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ABSTRACT
Given an urban development plan and the historical traffic ob-
servations over the road network, the Conditional Urban Traffic
Estimation problem aims to estimate the resulting traffic status
prior to the deployment of the plan. This problem is of great impor-
tance to urban development and transportation management, yet
is very challenging because the plan would change the local travel
demands drastically and the new travel demand pattern might be
unprecedented in the historical data. To tackle these challenges, we
propose a novel Conditional Urban Traffic Generative Adversarial
Network (Curb-GAN), which provides traffic estimations in consec-
utive time slots based on different (unprecedented) travel demands,
thus enables urban planners to accurately evaluate urban plans
before deploying them. The proposed Curb-GAN adopts and ad-
vances the conditional GAN structure through a few novel ideas:
(1) dealing with various travel demands as the “conditions” and gen-
erating corresponding traffic estimations, (2) integrating dynamic
convolutional layers to capture the local spatial auto-correlations
along the underlying road networks, (3) employing self-attention
mechanism to capture the temporal dependencies of the traffic
across different time slots. Extensive experiments on two real-world
spatio-temporal datasets demonstrate that our Curb-GAN outper-
forms major baseline methods in estimation accuracy under various
conditions and can produce more meaningful estimations.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Com-
puting methodologies→ Neural networks.
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Figure 1: Example of traffic estimation and evaluation for
urban planning in Vaughan, Canada.
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1 INTRODUCTION
The fast urbanization in recent years has brought huge impacts
on urban traffic due to the growth of urban population, which
potentially increases the travel demands and the risk of worsen-
ing traffic conditions caused by the overload of the transportation
infrastructures. Therefore, urban traffic estimation has acted an
important role in the process of urban development, which can
provide insights for urban planning, traffic management and re-
source allocation, and help to improve the urban transportation
efficiency and living environment [39]. For example, as shown in
Figure 1, new sports village was planed to be built in Vaughan,
Canada by the local government in 2019, which would increase the
local travel demands to a great extent. Considering the potential
traffic pressure the construction would bring, the plan was finally
rejected [2]. Thus, urban traffic estimation is a critical step when
evaluating an urban development plan before its deployment.

Given an urban development plan (with new travel demands it
would produce), the underlying road network, and the historical
traffic observations, the problem of conditional urban traffic estima-
tion aims at evaluating the deployment plan by estimating traffic
status under the new travel demands in consecutive time slots.

The conditional urban traffic estimation problem is challenging
and difficult to solve due to the following reasons:
(1) Traffic status heavily depends on travel demands. Major changes
in travel demands due to emergencies or urban constructions (e.g., a
newly constructed commercial center or hospital) could drastically
change the traffic status [37]. In such a scenario, data-driven ap-
proaches may not effectively estimate the traffic after the demand
changes due to the lack of data.
(2) Spatial auto-correlations. The traffic status in nearby locations
tends to correlate with each other. Capturing such auto-correlations
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Figure 2: Insight of the framework.

is non-trivial. However, in a traffic network, the strength of traffic
spatial auto-correlations varies at different locations and highly
depends on the underlying road network structures.
(3) Temporal auto-correlations. Traffic status at the same location
also exhibits strong auto-correlations over time. The traffic status at
one location is highly correlated with its precedents. Such impacts
also bring big challenges when estimating the urban traffic.

To estimate the urban traffic, many estimation methods have
been proposed from different perspectives. The classic traffic estima-
tion methods have been extensively studied in the literature [3, 11,
32, 33]. These works train machine learning models using historical
traffic data trying to capture the correlations among the past traffic,
environmental features and the future traffic. However, when pre-
dicting the traffic impacts of drastic increased (or decreased) travel
demands, these models would fail because they cannot capture the
future traffic changes caused by the travel demand changes due to
the lack of training samples.

Moreover, in recent years, there have been a lot of urban traf-
fic prediction works using deep neural networks to model spatial
and temporal auto-correlations. [17] used stacked autoencoders to
predict the travel demands. [34] and [40] used ConvLSTM and Con-
vGRU to predict traffic accidents and crowd density. Others [5, 31]
used the combination of CNN and LSTM to predict the road traffic
speed and crowd flows. These models captured the temporal and
spatial dependencies simultaneously, however, they did not con-
sider the impact of conditions (e.g., travel demand changes), cannot
accurately capture the spatio-temporal auto-correlations with vari-
ous travel demands, and thus fail to provide long-term predictions
without any prior knowledge. A more recent work [37] proposed a
TrafficGAN model to solve the traffic estimation problem. However,
TrafficGAN ignores the temporal auto-correlations of traffic status
and can only make snapshot estimations.

To tackle the aforementioned challenges and solve the condi-
tional urban traffic estimation problem, in this paper, we propose a
novel Conditional Urban Traffic Generative Adversarial Network
(Curb-GAN), which can provide effective traffic estimations in con-
secutive time slots based on different travel demands. Figure 2
shows the solution framework, where the proposed Curb-GAN
utilizes conditional GAN structure to control the generated traffic
based on various travel demands, and the well-trained generator
is used to estimate future traffic. Curb-GAN features a few novel
designs, including using dynamic convolutional layers to capture
the spatial auto-correlations along the road networks, and applying

Table 1: Notations

Notations Descriptions
i, j Locations(coordinates in a grid world)
S = {si j } Grid cells
R = {Ri j } All target regions
Ns = ℓ

2 ∈ N Number of grid cells in a region
Nt ∈ N Number of time slots within a day
τin ∈ N Number of days of historical traffic observations
DR = {dRt } Travel demand sequence of one day in R

MR = {MR
t } Traffic distribution sequence of one day in R

AR = {AR
t } Traffic correlation matrix sequence in R

CR = {CR
t } Traffic condition sequence of one day in R

self-attention mechanism to capture the traffic temporal depen-
dencies across different time slots. Our main contributions are
summarized as follows:
• We model the conditional traffic estimation problem as a traffic
data generation problem, and propose a novel deep generative
model Curb-GAN, which can generate future traffic estimations
in consecutive time slots based on different travel demands in
any region of a city. (See Sec 3.)

