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Abstract

Collective classification in relational data has become an
important and active research topic in the last decade,
where class labels for a group of linked instances are cor-
related and need to be predicted simultaneously. Collec-
tive classification has a wide variety of real world appli-
cations, e.g. hyperlinked document classification, social
networks analysis and collaboration networks analysis.
Current research on collective classification focuses on
single-label settings, which assumes each instance can
only be assigned with exactly one label among a finite
set of candidate classes. However, in many real-world
relational data, each instance can be assigned with a
set of multiple labels simultaneously. In this paper,
we study the problem of multi-label collective classifica-
tion and propose a novel solution, called IcML (Iterative
Classification of Multiple Labels), to effectively assign a
set of multiple labels to each instance in the relational
dataset. The proposed IcML model is able to capture
the dependencies among the label sets for a group of re-
lated instances and the dependencies among the multi-
ple labels within each label set simultaneously. Empiri-
cal studies on real-world tasks demonstrate that the pro-
posed multi-label collective classification approach can
effectively boost classification performances in multi-
label relational datasets.

1 Introduction

Traditional machine learning and data mining ap-
proaches assume that instances are independent and
identically distributed, and each testing instance is pre-
dicted with a class label independently. However, in
many relational datasets [25] or information networks
[8], the instances are implicitly or explicitly related,
with complex dependencies. For example, in collabora-
tion networks, the researchers who collaborate with each
other are more likely to share similar research topics
than researchers without any collaboration. An effective
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Figure 1: An example of multi-label relational data.

model for relational datasets should be able to consider
the dependencies among the related instances during
classification steps. Motivated by these challenges, col-
lective classification has received considerable attention
in the last decade, where a group of related instances
are classified simultaneously rather than independently.

In the literature, collective classification problem
has been extensively studied [19, 25, 15, 27]. Con-
ventional approaches focus on single-label classification
problems, which assume that each instance in the rela-
tional dataset has only one label among a finite set of
candidate classes (As shown in Figure 2(a), @; denotes
the i-th instance and Y; is its label, instances directly
linked by an edge are related). However, in many real-
world applications, each instances can be assigned with
more than one label. For example, in collaboration net-
works (e.g. Figure 1) one author can have multiple re-
search areas of interest, such as machine learning, data
mining and bioinformatics; In web page networks, one
hyper-linked web page may have multiple tags indicat-
ing multiple topics in the web page. The analysis and
management of multi-label relational data can be sig-
nificantly improved if each relational instance can be
tagged with a set of multiple labels automatically. This
setting is also known as multi-label classification where
each instance can be associated with multiple categories
(As shown in Figure 2(b), x; denotes the i-th instance,
{Y7} is the set of labels assigned to ;). It has been
shown useful in many real-world applications such as
text categorization [16, 23] and bioinformatics [6].



Formally, a multi-label collective classification prob-
lem corresponds to predicting the label sets of a group of
related instances simultaneously in the label set space,
i.e. the power set of all labels (As shown in Figure 2(c),
x; denotes the i-th instance, {Y;} is the set of labels as-
signed to x; and instances directly linked by an edge are
related). Collective classification is particularly chal-
lenging in multi-label settings. The reason is that, in
the single-label settings, conventional collective classifi-
cation methods can classify a group of related instances
simultaneously by considering the dependencies among
related instances for one label concept. But in multi-
label settings, each instance can have multiple label con-
cepts within its label set, and the dependencies among
related instances with multiple labels are more complex.
A group of label sets for related instances are required
to be predicted simultaneously.

Despite its value and significance, the multi-label
collective classification problem has not been studied in
this context so far. If we consider collective classification
and multi-label learning as a whole, the major research
challenges on multi-label collective classification can be
summarized as follows:

Relational Data: One fundamental problem in
multi-label collective classification lies in the complex
dependencies among the related instances. Conven-
tional multi-label classification approaches assume, ex-
plicitly or implicitly, that instances are unrelated and
the label sets of the testing instances are predicted in-
dependently [6, 28, 5]. However in the context of rela-
tional data, the label sets of related instances are not
independent, which should be predicted simultaneously.

Multiple Labels: Another fundamental problem
in multi-label collective classification lies in the multiple
label concepts for each instance. Conventional collective
classification approaches focus on single-labeled settings
[19, 25, 15]. The learning strategy strictly follows
the assumption that each instance has only one label.
However, in many real-world applications, one instance
can usually be assigned with multiple labels, which
are not independent from each other. The complex
dependencies among different labels should also be
exploited in order to effectively predict a group of label
sets simultaneously for the related instances.

