer

Figure 1: The same significant subgraph may have the
same semantics in different graph datasets

the method in [9]). It is clear that the two chemicals
share the same significant subgraph that probably has
anti-cancer property. Thus, in this example, when the
number of labeled graphs is limited in one dataset, it
is possible and desirable to utilize the significant sub-
graphs from the other dataset to improve learning.

The proposed model In this paper, a statistical
framework is first proposed to formally model significant
subgraph mining. It is derived by introducing a latent
variable to infer how likely a candidate subgraph is
significant. We further generalize the statistical model
with Bayesian theory to consider a latent variable space.
The variable space is then used as a bridge to enable
the knowledge transfer from related source datasets to
the target dataset. Moreover, two key challenges are
addressed:

1. First, how can one identify related and similar
sources? Although it is well established in the text
domain, commonality of words is a good indicator
on relatedness between source and target domains,
there is no previous study showing the effective
indicators for graph domains. Our intuition is
to estimate the degree that the source and target
datasets share on their significant subgraphs. If
they share many significant subgraphs, the graph
datasets are related. Specifically, Kullback-Leibler
divergence is used to estimate the amount of shared
subgraphs, and it is incorporated into the Bayesian
framework to automatically assign higher weights
to related sources.

2. Second, how can one make good use of the re-
lated source datasets to improve the accuracy?
The key idea is to view the significant subgraphs
from related source datasets as strong candidate-
subgraphs for the target dataset. The Bayesian
framework thus summarizes the weighted “votes”

Table 1: Notation Descriptions
Notations Descriptions

T Target graph dataset
Si The set of significant subgraphs of the i-th

source dataset
P A pool of source significant subgraphs

P = {S1, · · · ,St}
G A graph instance
g A subgraph
GT Subgraph space of dataset T
sig(GT ) The set of significant subgraphs of T
θT A latent variable to indicate how likely

a subgraph g is significant in T via p(g|θT )
θS The latent variable of source dataset S
Θ Generalized latent variable space

Input and output of the problem setting

Input (a) Target dataset T
(b) A pool of source significant subgraphs P

Output sig(GT ) defined in Eq. 3.8.

from all source datasets, and infers the likelihood
that the candidate subgraph is significant.

An optimization problem is devised to select significant
subgraphs based on the above intuition. It aims at max-
imizing the likelihood that the selected subgraphs are
significant in the target dataset. The objective func-
tion is further proven to have the antimonotone prop-
erty which can prune the search space significantly. It
is important to emphasize that to increase the applica-
bility of the proposed model, we do not require that the
user needs to know a priori whether the source datasets
are related to the target dataset. For example, Yeast
dataset is given as an auxiliary source when the target
dataset is about lung cancer drugs. It is a capability of
the proposed model to judiciously decrease the weights
of (or filter out) unrelated datasets, in order to avoid
them hurting the learning accuracy. Sixteen sets of ex-
periments were performed to evaluate the effectiveness
and efficiency of the proposed model. The utility of the
resulting significant subgraphs was evaluated by using
the subgraphs as features in classification tasks. It is
observed that the proposed model runs 10 times faster
than the comparison models. In addition, its resulting
significant subgraphs can reduce the classification error
rates by as much as 40%, when compared with both un-
supervised and supervised subgraph mining algorithms.

2 Problem Formulation

In this section, we formulate the problem of significant
subgraph mining for graph classification, and extend
it to the scenario of transfer learning. First, let T =
{G1, · · · , Gn} denote the entire target graph dataset,
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which consists of n connected graphs.

Definition 2.1. (Connected Graph) A graph is
represented as G = (V, E,L, l), where V is a set of ver-
tices V = {v1, · · · , vnv

}, and E ⊆ V × V is a set of
edges, and L is the set of symbols for the vertices and
the edges, and l : V ∪ E → L is a function assigning
labels to the vertices and the edges. A connected graph
is a graph such that there is a path between any pair of
vertices.

Definition 2.2. (Subgraph) Let g = (Vg, Eg,Lg, lg),
and G = (V, E,L, l) be connected graphs. g is a
subgraph of G (g ⊆ G) iff there exist an injective
function f : Vg → V s.t. (1) ∀v ∈ Vg, lg(v) = l (f(v));
(2) ∀(u, v) ∈ Eg, (f(u), f(v)) ∈ E, and lg(u, v) =
l (f(u), f(v)). If g is a subgraph of G, then G is a
supergraph of g.