• Building blocks containing dynamic convolutional layers and
self-attention mechanism are designed to capture the shared
patterns across spatio-temporal regions of how traffic status
evolves according to time changes, travel demand changes and
underlying road network structures. (See Sec 3.3.)

• We conduct extensive experiments on two real-world spatio-
temporal datasets (taxi inflow and traffic speed) to evaluate our
proposed Curb-GAN. The experiment results verify that Curb-
GAN can significantly improve the urban traffic estimation per-
formance and outperform all existing baseline methods on both
datasets. (See Sec 4.) We made our code and unique dataset avail-
able to contribute to the research community [1].

2 PRELIMINARIES
In this section, we first introduce the preliminaries used in this
paper and then formalize the conditional urban traffic estimation
problem.

2.1 Notations and Definitions
We list the notations that will be used throughout the paper in
Table. 1.
Definition 1 (Grid cells).We split the city into I × J grid cells with
equal side-length in latitude and longitude, denoted as S = {si j },
where 1 ≤ i ≤ I , 1 ≤ j ≤ J .
Definition 2 (Target region). A target region R is a square geo-
graphic region in the city, formed by Ns = ℓ × ℓ grid cells. The
whole city can be split into overlapping regions R = {Ri j }, where
Ri j = ⟨si j , ℓ⟩ is uniquely defined by an anchor grid cell si j on its
top-left corner and a number ℓ of grid cells on the side1.
Definition 3 (Travel demand). The travel demand of an area
captures the total number of departures in a period of time. Thus,
we denote the travel demand of a grid cell s in time slot t as dst ∈ N.
Moreover, the travel demands of a target region R within a day is
denoted as a sequence DR = {dR1 , . . . ,d

R
Nt

} ∈ NNt , where dRt is

1Note that target regions can also be defined as rectangles rather than squares. For
simplicity, we use square shape of target regions in this work.



Figure 3: Overview of Curb-GAN.
the sum of travel demands in all grid cells within R in time slot t ,
i.e., dRt =

∑
s ∈R d

s
t ∈ N.

Definition 4 (Traffic status and traffic distribution). Traffic
status indicates the quality of traffic, which can be measured by
traffic speed, traffic inflow/outflow, traffic volume, etc. We denote
ms
t as the average traffic status of grid cell s in time slot t . The

traffic distributions of a target region R within a day is denoted as
a tensorMR = {MR

1 , . . . ,M
R
Nt

} ∈ RNt×ℓ×ℓ , where we denote the
ℓ × ℓ matrixMR

t as the traffic distribution in R in time slot t , each
entry ofMR

t isms
t , where s ∈ R.

Definition 5 (Traffic correlationmatrix). The traffic correlation
matrices of a target region R within a day is denoted as a tensor
AR = {AR

1 , . . . ,A
R
Nt

} ∈ RNt×Ns×Ns , where AR
t is a traffic corre-

lation matrix of size Ns × Ns in region R in time slot t [37], AR
t is

non-negative and row-normalized.
Traffic correlations capture the inherent traffic dependencies

between a grid cell pair (i.e., auto-correlations). We use Pearson
correlation coefficient of each pair of grid cells to quantify their
corresponding traffic correlations. Note here we assume that traffic
status at different locations are either positively correlated or inde-
pendent. Negative correlations, though theoretically possible, are
not considered in this paper. The reasons and details are shown in
Appendix A.

2.2 Problem Definition
A city area is partitioned into regions R, given τin × ∥R∥ samples
of D andM, for one specific target region R, we aim to estimate
the traffic distributions M̂R = {M̂R

1 , . . . ,
ˆMR
Nt

} in consecutive time
slots based on a given expected travel demand sequence D̂R =

{
ˆdR1 , . . . ,

ˆdRNt
}.

3 METHODOLOGIES
To solve the conditional urban traffic estimation problem, we are
inspired by the conditional GAN [18] model, since our traffic estima-
tion problem is similar to conditional image sequences generation
problem, where the travel demand can be treated as a condition,
the traffic distribution of a region in one time slot can be treated
as an“image” and the traffic status of each grid can be viewed as a

“pixel” value. Thus, the conditional GAN (cGAN) structure could
be potentially used to solve the conditional traffic estimation prob-
lem. However, the unique challenges (2) and (3) of our problem
mentioned in Sec 1 prevent the state-of-the-art cGAN models from
solving it, since simple cGAN model cannot capture the spatial and
temporal auto-correlations of traffic very well. Hence, we propose
a novel generative model – Curb-GAN which can more accurately
capture the spatial auto-correlations and temporal dependencies of
traffic, control the generation results with desired travel demands,
and generate realistic traffic estimations in consecutive time slots.

In this section, we introduce the architecture of Curb-GAN for
traffic estimation problem. Following the conditional GAN struc-
ture, Curb-GAN consists of a generator G and a discriminator D,
and both the generator and discriminator apply dynamic convolu-
tional layers [37] and self-attention mechanism [26] to deal with
the spatial and temporal auto-correlations of traffic.

3.1 Dynamic Convolutional Layer (DyConv)
In urban areas, the strength of traffic spatial auto-correlations is
often heterogeneous, which mostly relies on the locations and
the complex underlying road structures. Based on the First Law
of Geography [24], nearby locations and closely connected roads
often have stronger traffic spatial auto-correlations. Hence, we
apply dynamic convolutional layers in both G and D, which can
better capture the diverse footprints of spatial auto-correlations of
traffic status.