In this paper, we study the problem of multi-label
collective classification and propose a mnovel solution,
called IcML (Iterative Classification of Multiple Labels),
to effectively assign a set of multiple labels to each in-
stance in the relational dataset. Different from con-
ventional collective classification methods, the proposed
IcML model can exploit three types of dependencies
within a multi-label relational dataset simultaneously:
(1) Intra-instance cross-label dependencies; (2) Inter-
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Figure 2: Comparison of the settings for different
classification problems. Each rectangle represents an
instance. x; denotes the attributes of the instance, and
Y; or Y* denotes a class label. Instances directly linked
by an edge are related.

instance single-label dependencies; (3) Inter-instance
cross-label dependencies. By explicitly exploiting these
dependencies, our ICML method can effectively assign a
group of label sets for related instances simultaneously
with an iterative inference procedure. Empirical stud-
ies on real-world tasks demonstrate that the proposed
multi-label collective classification approach can signifi-
cantly boost the multi-label classification performances
in multi-label relational datasets.

The rest of the paper is organized as follows. We
start by a brief review on related works of collective clas-
sification and multi-label learning. Then we introduce
the preliminary concepts, give the problem analysis in
Section 3 and present the ICML algorithm in Section 4.
Then Section 5 reports the experiment results. In Sec-
tion 6, we conclude the paper.



Table 1: Important Notations.

Symbol | Definition

V= {vy, - ,v,} | the set of nodes
€ ={ei}

N (i) or N (v, E)
X:{wl,"' 7wn}
y={Y1,---.Y,}
Y= (Ve v

the set of edges or links, e; € V x V

the index set of all nodes directly-linked to v; with edges in £

the given attribute values for each node

the set of variables for label sets of the nodes

the vector of variables for the label set of node v;, and Y;* € {0,1}

L and U | the index sets for training nodes and testing nodes, and LUU = {1,--- ,n}
Er, = {e;} | the set of edges or links between training nodes, e; € Vi, x Vy,
yi = (yl.---,y!) | the given label set for node v; (i € L), and Y;* = y¥
Y* = (Y{,---,Y}F) | the vector of variables for the k-th label
Yi{fk} = ( ,Yikfl, sz+1, the vector of all the Y” variables with indices {p|p # k}
yl{_k} = ( ,yf_l, yf“, ) the vector of all the y? values with indices {p|p # k}
Yj{;\]/c(}l) the vector of all the Y,” variables with indices {(p,j)|p # k,j € N(i)}

2 Related Work

To the best of our knowledge, this paper is the first
work addressing the multi-label collective classification
problem. Our work is related to both multi-label
classification techniques and collective classification on
relational data. We briefly discuss both of them.
Multi-label learning deals with the classification
problem where each instance can belong to multiple dif-
ferent classes simultaneously [26, 10, 12, 7, 3, 13]. The
goal of multi-label classification is to predict each in-
stance with a set of multiple labels in the space of all
label sets, i.e. the power set of all labels, which is ex-
ponential to the number of possible labels. In order
to effectively tackle this challenging task, conventional
multi-label learning approaches focus on exploiting the
correlations between different labels to improve the la-
bel set prediction performances. Based upon the type
of correlations among different labels exploited, conven-
tional multi-label learning methods can be roughly cat-
egorized into three categories: (1) binary approaches:
The first type of approaches assumes all different labels
are independent, which converts the multi-label problem
into multiple independent binary classification problems
(one for each label) [1]. ML-KNN|[29] is one of the binary
methods, which extends the kNN algorithm to a multi-
label version using mazimum a posteriori (MAP) prin-
ciple to determine the label set predictions. (2) pairwise
approaches: The second type of approaches exploit the
pairwise relation between different labels [9]. For exam-
ple, Elisseeff and Weston [6] presented a kernel method
RANK-SVM by minimizing a loss function named rank-
ing loss to properly rank label pairs. (3) High-order

approaches: The third type of approaches considers the
high-order correlations among different labels. Such ap-
proaches includes random subset ensemble approaches
[21, 22], Bayesian network based approach [28] and full-
order approaches [4, 5, 2.

Collective classification of single-label relational
data has also been investigated by many researchers.
The task is to predict the classes for a group of re-
lated instances simultaneously, rather than predicting
a class for each instance independently. In relational
datasets, the class label of one instance can be related
to the class labels (sometimes attributes) of the other
related instances. Conventional collective classification
approaches focus on exploiting the correlations among
the class labels of related instances to improve the
single-label classification performances. Roughly speak-
ing, existing collective classification approaches can be
categorized into two types based upon the different ap-
proximate inference strategies: (1) Local methods: The
first type of approaches employ a local classifier to iter-
atively classify each unlabeled instance using both at-
tributes of the instances and relational features derived
from the related instances. This type of approaches in-
volves an iterative process to update the labels and the
relational features of the related instances, e.g. itera-
tive convergence based approaches [19, 15] and Gibbs
sampling approaches [18]. Many local classifiers have
been used for local methods, e.g. logistic regression
[15], Naive Bayes [19], relational dependency network
[20], etc. (2) Global methods: The second type of ap-
proaches optimizes global objective functions on the en-
tire relational dataset, which also uses both attributes
and relational features for inference [25]. For a detailed




review of collective classification please refer to [24].