Definition 2.3. (Vector based representation)
We adopt the idea of subgraph-based graph represen-
tation, which describes each graph object Gi as a
feature vector xi = [x1

i , · · · , xmi ]> corresponding to a
set of subgraph patterns {g1, · · · , gm}. Denote xki as
the feature corresponding to the subgraph pattern gk.
Define xki = 1 iff gk is a subgraph of Gi (gk ⊆ Gi),
otherwise xki = 0.

In addition to the target graph dataset, we are also given
a pool of auxiliary source datasets. It is assumed that
the top k significant subgraphs in each source dataset
are already derived. One aim of the proposed model is
to determine whether the source significant subgraphs
are useful or not. More formally, the pool of source
significant subgraph datasets is defined as follows.

Definition 2.4. (Source significant subgraphs)
Let P = {S1,S2, · · · ,St} be the pool of source signifi-

cant subgraph datasets where Si = {g(i)
1 , g

(i)
2 , · · · , g(i)

k }
(1 ≤ i ≤ t) is a set of significant subgraphs for the
i-th source dataset. It is assumed that these significant
subgraphs are already derived. For example, they can
be identified by domain experts, or by chemical test, or
by supervised method (e.g., [9, 7, 10]) with sufficient
training data, .

The useful notations are summarized in Table 1. Thus,
the studied research problem can be described as fol-
lows: how can one utilize the pool of source significant
subgraphs P to improve significant subgraph mining in
the target dataset T in either of the two settings:

• Supervised pattern mining: Assume that the first
l (l � n) graphs within T are labeled by
{y1, · · · , yl}, where yi denotes the class label as-
signed to Gi.

Figure 2: Significant subgraphs encode the label in-
formation; hence similar/related graph datasets share
many of their significant subgraphs

• Unsupervised pattern mining: There is no target
labeled graph used in finding the significant sub-
graphs.

The aim is to use the significant subgraphs as features,
and assign labels to the unlabeled graphs. We inves-
tigate a general approach applicable in the above two
settings.

3 Transfer Significant Subgraphs

We note that in the text domain, it is relatively easy to
judge the relatedness of the source and target domains
by looking at the common vocabularies or topics. It
is much harder to judge the relatedness of two graph
datasets as there is no simple intuitive way to do
that. While drugs for two different types of cancers
are not necessarily always related, drugs for seemingly
unrelated diseases such as HIV and cancers may be
related, e.g., HIV drug, nelfinavir, is under clinical
testing for cancer treatment. It is thus desirable to
have an automated mechanism to make this evaluation
and avoid transferring from unrelated sources. We next
explain the intuition behind the algorithm.

3.1 Intuition The significant subgraphs from related
source datasets are utilized to improve pattern mining
in the target dataset. Two challenges are addressed:

• First, how can one evaluate whether the graph
datasets are similar and related? A high level in-
tuition is to estimate how much they share on the
significant subgraphs. As in Fig. 2, if two datasets
are similar and related, they share most of their sig-
nificant subgraphs that encode similar label infor-
mation; otherwise, they share few significant sub-
graphs. To evaluate the amount of common sub-
graphs, we first estimate the significant subgraphs
of the target dataset T (1) by its frequent sub-
graphs in an unsupervsied setting, or (2) by the sig-
nificant subgraphs mined with a limited number of
labels in a supervised setting. Note that it is just a
rough estimation of the target significant subgraphs
since we use none (in the unsupervised setting) or
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(a) Significant subgraph
mining.

(b) Transfer learning
with source significant
subgraphs.

Figure 3: Graphical model representation of significant
subgraph mining (unobserved latent variable is high-
lighted with dash line)

only a limited number of labeled graphs (in the su-
pervised setting). We then compare the set of esti-
mated target significant subgraphs with the source
significant subgraphs. If they share many common
subgraphs, they are labeled as related. This step is
formulated and solved by the Kullback-Leibler di-
vergence [11].

• Second, how can one make good use of the related
source datasets to improve the accuracy and the
efficiency? The general idea is as follows. If the
source and target dataset is similar, we view the
source significant subgraphs as strong candidates
of significant subgraphs in the target dataset. This
is modeled by first assigning different weights to
the source datasets according to their relatedness.
A Bayesian model is then proposed to estimate the
likelihood that a candidate subgraph is significant
by summarizing the weighted “votes” from the
source datasets.