Figure 4: Propagation rule of DyConv.

The input of the dynamic convolutional layer includes: (1) a
traffic status matrixHR of size Ns ×dstatus (dstatus: number of traffic
status measures, if traffic status is represented by only one measure,
e.g., traffic speed, thendstatus = 1) and (2) a traffic correlation matrix
AR .



Figure 5: Filter comparisons of standard Conv and DyConv.

The layer-wise propagation rule of DyConv is presented in Eq. 1
and the output of DyConv is a new traffic status matrix:

HR
i = f

(
HR
i−1,A

R
)
= σ

(
ARHR

i−1Wi

)
, (1)

whereHR
i is the output traffic status matrix of region R in i-th layer,

Wi is the weight matrix and σ is an activation function. The rule is
illustrated in Figure 4.

The traffic correlation matrix AR in DyConv can also be viewed
as a “filter”, similar to the filter in a standard convolutional layer
(Conv), which is applied to images and has fixed size and regular
shape. The “filter” in DyConv created byAR is applied to the traffic
status matrix HR which has irregular shape and size. As shown in
Figure 5, the filter of standard Conv would cover some grids having
no roads or very low traffic correlations and thus cannot capture the
roads accurately, but the “filter” created by AR in DyConv exactly
captures the road structures since AR can control the shape and
size of the “filter” to make it only cover the grid cells which have
very strong traffic correlations.
3.2 Self-Attention Mechanism (SA)
After applying the dynamic convolutional layer to capture the spa-
tial auto-correlations of urban traffic, we are seeking a way to
capture the temporal dependencies. Self-attention mechanism [26],
which is mostly used in Seq2Seq models, achieves excellent perfor-
mance when dealing with language modeling and machine transla-
tion problems. Self-attention mechanism handles sequential data
including text, audios and videos, and learn the temporal depen-
dencies from it. Compared with LSTM and GRU, self-attention
mechanism is computed in parallel, and thus requires less time to
train and results in higher training quality.

The input and output of a self-attention layer are two sequences
of vectors. In the self-attention process, each vector in the input
sequence is linearly transformed into three vectors called query,
key and value. Each output vector is computed as a weighted sum
of all the values, where the weights are the outputs of a softmax
layer, and the inputs of the softmax layer are scaled dot products of
the corresponding query with all keys. Since a sequence of queries,
keys and values can be combined in matrices formQ , K andV and
computed in parallel, the self-attention function is calculated in
Eq. 2.

Attention(Q,K,V ) = softmax
(
QKT /

√
dk

)
V (2)

where dk is the dimension of K .
In this work, we apply multi-head self-attention mechanism,

where the queries, keys and values are linearly transformed h times
and thus we get h different attentions, which are then concatenated
together and go through a linear transformation to get the final

Figure 6: Example of 2 heads attention.

values, the multi-head self-attention is calculated with Eq. 3.

MultiHead(Q,K,V ) = Concat (head1, . . . , headh
)
WO

where headi = Attention
(
QW

Q
i ,KW

K
i ,VW

V
i

) (3)

whereWQ
i ∈ Rdmodel ×dk ,W K

i ∈ Rdmodel ×dk ,WV
i ∈ Rdmodel ×dv

andWO ∈ Rhdv×dmodel are parameter matrices,dv is the dimension
of V and dmodel is the dimension of the outputs. Figure 6 shows an
example of 2-head attention.

3.3 Curb-GAN Architecture
To provide daily consecutive traffic estimations conditioned on ex-
pected travel demands, we employ the conditional GAN (cGAN)
structure to make it possible to control the estimations by different
travel demands. Figure 3 shows the overall structure of Curb-GAN.
Curb-GAN contains a generator G and a discriminator D. The gen-
erator G aims to generate sequences of traffic distributions in con-
secutive time slots which are similar to the real ones so that the
discriminatorD cannot distinguish the generated traffic distribution
sequences from the real sequences well.

The generator G aims to generate daily sequential traffic dis-
tributions with respect to the daily travel demand sequence DR

in a specific region. The input of the generator G includes three
parts, i) a noise tensor Z = {z1, . . . , zNt } ∈ RNt×Ns×Ns , ran-
domly sampled from Gaussian distribution, ii) a condition tensor
CR = {CR

1 , . . . ,C
R
Nt

} ∈ RNt×Ns×4, where CR
t is a matrix of size

Ns × 4 defining the region location of R, travel demand and current
time slot, i.e.,CR

t = Repeat(Concat(i, j,dRt , t)), where (i, j,dRt , t) are
concatenated to one vector and repeat for Ns times to form the
matrixCR

t , and iii) a traffic correlation matrix tensor AR . In gen-
erator, CR is concatenated intoZ and it builds the mapping from
distribution pZ(Z) to a traffic distribution G(CR ,AR ,Z).

The discriminator D tries to rise the output score if the input
is real traffic distribution sequence, and lower down the score if
the input is generated traffic distribution sequence. D takes three
inputs, i) a one day traffic distribution tensorMR , ii) a condition
tensor CR and iii) a traffic correlationmatrix tensorAR .D outputs a
scalar indicating whether the input traffic distribution tensorMR is
real and whether the input MR and CR are matched. The detailed
structures of generator G and discriminator D are illustrated in
Figure 3(a) and Figure 3(b).