3 Problem Definition

Before presenting the collective classification model
for multi-label relational data, we first introduce the
notations that will be used throughout this paper.

Suppose we are given a multi-label relational
dataset represented as a graph G(V,&,X,Y,C), where
V = {v1, - ,v,} is a set of nodes, £ is a set of edges
(directed or undirected) in ¥V x V. On each node v; € V
we have a vector of attributes x; € R? in the d-
dimensional input space, and X = {x1, - - ,x,}. Let
C = {l1,l2,---,14} be the finite set of ¢ possible label
concepts. On each node v; € V, we also have a vector of
label variables Y; = (Y;,---,Y;?) € {0,1}7 indicating
the multiple labels assigned to node v;, Y = {Yi},.
Assume further that we are given a set of known values
Yy, for nodes in a training set V;, C V), where L denotes
the index set for training data. Yp = {y;|v; € Vp},
where y; = (v}, ,y!) € {0,1}7 is a binary vector in-
dicating the observed multiple labels assigned to node
Vi, 1.€. yf = 1 iff the label [ is in the labels set of
v, and Y = y¥ (vk € {1,---,q}). Then the task of
multi-label collective classification is to infer the values
of Y; € Yy for the remaining nodes in the testing set
Vo=V -V1).

As reviewed in Section 2, in multi-label classifica-
tion tasks, the inference problem is to estimate P()|X)
given a multi-label training set. Conventional multi-
label classification approaches usually require i.i.d. as-
sumptions, the inference for each instance is performed
independently:

PIX) x [[ P(Yilz:)

iceU

In multi-label classification problems, the simplest solu-
tion is to decompose the multi-label classification prob-
lem into multiple binary classification problems (one for
each label) by assuming different labels are independent:

q
P(Yi|z;) = H (VF|;)

However, in multi-label relational datasets, there
are complex dependencies not only among different
instances but also among different labels, which cannot
be ignored. In order to solve the multi-label collective
classification problem more effectively, in this paper, we
explicitly consider three types of dependencies in multi-
label relational datasets.

Intra-Instance Cross-Label Dependency

The first type of dependencies we consider is the cor-

relations of different labels within each instance’s la-
bel set, 7.e. in multi-label relational datasets, different
labels are actually not independent within each label
set. For example, in research collaboration networks,
the probability of a researcher in the area of data min-
ing should be high if we know he/she is already in the
area of database or machine learning; the researcher is
unlikely to be in the area of bioinformatics, if we know
he/she is already in the area of operating system.

Conventional multi-label learning approaches are
focused on exploiting this type of dependencies,
i.e. intra-instance cross-label dependencies, to im-
prove the classification performances, which model
P(YF|z;, Yg{fk}) (Shown in Figure 3(a)). Here Yg{fk}
denotes the vector of all the variables Y}’ with indices
{p:p# k}. Hence, we have

q
P(Yi|x;) = H P(YF2;, Y, )

Inter-Instance Single-Label Dependency

The second type of dependencies we consider is the
dependencies among related instances for each single-
label, i.e. in multi-label relational datasets, predictions
on related instances are actually not independent for
each label. For example, in research collaboration
networks, the probability of an author in the area of data
mining should be high if we know he/she has already
collaborated with some researchers in the area of data
mining.

Conventional collective classification approaches
are focused on exploiting this type of dependen-
cies, i.e. inter-instance single-label dependencies, to
improve the classification performances, which mod-
els P(YF|x;,Y, eN(z)) (Shown in Figure 3(b)). Here

nge iy denotes the vector containing all variable ij
(Vj € N(i)), and N (i) denotes the index set of related
instances to the i-th instance, i.e., the instances directly
linked to the ¢-th instance. Hence, by considering inter-

instance single-label dependencies alone, we will have

P(Y*X) = [ POFl2i, Yiin)
ieU

Inter-Instance Cross-Label Dependency

The third type of dependencies we consider is the
dependencies of different labels among related instances,
i.e. in multi-label relational datasets, different labels
on related instances are not independent. For example,
in research collaboration networks, the probability of
an author in the area of data mining should be high
if we know he/she has already collaborated with some
researchers in the area of database or machine learning;
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(a) Intra-Instance Cross-Label Dependency (b) Inter-Instance Single-Label Dependency (c) Inter-Instance Cross-Label Dependency

Figure 3: Three types dependencies in multi-label collective classification problem. Y;¥ with double circles denotes
the current label variable to be predicted. Each rectangle represents an instance. x; denotes the attribute values

of the instance.

the author is unlikely to be in the area of bioinformatics,
if we know he/she has already collaborated with some
researchers in the area of operating system.