The two steps estimate whether a candidate subgraph is
significant. The final aim is to maximize the likelihood
that the selected subgraphs are significant.

3.2 A Statistical Explanation of Significant
Subgraph Mining In this section, we first introduce
a statistical explanation of significant subgraph mining,
and then extend it to the scenario of transfer learn-
ing. Given the target dataset T and all its subgraphs
GT = {g1, g2, · · · }, the aim is to extract the set of signif-
icant subgraphs sig(GT ) ⊆ GT that encodes label infor-
mation. It can be explained as a sampling process from
the subgraph space GT as sketched in Fig. 3(a). The
sampling process contains two steps. First, a latent vari-
able θT is generated from the dataset T . Given any sub-
graph g, the latent variable θT determines the likelihood
that the subgraph g is significant. Second, the signifi-
cant subgraphs are sampled from the subgraph space GT
with the distribution proportional to p(g|θT ). If p(g|θT )
is large, it means that g is significant with high probabil-
ity. Hence, the sampling process described above speci-

fies a generative model for significant subgraphs. With
the aim to select a subset of subgraphs that are signifi-
cant, the objective function can be written as maximiz-
ing the joint probability p

(
T , θT , sig(GT )

)
(3.1) max

sig(GT )
p
(
T , θT , sig(GT )

)
Usually, for the sake of computational efficiency,
sig(GT ) is directly obtained by

(3.2) sig(GT ) =
{
g|g ∈ GT and p

(
T , θT , g

)
≥ λ

}
where λ is a threshold to filter out the subgraphs that
are less likely to be significant. Different interpretations
of the joint probability derive different graph pattern
mining algorithms:

1. Unsupervised pattern mining, or frequency based
pattern mining (e.g., [5, 12, 13]): the following equation
can be obtained from Fig. 3(a):

p(g|T ) =
p(g, T )

p(T )

=

∫
p(g, T , θ)dθ
p(T )

(only one θ in Fig. 3(a): θT )

=
p(T )p(θT |T )p(g|θT )

p(T )
(from Fig. 3(a))

= p(θT |T )p(g|θT )

(3.3)

By applying the above equation, the joint probability
can then be written as:

p
(
T , θT , g

)
= p(T )p(θT |T )p(g|θT ) = p(T )p(g|T )

∝ p(g|T ) = Frequency(g)

(3.4)

Note that p(g|T ) is the relative frequency 1 of the sub-
graph g in the dataset T . This category of algorithms
thus only selects frequent subgraphs as significant pat-
terns.

One important advantage of the frequency based
model is that the objective function satisfies the anti-
monotone property. That is, if a subgraph gj is a su-
pergraph of gi (gi ⊆ gj), we have p(gj |T ) ≤ p(gi|T ).
This property is the key to prune the search space and
collect the subgraph patterns efficiently [5].

2. Supervised pattern mining, or feature selection
based algorithms (e.g., [9, 7, 8, 14]): the joint probabil-
ity can also be written as:

p
(
T , θT , g

)
= p(θT |g, T )p(g|T )p(T )

∝ p(θT |g, T )p(g|T )
(3.5)

1relative frequency: the number of graphs that contain the
subgraph, divided by the total number of graphs.
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Note that θT is a latent variable indicating how sig-
nificant the subgraph is to classification. One way to
approximate the term p(θT |g, T ) is to consider how in-
formative of the subgraph feature g over graph labels:

(3.6) p(θT |g, T ) ∝
∫
Gi∈T

p(yi|g,Gi)dG

where Gi is a graph data in T with label yi. The joint
probability can then be written as:

p
(
T , θT , g

)
∝ p(θT |g, T )p(g|T )

∝ p(g|T )

∫
Gi∈T

p(yi|g,Gi)dG

= Frequency(g)× Informative(g)

(3.7)

This category of algorithms thus considers two factors:
(a) the subgraph has to be frequent (a large p(g|T )); (b)
the subgraph is informative and useful to classification.
This is usually done by supervised feature selection on
a set of frequent subgraphs. However, this category
of algorithm usually requires a large number of labeled
graphs to approximate the term

∫
xi∈T p(yi|g,xi)dx.

Compared with the frequency based methods, the
supervised significant subgraph mining incorporates la-
beled information to improve the result. It is thus more
powerful to find the significant subgraphs that encode
label information. However, in many applications, it
is usually very difficult and expensive to obtain many
labeled graphs, which limits the effectiveness of super-
vised subgraph selection. To solve this problem, we
generalize the statistical model to utilize the rich set
of significant subgraphs from auxiliary sources.