As a result, the loss function of Curb-GAN is in the form of Eq. 4,
modeled as a Min-Max game with an additional L2 penalty. (See



more details in [18].)

min
G

max
D

V (D,G) = EM∼pdata (M)[logD(C,A,M)]

+ EZ∼pZ (Z)[log(1 − D(G(C,A,Z)))]. (4)

Inside the generator and discriminator, we apply dynamic convo-
lutional layer and self-attention mechanism, which help to capture
the spatio-temporal auto-correlations. As shown in Figure 3, there
are two building blocks inside G and D – Building Block 1 and
Building Block 2, both can be stacked for several times.
Building Block 1 is composed of DyConvs followed by batch
normalization and activation functions like ReLU or LeakyReLU.
In Building Block 1, the number of DyConvs is equal to Nt , and all
DyConvs can share the parameters.
Building Block 2 is composed of a multi-head self-attention layer
and a feed-forward network composed of two fully-connected lay-
ers activated by ReLU. Both the self-attention layer and the feed-
forward network are followed by an addition operation and a layer
normalization [26].

Algorithm 1 Curb-GAN Training Process
Input: Training iteration k , a training set P, initialized G and D.
Output: Well trained G and D.
1: In each training iteration iter :
2: repeat
3: Sample P0 from training set P.
4: Sample B from Gaussian distribution.
5: Generate Õ with G.
6: Sample Ô from training setZ.
7: Update D with Eq. 6 to maximize Eq. 5.
8: Update G with Eq. 8 to maximize Eq. 7.
9: until iter > k .

3.4 Curb-GAN Training
During the training process, we apply BPTT (backpropagation
through time). The detailed training process is shown in Algo-
rithm 1, where the discriminatorD and the generatorG are updated
in line 3 – 7 and line 8, respectively. Denote the training set which
contains n samples as P = {(C1,A1,M1), · · · , (Cn,An,Mn )},
Denote P0 = {(C1,A1,M1), · · · , (Cm,Am,Mm )} (line 3) as a
subset of P containing m samples, where m < n. Denote B =

{Z1,Z2, · · · ,Zm } as a set ofm noise tensors sampled from Gauss-
ian distribution (line 4), Õ = {M̃1, · · · , M̃m } as a set of m traf-
fic distribution tensors generated with G (line 5), where M̃i =

G(Ci ,Ai ,Zi ). Denote Ô = {M̂1, M̂2, · · · , M̂m } as a set ofm traf-
fic distribution tensors sampled from the training set P (line 6),
each M̂i is mismatched with (Ci ,Ai ). In each training iteration,
we update the parameters θD of D with Eq. 5 and Eq. 6, where ηD
is the learning rate.

ṼD =
1
m

m∑
i=1

(
log(1 − D(Ci ,Ai , M̃i ))

+ logD(Ci ,Ai ,Mi ) + log(1 − D(Ci ,Ai , M̂i ))
)
, (5)

θD = θD + ηD▽ṼθD (θD ). (6)

Then, we update the parameters θG ofG with Eq.7 and Eq.8, where
ηG is the learning rate.

ṼG =
1
m

m∑
i=1

logD(G(Ci ,Ai ,Zi )), (7)

θG = θG + ηG▽ṼθG (θG ). (8)

After training, we use the well-trained generator to generate the
estimated traffic distributions in consecutive time slots of target
regions with expected travel demand sequences.

4 EVALUATION
In this section, We first describe the two real-world spatio-temporal
datasets and then introduce baselines and the evaluation metrics.
Finally, we present and analyze our experiment results in detail.

4.1 Dataset Descriptions
We validate the effectiveness of our model on two real-world data
sets: (1) traffic speed and (2) taxi inflow.
• Traffic speed. The hourly average traffic speed is extracted from
GPS records collected from taxis in Shenzhen, China from Jul
1st to Dec 31st, 2016. In this estimation task, we first partition
Shenzhen City into 40 × 50 grid cells. The traffic status in each
grid cell is measured by average traffic speed, and there are 4416
time slots (i.e., one hour) over 6 months. Then for each time
slot (i.e., one hour), we obtain traffic distributions and travel
demands of training regions, and use the daily traffic distribution
sequences and travel demand sequences of training regions to
train the model. The details of training region selection are in 4.4
and Appendix A. The goal of this task is to estimate the traffic
distribution sequence M̂R of a test region R conditioned on the
expected travel demand sequence D̂R .

• Taxi inflow. The taxi inflow data is collected from taxis in Shen-
zhen, China from July 1st to Dec. 31st, 2016. In each time slot (i.e.,
one hour) of each day, the taxi inflow is the count of all taxis that
stayed or arrived at each grid cell. In this estimation task, the
entire Shenzhen City is partitioned into 40×50 grid cells, and the
traffic status in each grid cell is measured by taxi inflow. With
the knowledge ofD andM for all training regions, for a specific
test region R, given the expected travel demand sequence D̂R ,
we aim at estimating the traffic distribution sequence M̂R .

4.2 Baselines
• Spatial smoothing with neighboring regions [8]. In each
time slot, this method uses the traffic distributions of 9 closest
regions under the same travel demand to compute a mean dis-
tribution as the resulting estimation. Note we only use available
data in the training set to estimate and we will ignore a neigh-
boring region if its data is not available for this travel demand.

• ConvLSTM [19, 21]. This method uses conditional GAN struc-
ture, and applies ConvLSTM inside both generator and discrimi-
nator to provide sequential estimated traffic distributions.

• FC-SA [19, 26]. This method uses conditional GAN structure,
and applies stacked fully-connected layers and self-attention
layers inside both generator and discriminator.



Table 2: Performance results on traffic speed estimation and taxi inflow estimation.
Methods Smoothing ConvLSTM FC-SA CNN-SA FC-LSTM CNN-LSTM DyConv-LSTM Curb-GAN

Traffic speed RMSE 16.37 18.90 44.30 38.06 128.03 30.15 22.72 13.34
MAPE 0.94 1.07 3.44 3.02 3.70 2.27 1.26 0.76

Taxi inflow RMSE 37.71 38.73 40.30 38.54 41.11 38.20 37.33 36.29
MAPE 27.56 10.43 79.75 52.25 36.92 62.02 16.88 5.88

Figure 7: Comparisons of selected models in consecutive time slots in traffic speed estimation.