To the best of our knowledge, this type of de-
pendencies, i.e. inter-instance cross-label dependency,
has neither been studied in multi-label learning be-
fore nor in collective classification research. It mod-
els P(YF|z,, ge/\/(}z)) as shown in Figure 3(c). Hence,
by considering inter-instance cross-label dependencies
alone, we will have

k
PX) o [ HP Yk|w1,YJ{€N(}1 )
ceU k=1

For multi-label collective classification problem, we
want to perform inference on the label sets of a group
of related instances simultaneously. Thus when all the
three types of dependencies in the multi-label relational
dataset are considered together, we have

q
—k —k
POIX) o T TT PO, Y8 Y ) YO0
€U k=1

q
— H H Yk|wi,1’;{_k},Y}eN(i))

€U k=1

4 The IcMmL Algorithm

In classifying multi-label relational datasets, the
most naive approach of approximating P(Y|X)
[Tico [Ti_; P(Y/*|x;) with the assumptions that the in-
stances and different labels are independent. However,

this approach cannot achieve satisfactory performances,
because the complex dependencies among related in-
stances and different labels are totally ignored. In this
section, we propose a simple and effective algorithm for
multi-label collective classification problem. We aim
to develop a model in which P(Y}*|z;,Y; VAN Yien())
can be estimated. However, in general the values of
Y:(i € U) on the testing data are not known during the
inference. In this section, we propose to approximate
Y:(i € U) with a simple iterative inference process.

Conventional collective classification based on local
models, e.g. ICA (Iterative Classification Algorithm)
[15], provide a simple but very effective method for
single-label collective classification problem. Inspired
by the success of the iterative inference methods, in
this paper, we propose a similar framework for multi-
label collective classification problem. This approach is
called TcML (Iterative Classification of Multiple Labels),
summarized in Figure 4.

The general idea is as follow: we model the joint
probability based on the following assumption: if in-
stance/node v; and v; are not directly connected, the
variables Y/* (k= 1,--- ,q) are conditional independent
from Y given the label sets of all v;’s neighbors. Hence
the local conditional probability on label k can be mod-
eled by a base learner with some extended relational
features built upon the predicted Y;’s (j € N(i)) and
the predicted Yi{_k}. And the joint probability can be
modeled based on these local conditional probabilities
by treating the instances as i.i.d. and different labels as
independent.



Input:
V: the set of nodes,
X': attribute vectors,
L: the index set for training data,

E: the set of edges/links.
Vi label sets for the training data.
U: the index set for testing data.

A: a base learner for local model, Maxz_It: maximum # of iteration.

Training:
- Learn the local models, for k =1---¢:

1. Construct an extended training set D¥ = {(mf, yz)} by converting each instance z; to ¥ as follow:

k __
o= (

x;, yi{_k} , SLRelFeature(v;, £r,, Y1, k), CLRelFeature (v, Er, Vi, k))

2. Let f¥ = A(D*) be the local model for the k-th label.

Bootstrap:
- Estimate the label sets, for i € U

1. Produce an estimated values Y; = (}A’Z—l, e ,f’iq) for Y; as follow:

V¥ = f¥((x;,0)) using attributes only, for k =1,--- ,q.

Iterative Inference:

- Repeat until convergence or #iteration> Max_It

1. Construct the extended testing instance by converting each instance x; to =¥ (i € U) as follow:

3

xh = (:ci, Yi{_k}, SLRelFeature(v;, £, Yy, U{Yi|i € U}, k), CLRelFeature(v;, £, Y, U{Y;|i € U}, k))

2. Update the estimated values Y; for Y; on each testing instance (i € U) as follow:

Yik = f’“(mf), fork=1,---,q.
Output:

Y, = (Yil, e ,Yiq): The label set for each test instance (i € U).

Figure 4: The IcML algorithm

In collective classification, one practical difficulty in
modeling the dependencies of related instances is that
each instance may be linked with different number of
instances as neighbors. In order to build a fixed num-
ber of relational features for each instance, we employs
aggregation functions to combine the predictions on the
label sets of related instances. In this paper, we use the
fraction of the related instances which have the label
l;, in their label sets as the relational feature for label
. Other aggregation functions, such as COUNT and
MODE aggregators [15], can also be used. In detail,
given an aggregation function, we can get two differ-
ent types of relational features from the label sets of
related instances as shown in Figure 5, i.e. “SLRelFea-
ture” for inter-instance single-label dependencies and
“CLRelFeature” for inter-instance cross-label depen-
dencies.