3.3 Incorporate Auxiliary Sources In this sec-
tion, we generalize the above statistical model to uti-
lize the significant subgraphs from auxiliary sources.
To do so, we first generalize the latent variable θ in
Fig. 3(a) by introducing a variable space Θ (θ ∈ Θ)
as in Fig. 3(b). The generative model thus becomes:
the significant subgraph g is sampled with distribution
p(g|θ) where the latent variable θ is sampled from Θ
with probability p(θ|T ). Intuitively, θ can be the latent
variable from source datasets, and we can use p(θ|T ) to
assign high weights to the source datasets related to the
target dataset, and use p(g|θ) to assign high weights to
the source significant subgraphs. We can then write the
objective function as

(3.8) sig(GT ) =
{
g|g ∈ GT and p

(
T ,Θ, g

)
≥ λ

}

where the joint probability can be written as (with
Fig. 3(b)):

p
(
T ,Θ, g

)
=
∑
θ∈Θ

p
(
T , θ, g

)
=
∑
θ∈Θ

p(T )p(θ|T )p
(
g|θ)

∝
∑
θ∈Θ

p(θ|T )p
(
g|θ)

(3.9)

There are at least two advantages to apply the
above generalized model to mine significant subgraphs.
First, the proposed model can avoid overfitting: it does
not exclusively use the latent variable θ learned from
the target dataset. This is particularly important when
the latent variable θ is learned from only a limited
number of labeled data. Second, from the view point
of transfer learning, the supervision knowledge from
auxiliary sources can be conveniently incorporated by
using θ learned from the source datasets. We next
introduce how to obtain

• p
(
g|θ) that assigns high weights to the subgraphs

that are identified as significant in a source dataset.

• p(θ|T ) that assigns weights to the source datasets
according to their relatedness to the target dataset.

Using Source Significant Subgraphs via p(g|θ)
Denote the latent variable of the i-th source dataset
as θSi , and the set of significant subgraphs as sig(GSi).
Since the significant subgraphs are generated from the
latent variable, we then define

p(g|θSi
) =

{
1 if g ⊆ g′ ⊆ sig(GSi

) of Si
0 Otherwise

=

{
1 if there exists a supergraph of g significant in Si
0 Otherwise

(3.10)

where g′ is a significant subgraph of the source dataset
S, and it is also a supergraph of g (g ⊆ g′). The term
p
(
g|θSi

)
assigns high weights to the patterns that are

identified as significant in the source dataset Si. We
next discuss how to model the dataset similarity by
p(θ|T ).

Model Dataset Similarity via p(θ|T ) We first de-
fine the variable space Θ as the joint of latent vari-
ables of the target and source datasets as Θ =
{θT , θS1 , θS2 , · · · , θSt}. We then define p(θSi |T ) as:
(3.11)

p(θSi
|T ) = N

(
exp

{
KL

(
sig(GSi

)‖sig(GT )
)}
− 1; 0, σ

)
whereN (x; 0, σ) is the normal distribution density func-
tion with zero mean, and σ serves as a normaliza-
tion term to ensure

∫
p(θ|T )dθ = 1, and the term
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KL
(
sig(GSi

)‖sig(GT )
)

is the Kullback-Leibler Diver-
gence used to evaluate the difference of the two sets of
subgraphs sig(GSi

) and sig(GT ) in distribution. More
specifically, we first represent each set of the subgraphs
as a distribution of smaller subgraphs (described later),
and then evaluate the differences of the two sets in dis-
tribution. This is similar to text classification when
we think of each set of documents as a distribution of
words. The KL divergence returns zero when the two
datasets have the same distribution, and becomes large
when the two datasets are unrelated [11]. There are two
important properties of Eq. 3.11.

• First, p(θSi |T ) gets the highest value when the
source and target data have exactly the same
distribution such that KL(sig(GSi

)‖sig(GT )) = 0.

• Second, it can decrease exponentially when the
source dataset is unrelated (KL(sig(GSi

)‖sig(GT ))
is large). It is a key step to assign low weights to
filter out unrelated sources.

Note that we need to determine KL
(
sig(GSi

)‖sig(GT )
)
.