Figure 8: Comparisons of selected models in consecutive time slots in taxi inflow estimation.

• CNN-SA [19, 30]. This method uses conditional GAN struc-
ture and applies stacked standard convolutional layers and self-
attention layers inside generator and discriminator.

• FC-LSTM [19, 38]. This method uses conditional GAN structure
and applies stacked fully-connected layers and multi-layer LSTM
inside generator and discriminator.

• CNN-LSTM [6, 19]. This method uses conditional GAN struc-
ture and applies stacked standard convolutional layers and multi-
layer LSTM inside generator and discriminator.

• DyConv-LSTM [19, 37]. This method uses conditional GAN
structure and applies stacked dynamic convolutional layers and
multi-layer LSTM inside generator and discriminator.

4.3 Evaluation Metrics
We use mean absolute percentage error (MAPE) and rooted mean
square error (RMSE) to evaluate Curb-GAN:

MAPE = 1
NsNt

Ns∑
s=1

Nt∑
t=1

��ys ,t − ŷs ,t
�� /ys ,t (9)

RMSE =

√√√
1

NsNt

Ns∑
s=1

Nt∑
t=1

(
ys ,t − ŷs ,t

)2 (10)

where ys ,t is the ground-truth traffic status observed in the s-th
grid cell and t-th time slot, and ŷs ,t is the corresponding prediction.

4.4 Experimental Settings
The whole Shenzhen city is divided to 40 × 50 grid cells with a
side-length l1 = 0.0084◦ in latitude and l2 = 0.0126◦ in longitude.
Each region is of size 10 × 10, i.e., ℓ = 10 and Ns = 100. Thus,
there are in total 1, 271 possible target regions with size 10 × 10.
However, it is unnecessary and too costly to use data from all 1, 271
regions to train the model. Instead, we select 63 regions covering
entire Shenzhen city as target regions for training, extract their
traffic distributions and travel demands over time, and use the rest
of regions for testing. The more information of training region
selection is in Appendix A.

The daily time interval for the data used to train all the models
are from 7:00am to 7:00pm, where each hour is a time slot and we
have 12 time slots per day, i.e., Nt = 12. Thus, the sequence lengths
of DR , D̂R ,MR , M̂R and AR are 12.

To extract the travel demands, in each time slot of a day, i.e.,
one hour, we count the total taxi pickup events within each grid
cell and each region. In general, it is hard to obtain the total travel
demand in a region including all transport modes. In this work, we
use the demand for taxis to represent the regional travel demand,
where many studies have shown that taxi demands represent the
total demands quite well [9, 20].

The structure of Curb-GAN is as follows: the Building Block 1 is
stacked for 4 times, the Building Block 2 is staked 3 times, where



Figure 9: Traffic status visualizations.
2-head self-attention is used. The initial input feature of building
block 1 in generator is 104, the hidden features of stacked building
block 1 are {64,32,16,1}. The initial input feature of building block 1
in discriminator is 5, the hidden features of stacked building block
1 are {16,32,64,1}. Curb-GAN is trained using Adam optimizer [14]
with β1 = 0.5 and β2 = 0.999, and a learning rate of 2 × 10−4 for
1500 epochs with a batch size of 64.

4.5 Results
4.5.1 Average performance results. The performances of the com-
peting baselines and Curb-GAN are shown in Table 2. For each
dataset, we randomly pick one test region to calculate RMSE and
MAPE with Nt = 12,Ns = 100, and similar results are got for
other test regions. For deep models, we train and test each of them
five times, the statistics are calculated using average generation
results conditioned by the same travel demand sequence as the
ground-truth.

In traffic speed estimation, Curb-GAN outperforms all the base-
lines on both metrics. Specifically, Curb-GAN shows 52.77% and
55.38% improvements on RMSE and MAPE beyond all baselines
on average, respectively. Compared with FC-LSTM, FC-SA, CNN-
LSTM and CNN-SA, Curb-GAN achieves significant improvements,
because it explicitly models the relationships between different
locations using DyConv. Smoothing seems to have low RMSE by
simply averaging the traffic distributions of nearby regions, but
it produces higher MAPE, which indicates bad spatio-temporal
auto-correlations learned since the traffic of nearby regions cannot
provide accurate estimates for the target region.

DyConv-LSTM simultaneously captures the spatial and temporal
auto-correlations and it uses LSTM to handle the temporal depen-
dencies, but its estimations are not as good as Curb-GAN due to the
limitations of model expressiveness and non-parallel computations
of LSTM and thus lead to more training time and lower generation
quality.

In taxi inflow estimation, similar to traffic speed estimation,
Curb-GAN significantly outperforms the baseline models by 6.48%
and 77.63% improvements on average on RMSE and MAPE, respec-
tively. The most competitive models are smoothing, ConvLSTM
and DyConv-LSTM, but Curb-GAN can better learns the spatio-
temporal patterns and thus obtain lower errors.

4.5.2 Performance in consecutive time slots. Since Curb-GAN is
able to provide traffic estimations in consecutive time slots, to

illustrate the effectiveness of Curb-GAN in traffic estimations in
each time slot, we conduct experiments on Curb-GAN and four
most competitive baseline models including ConvLSTM, DyConv-
LSTM, CNN-SA and smoothing. The statistics are calculated in
each time slot with Nt = 1,Ns = 100 using the average generation
results of a specific test region based on the same travel demand
sequence as the ground-truth.