In the spirit of ICA framework [15, 17, 18], the
inference procedure of our ICML method has two parts:
bootstrap and iterative inference as shown in Figure 4.
(1) At the beginning of the inference procedure, the
label sets of all the unlabeled instances are unknown.

e xgr, = SLRelFeature (v, &, {Y:}, k)
1. Get related instances for node v in edge set &,
i.e. the related index set C = N (v, &)
2. xsr, = Aggregation ({Y*|i € C})

e o, = CLRelFeature (v, &,{Y;}, k)
1. Get related instances for node v in edge set &,
i.e. the related index set C = N (v;, &)

2. xcr, = Aggregation ({Y;{_k} li € C})

Figure 5: The functions for constructing inter-instance
single-label relational features (SLRelFeature) and
inter-instance cross-label relational features (CLRelFea-
ture)

The bootstrap part is used to assign an initial label set
for each instance using only attributes of each node.
In our current implementation, we simply initialize the
relational features for unlabeled instances with all zero



vectors. Other strategies for bootstrap part can also be
used in this framework, e.g. training another set of local
models on training data using attributes only, and then
we use these local models to predict the initial label
sets for unlabeled data. (2) In the iterative inference
part, we iteratively update the relational features based
on the predictions of local models and update the
prediction of local models using the newly updated
relational features on each instance. The iterative
process stops when the predictions of all local models are
stabilized or a maximum number of iteration has been
reached. In our current implementation, we update the
Y:’s for (r + 1)-th iteration ( say Yi(TH)) using the
predicted values in the r-th iteration (Y;-(T)) only. Other
strategies for iterative inference, such as sequentially
updating E(T+l) based on the latest predictions for
Y;(j € N(i)) on the related instances with a certain
order, can also be adopted into our framework.

5 Experiments

5.1 Data Collections In order to evaluate the
multi-label collective classification performances, we
tested our algorithm on three real-world multi-label col-
lective classification datasets (Summarized in Table 2).

DBLP-A Dataset: The first dataset studied in this
paper is extracted from the DBLP database'!. DBLP
provides bibliographic information on computer science
journals and proceedings. We extracted a DBLP co-
authorship network containing authors who have pub-
lished as least 2 papers during the years 2000-2010 as
the nodes of the network. We linked any two authors
who have collaborated with each other. On each node,
we extracted a bag-of-words representation of all the pa-
per titles published by the author to use as attributes
of the node. The words with frequencies less than 1 %
are remove from the vocabulary. Each author can have
multiple research topics of interests from the 6 research
areas given below. We select some most representative
conferences from each of the area. The selected confer-
ence list for each research area is as follows:

e Database: ICDE, VLDB, SIGMOD, PODS, EDBT
e Data Mining: KDD, ICDM, SDM, PKDD, PAKDD
e Artificial Intelligence: 1JCAI, AAAI

e Information Retrieval: SIGIR, ECIR

e Computer Vision: CVPR

e Machine Learning: ICML, ECML

Thttp://www.informatik.uni-trier.de/~ley/db/

Table 2: Summary of experimental datasets. “Ave.
Card” denotes the average cardinality of label sets
assigned to the nodes.

Data Sets
Characteristics DBLP-A DBLP-B IMDB
# Features 687 699 586
# Nodes 4638 4559 4081
# Links 16447 14407 41087
# Class 6 6 22
Ave. Card 1.70 1.24 2.13

If the author has published papers in any of these
conferences, we assume the author is interested in the
corresponding research areas. The task is to classify
each author with a set of multiple research areas of
interest.

DBLP-B Dataset: The second dataset studied is also
from DBLP database. We extract 6 different research
areas and the selected conferences as follows:

e Algorithms & Theory: STOC, FOCS, SODA, COLT

e Natural Language Processing: ACL, ANLP, COLING
e Bioinformatics: ISMB, RECOMB

e Networking: SIGCOMM, MOBICOM, INFOCOM

e Operating Systems: SOSP, OSDI

e Distributed & Parallel Computing: PODC, ICS

The same setups with DBLP-A are also used here to
build the collaboration network.

IMDB Dataset: The third dataset studied in this
paper is from the IMDB database?, which contains
information about directors, plots of a movie, etc. The
classification task is to predict the movie’s genre (the
movie type, e.g., horror, comedy). Each movie can be
assigned with a subset of multiple movie genres among
27 candidate genres in the IMDB dataset. We extracted
4081 movies released in the US between 2000 and 2010
and used a bag-of-word representation for the plots of
a movie as the attributes. The words with frequencies
less than 2 % are remove from the vocabulary. Movies
directed by the same director are linked together. After
removing the movies with less than 10 links, we have
a dataset with 4081 movies and 22 candidate genres.
Detailed properties of the dataset can be found in
Table 2.

Zhttp://www.imdb.com/interfaces



Table 3: Summary of compared methods.