Three steps are performed to calculate the term:

1. First, we estimate the target significant subgraphs
sig(GT ) by either (1) frequent subgraphs in an un-
supervised setting; or (2) initial significant sub-
graphs mined from the labeled graphs in a super-
vised setting as in Eq. 3.7.

2. Second, we mine frequent subgraphs {f1, f2, · · · } on
the combined dataset sig(GT )∪sig(GSi

). This step
is to discover small subgraph patterns that gener-
ate sig(GT ) and sig(GSi

). Hence, both sig(GT ) and
sig(GSi

) can be represented as “bag of small sub-
graph patterns”. Similar to the “bag of words” pre-
sentation in text mining, we can now define PT (f1)
as the probability that the subgraph f1 appears
in the dataset sig(GT ). This is calculated by the
number of occurrences of the subgraph f1 divided
by the total number of occurring significant sub-
graphs. Then, with the data (subgraph) distribu-
tions, we can now compute the KL divergence.

3. Third, we calculate KL
(
sig(GSi

)‖sig(GT )
)

by the
distributions described above:

KL
(
sig(GSi

)‖sig(GT )
)

=
∑
g

(
PSi(g)logPSi(g)− PSi(g)logPT (g)

)
(3.12)

It is important to note that the first two steps can
be very expensive when we enumerate all the frequent

subgraphs. We thus only retain the subgraphs with
at most l nodes where l is a parameter discussed in
the experiment section. The KL divergence calculated
on the subgraphs with at most l nodes are denoted as
KLl

(
sig(GSi

)‖sig(GT )
)
. With the definition of p(g|θ)

in Eq. 3.10 and p(θ|T ) in Eq. 3.11, we can now apply
Eq. 3.9 to evaluate how likely a candidate subgraph g
is significant in the target dataset. We next introduce
an efficient enumeration algorithm to select the set of
subgraphs g with p

(
T ,Θ, g

)
> λ.

3.4 Subgraph Enumeration and Pruning Eq. 3.9
is used to evaluate the likelihood of a given subgraph g
to be significant. A naive approach is to enumerate
all possible subgraphs, and select those subgraphs with
high scores. Note that one difficulty to enumerate the
subgraphs is to identify the isomorphism subgraphs [5].
To handle the isomorphism issue in graph pattern
mining, we adopt the subgraph enumeration strategy
in gSpan proposed by Yan et al [5]. The key idea
of gSpan is to build a lexicographic order of all the
edges of a graph, and then map each graph to a
unique minimum DFS code as its canonical label. The
minimum DFS codes of two graphs are equivalent iff
they are isomorphic. Based on this lexicographic order,
a depth-first search (DFS) strategy is used to search
through all the subgraphs in a DFS code tree. By a
depth-first search through the DFS code tree’s nodes,
we can enumerate all the subgraphs of a graph in their
DFS codes’ order. More details can be found in [5].
In addition to isomorphism test, another issue is that
the number of subgraphs grows exponentially with the
number of nodes and edges. It is thus impractical to
enumerate all of them. We next show the antimonotone
property of Eq. 3.9, and introduce a pruning strategy
based on the theorem.

Theorem 3.1. Given any two subgraphs g, g′ ∈ S, if g′

is a supergraph of g (g′ ⊇ g), then

(3.13) p
(
T ,Θ, g

)
≥ p
(
T ,Θ, g′

)
Proof. First of all, according to Eq. 3.10 and the
antimonotone property of [5], we can obtain:

p
(
g|θ
)
≥ p
(
g′|θ
)

With the above property, we can prove the antimono-
tone of the general framework as:

p
(
T ,Θ, g

)
=
∑
θ∈Θ

p(T )p(θ|T )p
(
g|θ)

≥
∑
θ∈Θ

p(T )p(θ|T )p
(
g′|θ) = p

(
T ,Θ, g′

)
(3.14)
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Input: T is the target graph dataset; P is the
pool of source datasets
P = {S1, S2, · · · , Sp}; λ is the threshold;
l is the maximum size of subgraphs for
KL divergence with default value 3;

Output: sig(G) : Set of significant subgraphs

sig(G) = ∅;1

/* Recursively visit the DFS Code Tree

in gSpan */

g = currently visited subgraph in the DFS Code2

Tree in gSpan;
Calculate p

(
T ,Θ, g

)
as in Eq. 3.9 with the3

dataset similarity in Eq. 3.11 and weights of the
source significant subgraphs in Eq. 3.10.
if p

(
T ,Θ, g

)
≥ λ then4

sig(G) = sig(G) ∪ {g};5

Depth-first search the subtree rooted from6

node g (goto Step 2);
end7

return sig(G);8

Algorithm 1: Significant Subgraph Mining with
Auxiliary Sources

The antimonotone property allows us to prune the
search space significantly as in Algorithm 1. In other
words, for a subgraph g, if p

(
T ,Θ, g

)
< λ, we can prune

all the supergraphs g′ ⊇ g. Note that Algorithm 1
is a general framework which can be used in both
supervised and unsupervised settings. We will evaluate
the framework in both settings in the next section.