In traffic speed estimation, as shown in Figure 7(a) and Fig-
ure 7(b), the Curb-GAN has the best performance in each hour
from 7:00 to 19:00. In taxi inflow estimation, we got similar re-
sults in Figure 8(a) and Figure 8(b) that Curb-GAN outperforms
the other four competitive baselines in both metrics from 7:00 to
19:00. These evaluations prove that the Curb-GAN can better cap-
ture the spatio-temporal auto-correlations and thus has a stable
and excellent ability in estimating urban traffic in consecutive time
slots.

4.5.3 Traffic estimation visualizations. To clearly validate the esti-
mated traffic by Curb-GAN against the ground-truth, we visualize
the traffic distributions over the road networks. As shown in Fig-
ure 9, we pick two time slots of a day, i.e., rush hour (7:00-8:00)
and non-rush hour (15:00-16:00), and visualize the traffic status on
the road map of a specific region in Shenzhen. The ground-truth
visualizations are compared with the estimation visualizations of
Curb-GAN and the other four competitive baseline models. Due to
page limit, we only use traffic speed to measure the traffic status
but we got similar results using taxi inflow.

In Figure 9, there are obvious traffic changes around the resi-
dential area and subway station (marked) between rush and non-
rush hours in ground-truth visualizations. However, Smoothing,
CNN-SA and DyConv-LSTM did not capture such spatio-temporal
auto-correlations very well, as there is no traffic changes between
the two hours, and the traffic status along the roads is different
from the ground-truth. Even though smoothing and DyConv-LSTM
got very competitive statistic results in Table 2 and Figure 7, they
still cannot produce good estimations due to bad spatio-temporal
patterns learned. ConvLSTM shows some traffic changes between
two hours, but it produces worse spatial patterns compared with
Curb-GAN. By contrast, our Curb-GAN generates reasonable traffic
changes around residential area and subway station between rush
and non-rush hours, which suggests that Curb-GAN can capture
the spatial and temporal auto-correlations of traffic very well and
produce more reliable traffic estimations then all baselines.



Table 3: Variants of Curb-GAN evaluations.
Methods 2DyConv+1SA 3DyConv+1SA 4DyConv+1SA 4DyConv+2SA 4DyConv+3SA

Traffic speed RMSE 219.10 19.43 17.73 20.67 13.34
MAPE 5.44 1.09 0.91 0.95 0.76

Taxi inflow RMSE 62.05 59.98 41.66 37.03 36.29
MAPE 138.21 33.15 28.16 16.85 5.88

Figure 10: Impact of parameters in traffic speed estimation.
4.5.4 Evaluations on Curb-GAN parameters. Curb-GAN has many
settings including the number of stacked layers of Building Block 2
and Building Block2, initial dimension of noise, the number of heads
in self-attention mechanism, etc. To investigate the robustness of
Curb-GAN, we present the results under various parameter settings
in both tasks.

Since the number of stacked Building Block 1 (DyConv layers)
and Building Block 2 (self-attention layers) inside generator and
discriminator could influence the final estimation results, we evalu-
ate the Curb-GAN with 2,3,4 stacked layers of Building Block 1 and
1,2,3 stacked layers of Building Block 2. The evaluations results are
shown in Table 3. In both tasks, the more layers of Building Block
2 (self-attention) we use, the lower error we get in both metrics.
It is because more layers of self-attention can better learned the
temporal dependencies of traffic. When the number of DyConv
layers increases from 2 to 4, the errors significantly decrease, which
indicates too few of DyConv layers are not enough to capture the
spatial auto-correlations, the structure of Curb-GAN should be
adjusted to get the best estimation results for different datasets.

Next we test the impact of dimension of noise (See Figure 10(a)
and Figure 11(a)), where the errors are both high when the noise
dimension is too low or too high. With low dimension of noise, the
fewer number of weights in DyConv is not enough to learn the
spatial patterns, and it would need more time and training epochs
to get good estimation results if the noise dimension is too high.

Then we test the impact of the head numbers in self-attention
layers, Figure 10(b) and Figure 11(b) show the model performance
with different number of heads and the same training epochs. The
model with 2-head self-attention has better performance than the
model with 1-head does, but with the number of heads increas-
ing, the errors keep increasing. This indicates that more heads
would record different temporal dependencies including local and
long-term dependencies, but too many heads would weaken the
capability of capturing the effective information and lead to higher
errors.

We also change the number of hidden features in DyConv. The
results of two tasks are shown in Figure 10(c) and Figure 11(c). Since
we apply four layers of DyConv (four stacked Building Block 1)

Figure 11: Impact of parameters in taxi inflow estimation.

in traffic speed estimation, here we change the number of hidden
feature of the first DyConv layer. We find that the model perfor-
mance is sensitive to the hidden features, more hidden features in
DyConv lead to better performance, which indicates more weights
in DyConv can better capture the spatial patterns of traffic.

5 RELATEDWORK
Urban Traffic Prediction. Previous works focused on urban traf-
fic prediction from different perspectives. There are some previously
published works focusing on predicting an individual’s movement
based on their location history such as [7, 22]. They mainly forecast
millions of individuals’ mobility trajectories rather than the aggre-
gated traffic conditions in a region. Some other researchers aimed
to predict travel speed and traffic volume on roads. For example,
[35] proposed a hybrid framework that integrated both state-of-
art machine learning techniques and well-established traffic flow
theory to estimate citywide traffic volume. In [16] and [25], the
authors developed models to predict the road traffic volume and
crowd flows in subway stations. These work assumed unchanged
urban settings and predict the traffic volume over time and loca-
tions. Traditionally in civil engineering, agent-based simulation
models [13] or physical models [23] were used to estimate the pro-
jected traffic volume after constructions. However, these models
rely heavily on model choice and parameter settings, which are
not transferable across urban regions. In our work, we focus on
studying the spatio-temporal auto-correlations of traffic and predict
regional traffic based on different local travel demands.
Deep Learning for Spatio-Temporal Prediction. Deep learn-
ing methods have inspired many spatio-temporal applications. For
example, CNNs were widely used in grid data modeling like city-
wide flow prediction [36] and taxi demand inference [29], since it
can capture the spatial auto-correlations and thus provide good
traffic estimations. Besides, RNNs [4] were also widely applied in
spatio-temporal prediction problems due to their success in se-
quence learning. For example, [28] and [27] applied RNN to tackle
video prediction and travel time estimation problem, respectively.
In addition, [40] used ConvLSTM to to predict crowd density which