Type of Dependencies
Method Classification Exploited Publication
Bsvm Binary Classification All Independent [1]
CC Multi-Label Classification @ Intra-Instance Cross-Label Dependency [22]
Ecc Multi-Label Classification @ Intra-Instance Cross-Label Dependency [22]
SL-I1cA Collective Classification @ Inter-Instance Single-Label Dependency [15]
ML-1CcA Multi-Label Collective Classification | @ Inter-Instance Single-Label Dependency | This paper
® Inter-Instance Cross-Label Dependency
@ Intra-Instance Cross-Label Dependency
IeMmL Multi-Label Collective Classification | @ Inter-Instance Single-Label Dependency | This paper
® Inter-Instance Cross-Label Dependency

5.2 Evaluation Metrics The performance evalua-
tion for multi-label classification requires more com-
plicated criteria than conventional single-label classi-
fication problems. Here we adopt some metrics used
in [9, 11, 14, 30, 5] to evaluate the classification per-
formance in a multi-label relational data. Assume we
have a multi-label relational dataset Dy containing n
multi-label instances (x;,Y;), where Y; € {0,1}? (i =
1,-+-,n). Let h(x;) denote a multi-label classifier’s pre-
dicted label set for ;. We have the following evaluation
criteria:

a) Hamming loss [5, 30]: Hamming loss is one of
the most frequently used criterion, which evaluates
the number of labels whose relevance is incorrectly
predicted.

1 no 1
HammingLoss(h, Dy) = " Zi:l EHh(:Bl) @Y1

where @ stands for the symmetric difference of
two sets (XOR operation), and || - |1 denotes the
[i1-norm. The smaller the value, the better the
performance.

b) Subset 0/1 Loss [5, 9]: evaluates strictly whether a
classifier’s label set prediction is exactly correct.

n

SubsetLoss(h, Dy) = %ZI (h(z;) #Y5)

i=1
where I(-) denotes the indicator function, i.e.
I(r) = 1 iff 7 holds, otherwise I(m) = 0. The

smaller the value, the better the performance.

¢) Micro F1 [9, 11, 14]: evaluates a classifier’s label
set prediction performance, which considers both

micro average of Precision and Recall on different
classes with equal importance.

2 x> [Ih(z:) N Yy
S ()|l + >0 1Yl

The larger the value, the better the performance.

micro-F1(h, Dy) =

d) Macro F1 [9]: evaluates a classifier’s label set
prediction performance, which considers average
the F1 measure on the predictions of different
labels.

(wl)Yk

q
2XZZ 1
macro-F1(h, Dy) = ZZ lhk fBz)—FZ lyk

where Y} is the k-th entry of Y; and h*(x;) is the

k-th entry of h(x;). The larger the value, the better
the performance.

All experiments are conducted on machines with
Intel Xeon™Quad-Core CPUs of 2.26 GHz and 24 GB
RAM.

5.3 Compared Methods In order to demonstrate
the effectiveness of our multi-label collective classifica-

tion approach, we test with following methods (summa-
rized in Table 3):

e Multi-Label Collective Classification (IcML): We
first test our proposed method, IcMmL (Iterative
Classification of Multiple Labels), for multi-label
collective classification. The proposed approach
can exploit all the three types of dependencies for
multi-label collective classification.

e Multi-label relational feature + ICA (ML-1CA):
This method is extended from the ICA (Iterative



Table 4: Results (meantstd (rank)) on the DBLP-A dataset. “|” indicates the smaller the value the better the
performance; “1” indicates the larger the value the better the performance.

Evaluation Criteria Ave.

Methods  Hamming Loss| Subset 0/1 Loss| micro-F1 1 macro-F1 1 Rank
IeMmL 0.162+0.006 (1) 0.600+0.017 (1) 0.657+0.012 (1) 0.634+0.012 (1) 1
Mr-1ca  0.174£0.007 (2) 0.6594+0.012 (2) 0.633+0.015 (2) 0.614+0.016 (2) 2
SL-ICA 0.3324+0.007 (4) 0.916+0.006 (3) 0.323+0.013 (4) 0.246+0.010 (5) 4
Ecc 0.379+0.005 (6) 0.9244+0.009 (4.5) 0.351+0.009 (3) 0.2914+0.012 (3) 4.125
CcC 0.374+0.006 (5) 0.924+0.005 (4.5) 0.310+0.006 (5) 0.262+0.003 (4) 4.625
Bsvm 0.327+£0.011 (3) 0.931+0.008 (6) 0.2584+0.010 (6) 0.190+£0.008 (6) 5.25

Table 5: Results (mean+std (rank)) on the DBLP-B dataset. “|” indicates the smaller the value the better the
performance; “1” indicates the larger the value the better the performance.

Evaluation Criteria Ave.