4 Experiments

A transfer learning model is proposed to utilize auxiliary
sources to improve significant subgraph mining. We
evaluated it with 16 sets of experiments. The aim of
the experiments is to answer the following questions:

1. Can related sources be identified to improve the
accuracy?

2. Can the proposed model avoid using unrelated
sources?

3. Can the proposed model improve the efficiency of
significant subgraph mining?

4.1 Experimental Setup Data Collections: Eight
graph datasets were collected from the NCI chemical
graph database, which were divided into two groups as
in Table 2. The two groups took turns to be the pool of
source datasets, and the other one was set as the pool
of target datasets. As such, for each experiment, we
selected one dataset from the target group as the target

dataset, and used all datasets from the source group
as the pool of sources. Thus, we had 16 experiments
in total: the 8 datasets took turns to be the target
dataset in both supervised and unsupervised graph
pattern mining. According to the problem setting,
the top k most significant subgraphs in each source
dataset were already derived. In the experiment, k was
set to be 700 so that the source datasets contained
rich information, but they might be totally irrelevant
to the target dataset. These significant subgraphs
were mined by the method in [9] along with all the
labeled examples in the source datasets. The proposed
model is supposed to find the significant subgraphs
in the target dataset by making use of these source
significant subgraphs. From Table 2, it can be observed
that the source datasets may be totally unrelated
to the target dataset. For example, the anti-cancer
datasets should be similar to each other, but they
should have weak similarity to the AIDS data. It is a
capability of the proposed model to judiciously use only
the related datasets, and avoid using the unrelated ones.

Comparison Methods: The proposed model can
handle both unsupervised and supervised graph pat-
tern mining. They are only different in how to estimate
the target significant subgraphs when calculating the
dataset similarity in Eq. 3.12. We evaluated the model
in both settings. In the unsupervised setting, gSpan [5]
was chosen as an example for comparison. Then, in the
proposed algorithm, we correspondingly used gSpan
as a based method to estimate the dataset similarity
in Eq. 3.12, and we denote our method “Transfer-
GSPAN”. In the supervised setting, the method
in [9] (using information gain to select features) was
set to be the comparison method which is denoted
as “INFOR”. Then we correspondingly used [9] in
Eq. 3.12, and we denote the supervised version of our
model as “Transfer-INFOR”. Note that the outputs of
the models were sets of subgraph patterns. We then
evaluated the utility of the subgraphs by using them
as features in classification tasks. The proposed model
was also studied in terms of efficiency.

4.2 Result Analysis In the experiment, all results
were summarized on 10 runs, and in each run we
randomly sampled certain number of target data as the
target training data, and the rest were used as test
data. We then used SVM to give the classification
result. It is important to mention again that in the
unsupervised setting, the significant subgraphs were
extracted without using any label information. The
purpose of classification and the labeled graphs reported
in Fig. 4 and Fig. 5 was to evaluate the utility of the
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Figure 4: Pool I as target datasets and Pool II as auxiliary sources. Unsupervised means no label graph is used
in mining the significant subgraph patterns.

Table 2: Summary of experimental graph datasets (each
instance is a graph in SMILES format).

Graph datasets #Graph Function

Breast Cancer 40560 Anti-cancer
Leukemia 40189 Anti-cancer

Pool I: Melanoma 40244 Anti-cancer
Yeast 10000 Others

Leukemia2 43599 Anti-cancer
Pool II: Lung Cancer 40560 Anti-cancer

Yeast2 8807 Others
AIDS 10000 AIDS screen data

selected significant subgraphs. No label information
was used in unsupervised subgraph pattern mining.
For parameter setting, we set the threshold λ = 0.25
and l = 3. Parameter sensitivity is studied in the
next section.