captured temporal and spatial dependencies simultaneously and
[31] used the combination of CNN and LSTM to predict the road
traffic speed. Yuan et al. [34] proposed to use a variation of the
ConvLSTM model to predict traffic accidents. Huang et al. [12]
employed a deep attention model to predict crimes. Li et al. [15]
employed a reinforcement learning method to dynamically reposi-
tion shared bikes. However, all these above studies are only trying
to capture the spatial and temporal auto-correlations of traffic, they
did not consider the impact of travel demand changes. In our study,
we study the impact of travel demand changes and spatio-temporal
auto-correlations simultaneously.

6 CONCLUSION
This paper proposed and investigated a novel conditional traffic
estimation problem, namely, estimating the impact of travel de-
mands on regional traffic status. Solving this problem is crucial to
potentially avoid traffic issues caused by sudden greatly improved
travel demands, e.g., emergencies and new urban constructions. In
this paper, a novel generative model - Curb-GAN was proposed to
estimate urban traffic based on various travel demands. Curb-GAN
is capable of modeling both spatial and temporal auto-correlations
and producing a sequence of estimated traffic in consecutive time
slots. Using real-world spatio-temporal traffic data, we evaluated
our Curb-GAN on two datasets. The well-trained generator is capa-
ble of generating realistic traffic distribution sequences in a region
given a not-yet-observed travel demand sequence, and our proposed
Curb-GAN significantly outperforms all baseline models.
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A APPENDIX FOR REPRODUCIBILITY
To support the reproducibility of the results in this paper, we have
released our codes and data2. Here, we detail the datasets and the
baseline settings.

A.1 Detailed Settings of Traffic Speed
Estimation

Preprocessing of Dataset
As shown in Figure 12(a), we apply map gridding method in Shen-
zhen, China. The whole city is partitioned into 40 × 50 grid cells,
the target region size is set to ℓ = 10. Thus, there are in total 1, 271
possible target regions. As shown in Figure 12(b), the upper-left
red box is the one region in Shenzhen City, we can slide it for p
grid cells in horizontal direction, 0 ≤ p ≤ 40, and/or for q grid cells
in vertical direction to get new regions, 0 ≤ q ≤ 30,p,q ∈ N. How-
ever, since it is too costly to use all the 1, 271 regions as training
data. Instead, we set p = q = 5 and get 63 regions covering entire
Shenzhen city as training regions to train the models.

Figure 12: Map gridding and regions illustration

In traffic speed dataset, we extract the hourly average traffic
speed for each grid cell in Shenzhen, China from Jul 1st to Dec 31st,
2016. The detailed information of the dataset is shown in Table 4.

Table 4: Dataset descriptions.
Dataset Traffic speed Taxi inflow

Timespan 07/01/2016-12/31/2016 07/01/2016-12/31/2016
Time slot 1 hour 1 hour
City size 40 × 50 40 × 50

Region size 10 × 10 10 × 10

Quantifying Traffic Correlation
Traffic correlation captures the inherent traffic dependencies be-
tween two grid cells. We calculate the Pearson correlation coeffi-
cient using time series traffic data of two grid cells over the entire
study timespan to quantify their traffic correlation. As shown in
Eq. 11, Pearson correlation coefficient [10] denoted with a measures
the linear correlation between X and Y :

aXY =

∑n
i=1

(
Xi − X

) (
Yi − Y

)
√∑n

i=1

(
Xi − X

)2√∑n
i=1

(
Yi − Y

)2 , (11)

whereX and Y are the mean ofX and Y and a ∈ [−1, 1]. For an ℓ×ℓ
region R, its traffic correlation matrix AR is a symmetric ℓ2 × ℓ2
matrix.
2https://github.com/Curb-GAN/Curb-GAN

In a road network, the traffic correlations are mostly positive,
since if a location has traffic congestion, the nearby locations are
very likely to have heavy traffic, such dependencies represent posi-
tive traffic correlations. However, the traffic correlations between
distant locations are usually low, because they do not have direct
road connections and the traffic flows will not influence each other.
To remove the negative correlations and the low correlations, a
threshold λ ∈ (0, 1) is used, we set ai j = 0, if ai j < λ. In this paper,
λ = 0.47.

Then we perform row normalization using Eq. 12, so that the
traffic correlation matrix AR will not affect the scale of the traffic
status matrix in Eq. 1.

ai j =
ai j∑ℓ2
j=1 ai j

. (12)

Settings of Baselines
• ConvLSTM. This method uses conditional GAN structure, in-
side generator and discriminator, both ConvLSTM and a feed-
forward network are followed by an addition operation and a
layer normalization, the output of generator goes through a lin-
ear transformation and activated by Tanh function, the output
of discriminator is activated by Sigmoid. The input channel of
ConvLSTM is 4, the hidden channel is 32, the kernel size is 3 × 3.
This model is trained using Adam optimizer with β1 = 0.5 and
β2 = 0.999, and a learning rate of 2 × 10−4 for 400 epochs with a
batch size of 64.