Methods ~ Hamming Loss| Subset 0/1 Loss] micro-F1 1 macro-F1 1 Rank
IemL 0.060+0.006 (1) 0.293+0.023 (1) 0.835+0.016 (1) 0.804+0.018 (1) 1
Mr-ica  0.071£0.003 (2) 0.354+0.009 (2) 0.802+0.012 (2) 0.769+£0.013 (2) 2
SL-1CcA 0.21240.004 (3) 0.9174£0.015 (5) 0.169+0.021 (5) 0.0844+0.009 (5) 4.5
Ecc 0.25740.017 (6) 0.78240.056 (4) 0.382+0.046 (3) 0.1694+0.017 (3) 4
CcC 0.248+0.018 (5) 0.742+0.049 (3) 0.342+0.048 (4) 0.143+0.014 (4) 4
Bsvwm 0.215+0.004 (4) 0.9494+0.006 (6) 0.117£0.015 (6) 0.067+0.014 (6) 5.5

Table 6: Results (mean+std (rank)) on the IMDB dataset. “]” indicates the smaller the value the better the
performance; “1” indicates the larger the value the better the performance.

Evaluation Criteria Ave.
Methods Hamming Loss] Subset 0/1 Loss] micro-F1 1 macro-F1 1 Rank
IeMmL 0.104+0.001  (2) 0.846+0.004 (1.5) 0.487+0.003 (1) 0.417+0.013 (1.5) 1.5
Mr-1cA  0.0944+0.003 (1) 0.846+0.012 (1.5) 0.483+0.013 (2) 0.417+0.015 (1.5) 1.5
SL-ICA 0.1094+0.002 (3.5) 0.892+0.006 (4) 0.4204+0.009 (4) 0.334£0.013 (4) 3.875
Ecc 0.1094+0.006 (3.5) 0.883+0.015 (3) 0.4554+0.010 (3) 0.360£0.012 (3) 3.125
ccC 0.1204+0.004 (6) 0.899+0.012 (6) 0.3884+0.016 (6) 0.297£0.016 (6) 6
Bsvm 0.111+0.002 (5) 0.8944+0.014 (5) 0.4174+0.006 (5) 0.325£0.011 (5) 5

Classification Algorithm) [15] by adding relational
features according to inter-instance-cross-label de-
pendencies for multi-label collective classification.
The only difference from ICML is that ML-ICA does
not consider the intra-instance-cross-label depen-
dencies.

Binary decomposition + ICA (SL-1cA): We com-
pare with another baseline using a binary decom-
position method similar to [1]: The multi-label re-
lational dataset is first divided into multiple single-

label relational datasets by one-vs-all binary de-
composition. For each binary classification task,
we use the conventional collective classification
method, ICA [15] to classify the relational data.

Multi-Label Classification (CC):We also compare
with another baseline: multi-label classification
method using classifier chain [22]. Intra-instance-
cross-label dependencies are explicitly consider in
this method.



Table 7: Performance of IcML with different iterations on the DBLP-A dataset. “|” indicates the smaller the

value the better the performance; “1” indicates the larger the value the better the performance.

Evaluation Criteria

Subset 0/1 Loss]

micro-F1 7

macro-F1 1

Tteration =~ Hamming Loss]
r=20 0.1807£0.0061
r=1 0.1654+0.0068
r=2 0.1623+0.0052
r=3 0.1616+0.0047
r=4 0.1615£0.0046
r=>5 0.1616+0.0047
r==6 0.1615£0.0047
r="17 0.1615+0.0047
r=38 0.1615+0.0047

0.6563+0.0184
0.6130£0.0172
0.6050+£0.0178
0.6037+0.0187
0.6033+£0.0197
0.6035£0.0198
0.6035£0.0198
0.6033+£0.0199
0.6033+£0.0199

0.5736£0.0190
0.6408+0.0190
0.6547£0.0142
0.6581£0.0124
0.6591£0.0117
0.6591£0.0118
0.6593£0.0118
0.6594£0.0117
0.6594+0.0117

0.5520£0.0260
0.6175£0.0246
0.6309+0.0203
0.6344+0.0193
0.6354+0.0185
0.6352+0.0186
0.6355+0.0186
0.6355+0.0186
0.6355+0.0186

Table 8: Results of IcML with different iterations on the DBLP-B dataset. “|” indicates the smaller the value

the better the performance; “1” indicates the larger the value the better the performance.

Evaluation Criteria

Subset 0/1 Loss]

micro-F1 1

macro-F1 1

Iteration =~ Hamming Loss]
r=0 0.0782+0.0040
r=1 0.0621+£0.0022
r=2 0.0605+0.0019
r=3 0.0603+0.0019
r=4 0.0603+0.0019

0.3694+0.0217
0.2999+0.0154
0.2933£0.0151
0.2931£0.0153
0.2931+£0.0153

0.7715£0.0150
0.8289£0.0077
0.8347£0.0067
0.8353£0.0067
0.8353£0.0067

0.7206£0.0154
0.7826£0.0135
0.7901£0.0131
0.7910£0.0123
0.7910+0.0123

e Multi-Label Classification + Ensemble (Ecc):
This baseline method is an ensemble of classifier
chains (CC) [22]. The ensemble is created by train-
ing different classifier chains using randomly sam-
pled subset of instances with random label orders.

e Binary SVM (BsvMm): This baseline[l] assumes
all the label prediction are independent. Binary
decomposition is used, on each binary classification
task (one for each label) SVM is used as the base
classifier. Then the predictions of SVMs for all
labels are combined to make to final prediction.