Can related sources be identified and help im-
prove the accuracy? Fig. 4 and Fig. 5 provide the
results summarized on 10 runs. Note that the error

rates on some datasets are larger than 50%. This is
because (1) some datasets are imbalanced (the error
rate for random guessing is around 0.6); (2) it is known
that graph classification is a tough task with low ac-
curacy [15]. However, it can be observed that the pro-
posed transfer learning model can improve the accuracy
in most cases. In the comparison with gSpan, the pro-
posed model can reduce the error rates by as much as
33% (in Fig. 4(g) when the number of labeled graphs is
only 20). For the comparison with the feature selection
algorithm, the proposed method reduces the error rates
significantly when there are a limited number of train-
ing data. For instance, on yeast dataset, the error rate
reduces over 40% when there are only 60 labeled graphs
and 9940 unlabeled graphs. This demonstrates the ne-
cessity and effectiveness of transfer learning to improve
the accuracy when there are only a limited number of
labeled data. Note that the error rates on some of the
datasets are larger than 50%.
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Figure 5: Pool II as target datasets and Pool I as auxiliary sources. Unsupervised means no label graph is used
in mining the significant subgraph patterns.
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Can the proposed model avoid using unrelated
sources? It is important to note that we have a graph
dataset on AIDS drug data (Table 2). Because of the
uniqueness of the disease, there are no similar drug
data that can help identify its significant subgraphs.
From Fig. 4 and Fig. 5, we can also observe that
the improvement of transfer learning on this dataset
is marginal. However, although there is no related
source, the learning accuracy is still comparable to the
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Figure 8: Parameter sensitivity

comparison methods. This is because our approach
is able to avoid using wrong models by automatically
filtering out wrong examples. As such, negative transfer
can be avoided. Note that the key component to identify
the unrelated sources is the KL divergence discussed
in Eq. 3.12. It helps model the similarity between the
source and target data p(θS |T ). We next present in
Fig. 7 the value of p(θS |T ) given the “Yeast2” dataset
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as the target task. Recall that a high value of p(θS |T )
indicates a strong similarity of the source dataset and
the target dataset. We can observe from Fig. 7 that the
most similar dataset is the “Yeast” from Pool I. This is
because the two datasets are all about graph structure of
yeast although they may study on different samples. It
shows the effectiveness of the KL divergence to evaluate
the task similarities and filter out unrelated datasets.

Can the proposed model improve efficiency? The
comparison on the running time is presented in Fig. 6.
All algorithms were run on a PC with CPU Duo 2.4G
and 3G memory. In this experiment, we set the number
of training data as 50, and plot the running time as
a function of the threshold λ. Owing to the limited
space, we just report the results on “Transfer-GSPAN”
but a similar phenomenon can be observed in “Transfer-
INFOR”. From Fig. 6, it can be observed that in general,
the running time decreases with the increasing value of
the threshold. Importantly, the transfer learning model
is 10 times faster than the comparison methods. For
example, in Fig. 6(b), the comparison method needs
about 1600 seconds to finish the pattern mining with
a threshold of 5%, while the transfer learning model
needs only about 160 seconds. This is because related
sources help greatly prune the search space by filtering
out or deemphasizing the candidate subgraphs that are
not significant in the source dataset. However, we can
also observe that when there is no related source, the
running time of the transfer learning model is almost
the same as the comparison method (Fig. 6(h)). The
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reason is that when there is no related source, the
model in Eq. 3.9 casts into a traditional pattern mining
algorithm. But we can conclude that there is almost no
loss for the transfer learning model in terms of running
time even in the worst case.

4.3 Discussion and Parameter Sensitivity In
the above experiments, we provided a pool of source
datasets to study whether the proposed algorithms can
use the right amount of useful knowledge and avoid
those unrelated datasets. Note that this setting is
very important in real world practice, and it is desir-
able to let the learning method to automatically find
which datasets are related. Under this experiment set-
ting, an interesting discussion is to investigate whether
the result improves with more available sources. We
plot Fig. 9 to study the phenomenon. In this experi-
ment, the dataset “Melanoma” was set to be the target
dataset, and “Leukemia”, “Leukemia 2”, “Lung Can-
cer”, “Yeast”, “Yeast 2”, and “Breast Cancer” were
set to be the source datasets. We then changed the
number of source datasets to study how it affected the
result on the target dataset. In each setting, we first
set the number of selected source datasets to be n (n
varied from 1 to 6), and we then randomly sampled n
datasets from the pool to give the result. This process
was performed 10 times for a given n, and we summa-
rized the result in Fig. 9. The other parameter settings
were: 50 labeled graphs, threshold λ = 0.25. It is in-
teresting to see that the error rates of both methods
decrease with the increasing number of source datasets,
especially the method “transfer-GSPAN”. This is be-
cause with more source datasets, the proposed Bayesian
model obtains more information to infer a more accu-
rate result. This improvement is especially significant
for “transfer-GSPAN” because it uses no labeled graph
in the target dataset but mainly depends on the super-
vision knowledge from the sources. Hence, with more
sources, it may absorb more useful information to im-
prove the learning accuracy.