• FC-SA. This method uses conditional GAN structure and applies
4 stacked fully-connected layers and 3 self-attention layers in-
side generator and discriminator. Each fully-connected layer is
followed by batch normalization, the self-attention layer is fol-
lowed by layer normalization. This model is trained using Adam
optimizer with β1 = 0.5 and β2 = 0.999, and a learning rate of
2 × 10−6 for 400 epochs with a batch size of 32.

• CNN-SA. This method uses conditional GAN structure and ap-
plies 4 stacked standard convolutional layers and 3 self-attention
layers inside generator and discriminator. Each convolutional
layer is followed by batch normalization, the self-attention layer
is followed by layer normalization. The input channel of convo-
lutional layer is 4, the output channel is 1, the kernel size is 3× 3.
This model is trained using Adam optimizer with β1 = 0.5 and
β2 = 0.999, and a learning rate of 2 × 10−4 for 400 epochs with a
batch size of 64.

• FC-LSTM. This method uses conditional GAN structure and
applies 4 stacked fully-connected layers and a 2-layer LSTM
inside generator and discriminator. Each fully-connected layer is
followed by batch normalization, the LSTM is followed by layer
normalization. This model is trained using Adam optimizer with
β1 = 0.5 and β2 = 0.999, and a learning rate of 2 × 10−4 for 400
epochs with a batch size of 4.

• CNN-LSTM. This method uses conditional GAN structure and
applies 4 stacked standard convolutional layers and a 2-layer
LSTM inside generator and discriminator. Each convolutional
layer is followed by batch normalization, the LSTM is followed
by layer normalization. The input channel of convolutional layer
is 4, the output channel is 1, the kernel size is 3× 3. This model is
trained using Adam optimizer with β1 = 0.5 and β2 = 0.999, and
a learning rate of 2 × 10−4 for 400 epochs with a batch size of 64.



• DyConv-LSTM. This method uses conditional GAN structure
and applies 4 stacked dynamic convolutional layers followed
by batch normalization and a 2-layer LSTM followed by layer
normalization inside generator and discriminator. The output of
generator goes through a linear transformation and activated
by Tanh function, the output of discriminator is activated by
Sigmoid. The initial input feature of DyConv in generator is
14. The initial input feature of discriminator is 5. This model is
trained using Adam optimizer with β1 = 0.5 and β2 = 0.999, and
a learning rate of 2 × 10−4 for 1000 epochs with a batch size of
16.

A.2 Detailed Settings of Taxi Inflow Estimation
Preprocessing of Dataset
The region selection and traffic correlation extraction are the same
as traffic speed estimation. The detailed description of the dataset
is shown in Table 4.

Settings of Baselines
• ConvLSTM. This method uses conditional GAN structure, in-
side generator and discriminator, both ConvLSTM and a feed-
forward network are followed by an addition operation and a
layer normalization, the output of generator goes through a lin-
ear transformation and activated by Tanh function, the output
of discriminator is activated by Sigmoid. The input channel of
ConvLSTM is 4, the hidden channel is 32, the kernel size is 3 × 3.
This model is trained using Adam optimizer with β1 = 0.5 and
β2 = 0.999, and a learning rate of 2 × 10−4 for 400 epochs with a
batch size of 64.

• FC-SA. This method uses conditional GAN structure and applies
4 stacked fully-connected layers and 3 self-attention layers inside
generator and discriminator. Each fully-connected layer is fol-
lowed by batch normalization, the self-attention layer is followed
by layer normalization. The input dimension of fully-connected
layer in generator is 104 and the input dimension in discriminator
is 5. This model is trained using Adam optimizer with β1 = 0.5

and β2 = 0.999, and a learning rate of 2 × 10−6 for 400 epochs
with a batch size of 8.

• CNN-SA. This method uses conditional GAN structure and ap-
plies 4 stacked standard convolutional layers and 3 self-attention
layers inside generator and discriminator. Each convolutional
layer is followed by batch normalization, the self-attention layer
is followed by layer normalization. The input channel of convo-
lutional layer is 4, the output channel is 1, the kernel size is 3× 3.
This model is trained using Adam optimizer with β1 = 0.5 and
β2 = 0.999, and a learning rate of 2 × 10−4 for 400 epochs with a
batch size of 64.

• FC-LSTM. This method uses conditional GAN structure and
applies 4 stacked fully-connected layers and a 2-layer LSTM
inside generator and discriminator. Each fully-connected layer is
followed by batch normalization, the LSTM is followed by layer
normalization. This model is trained using Adam optimizer with
β1 = 0.5 and β2 = 0.999, and a learning rate of 2 × 10−4 for 400
epochs with a batch size of 4.

• CNN-LSTM. This method uses conditional GAN structure and
applies 4 stacked standard convolutional layers and a 2-layer
LSTM inside generator and discriminator. Each convolutional
layer is followed by batch normalization, the LSTM is followed
by layer normalization. The input channel of convolutional layer
is 4, the output channel is 1, the kernel size is 3× 3. This model is
trained using Adam optimizer with β1 = 0.5 and β2 = 0.999, and
a learning rate of 2 × 10−4 for 400 epochs with a batch size of 64.

• DyConv-LSTM. This method uses conditional GAN structure
and applies 4 stacked dynamic convolutional layers followed
by batch normalization and a 2-layer LSTM followed by layer
normalization inside generator and discriminator. The output of
generator goes through a linear transformation and activated
by Tanh function, the output of discriminator is activated by
Sigmoid. The initial input feature of DyConv in generator is
14. The initial input feature of discriminator is 5. This model is
trained using Adam optimizer with β1 = 0.5 and β2 = 0.999, and
a learning rate of 2 × 10−4 for 1000 epochs with a batch size of
16.
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