For fair comparison, LibSVM [2] with linear kernel
is used as the base classifier for all the compared
methods. The maximum number of iteration in the
methods IcML, ML-1CA and SL-ICA are all set as 10.

5.4 Performances of Multi-Label Collective
Classification We first study the effectiveness of the
proposed IcML method on multi-label collective clas-
sification. In our experiment, 5-fold cross validation is
performed on each experimental data set to evaluate the
multi-label collective classification performances. We

report the average and standard deviation results. Ta-
ble 4, Table 5 and Table 6 show the performances of
each of the six models on three datasets according to
the four evaluation criteria. Performance ranks of each
model on each of the evaluation criteria are also listed.

In all these datasets, we can observe that the base-
line BsvM, which treats all predictions as independent,
is outperformed by all the other methods which explic-
itly consider dependencies among predications from var-
ious aspects. In general, these results can support the
importance of exploiting the different types of depen-
dencies in multi-label relational datasets. For example,
SL-ICA can improve performances over BSVM by exploit-
ing the inter-instance single-label dependencies. Ecc
and CC can also outperform BsvM by exploiting the
intra-instance cross-label dependencies. Similar results
have also been reported both in collective classification
literatures and multi-label learning researches.

Then we observe that in all these datasets our
multi-label collective classification methods (both IcML
and ML-ICA) can outperform the multi-label classifi-
cation baselines which only exploit the intra-instance
cross-label dependencies and assume instances are inde-



pendent. These results support our first assumption
that in multi-label relational datasets, the label sets
of related instances are not independent. Exploiting
the complex dependencies among the related instances
(i.e. inter-instance single-label dependencies and inter-
instance cross-label dependencies) can boost the per-
formance of the multi-label classification in relational
datasets.

We further observe that our multi-label collective
classification methods (both IcML and ML-ICA) outper-
form the binary decomposition method based on single-
label collective classification (SL-1CA), which exploit the
dependencies among related instances while assuming
different labels are independent. These results support
our second assumption that in multi-label relational
datasets, the multiple labels are not independent with
complex dependencies among them. Exploiting the de-
pendencies among different labels (i.e. intra-instance
cross-label dependencies and inter-instance cross-label
dependencies) can further improve the multi-label clas-
sification performance in relational datasets.

Another observation we get from these results is
that in most of these datasets the proposed ICML
method outperforms the baseline ML-1CA, whose imple-
mentation is similar to IcML while ignoring the intra-
instance cross-label dependencies. This result can fur-
ther support the importance of exploiting intra-instance
cross-label dependencies in our ICML method because
the multiple labels within each label set are correlated .
The performance of ML-ICA is comparable with ICML on
the IMDB dataset, because ML-1CA can implicitly and
indirectly exploit intra-instance cross-label dependen-
cies by considering both inter-instance cross-label de-
pendencies and inter-instance single-label dependencies,
however, on all the other two datasets ICML can further
improve the performance over ML-ICA by explicitly ex-
ploiting the intra-instance cross-label dependencies.

5.5 Sensitivity of Iteration Number In our
model, an iterative procedure is used for label set infer-
ences. In Table 7 and Table 8, we show the convergence
rate of the proposed multi-label collective classification
approach (IcML) by testing the performances after each
iteration step. We observe that the iterative inference
of TcML converges after seven iterations in DBLP-A
dataset and four iterations in DBLP-B dataset. The
performance of the ICML converge very fast after the
first few iterations. From these results, we can see that
the performance of ICML is not sensitive to the parame-
ter Maxz_I't (maximum number of iterations) as long as
Max_It is assigned with a modest number. In our de-
fault setting, we use 10 as the default maximum number
of iterations.

6 Conclusion

In this paper, we studied the problem of multi-label col-
lective classification. Different from conventional col-
lective classification approaches in relational datasets
which assume each instance can only be assigned with
exactly one label among a finite set of candidate classes,
in multi-label collective classification problems, each in-
stance can have a subset of multiple labels among the
candidate label set. We propose a novel solution to
multi-label collective classification, called IcML (Iter-
ative Classification of Multiple Labels), to effectively
assign a set of multiple labels to each instance in the
relational dataset. The proposed ICML model is able
to exploit the dependencies among the label sets for a
group of related instances and the dependencies among
the multiple labels within each label set simultane-
ously. FEmpirical studies on real-world tasks demon-
strate that the proposed multi-label collective classifi-
cation approach can effectively boost classification per-
formances in multi-label relational datasets.
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