When calculating the KL divergence, we use the
parameter l to control the maximum number of nodes of
each selected subgraph. We plot Fig. 8(a) and Fig. 8(b)
to study the effect of different values of l. The “Lung
Cancer” dataset was set to be the target dataset, and
Pool I was used to be the source datasets. Furthermore,
50 graphs were labeled, and the threshold λ = 0.25. It
can be observed that the error rate decreases a little
with increasing l. This is because with a larger l, more
frequent subgraphs can be utilized to calculate the KL,
and thus the result is more accurate. However, From
Fig. 8(b), we can observe that the running time grows
exponentially with l. Intuitively, when l → ∞, all the

subgraphs are used to calculate the KL, but it takes a
long time to finish. In the experiment, we set l = 3,
which is also the default setting to balance both the
accuracy and the efficiency.

5 Related Work

Extracting subgraph features from graph data have
been investigated by many researchers. The aim of such
approaches is to extract informative subgraph features
from a set of graphs. Typically some filtering crite-
ria are used. Upon whether considering the label in-
formation, there are two types of approaches: unsu-
pervised and supervised. A typical evaluation crite-
rion is frequency, which aims at collecting frequently
appearing subgraph features. Most of the frequent sub-
graph feature extraction approaches are unsupervised.
For example, Yan and Han develop a depth-first search
algorithm: gSpan [5]. This algorithm builds a lexi-
cographic order among graphs, and maps each graph
to a unique minimum DFS code as its canonical la-
bel. Based on this lexicographic order, gSpan adopts
the depth-first search strategy to mine frequent con-
nected subgraphs efficiently. Many other frequent sub-
graph feature extraction approaches have also been de-
veloped, e.g. AGM [12], MoFa [13], FFSM [6], and Gas-
ton [16]. Many supervised subgraph feature extraction
approaches have also been proposed in literature (e.g.,
[17], [7], [8]), which look for discriminative subgraph
patterns for graph classifications. However, so far as we
know, transfer learning technique has not been intro-
duced into the field; but as analyzed in the introduction
section, transfer learning can greatly help solve the label
deficiency problem in this area.

Another related area of works is transfer learn-
ing, which is proposed to help build the target model
by extracting knowledge from related source datasets
(e.g., [18, 19, 20, 1, 21, 22]). There are various inter-
pretations of transfer learning research. For example,
one category of algorithms mainly tackles the problem
of different data distributions. A general approach is
based on re-sampling (e.g., [19]), where the motivation
is to emphasize the examples that are discriminating
and similar to the target data. There are also some
other solutions such as transfer across feature subspaces
(e.g., [23]), transfer across similar learning parameters
(e.g., [24]), and the like. It is also used in different
kinds of applications such as text mining, web mining
(e.g., [3, 2, 25]). Furthermore, transfer learning is ap-
plied to unsupervised learning (e.g., [26, 27, 28]). Re-
cently, some works are proposed to transfer knowledge
on relational data (e.g., [18, 29, 30]). However, as far
as we know, they do not look at graph database whose
instances are complex structural graphs.
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6 Conclusion

We study transfer learning on graph data, by utilizing
the significant subgraphs from auxiliary sources to im-
prove subgraph pattern mining on the target dataset.
The key idea is to introduce a latent variable to infer
the likelihood of a candidate subgraph to be significant,
and assign high weights to the significant subgraphs
from related source datasets. Furthermore, KL diver-
gence is modified to evaluate the dataset similarity by
estimating the degree they share on the significant sub-
graphs. The optimization objective is to maximize the
likelihood that the selected subgraphs are significant.
Experiments show that the proposed transfer learning
model can extensively reduce the error rates by as much
as 40%, but more importantly, 10 times faster than the
comparison models.
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