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ABSTRACT
Collective inference has attracted much attention in the last
decade, where the response variables within a group of in-
stances are correlated and should be inferred collectively,
instead of independently. Previous works on collective infer-
ence mainly focus on exploiting the autocorrelation among
instances in a static network during the inference process.
There are also approaches on time series prediction, which
mainly exploit the autocorrelation within an instance at dif-
ferent time points during the inference process. However, in
many real-world applications, the response variables of re-
lated instances can co-evolve over time and their evolution
are not following a static correlation across time, but are
following an internal life cycle. In this paper, we study the
problem of collective evolution inference, where the goal is
to predict the values of the response variables for a group
of related instances at the end of their life cycles. This
problem is very important in various applications, e.g., pre-
dicting fund-raising results in crowd-funding and predict-
ing gene-expression levels in bioinformatics. This problem
is also highly challenging because different instances in the
network can co-evolve over time and they can be at differ-
ent stages of their life cycles and thus have different evolv-
ing patterns. Moreover, the instances in collective evolution
inference problems are usually connected through heteroge-
neous information networks, which involve complex relation-
ships among the instances interconnected by multiple types
of links. We propose an approach, called NetCycle, by in-
corporating information from both the correlation among
related instances and their life cycles. We compared our
approach with existing methods of collective inference and
time series analysis on two real-world networks. The re-
sults demonstrate that our proposed approach can improve
the inference performance by considering the autocorrela-
tion through networks and the life cycles of the instances.
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1. INTRODUCTION
Conventional supervised learning usually assumes that the

instances are independent and identically distributed (i.i.d.),
where the response variables of different instances are in-
ferred independently. In many relational data, however, the
response variables of different instances can be related. For
example, in financial networks, the loan listings borrowed by
the same individual are more likely to share similar default
risks than those borrowed by different people. An effective
model for these relational data should be able to capture
the dependencies among different instances during the in-
ference process. Motivated by this challenge, collective in-
ference problem [18, 15] has attracted much attention in
recent years, where the response variables within a group of
instances are correlated and should be inferred collectively.

In the literature, collective inference for both classifica-
tion and regression problems, has been extensively stud-
ied [18, 15, 1, 10]. Previous works on collective inference
mainly focus on exploiting the autocorrelation among in-
stances in a static network during the inference process, as
shown in Figure 2(a). However, in many real-world appli-
cations, the response variables of the instances can evolve
over time, and the network can involve multiple kinds of
relationships among the instances. For example, in P2P
Lending networks, such as Prosper.com and Kickstarter.com,
the financial activities of different loan listings can evolve
over their entire fund-raising periods. These loan listings
are interacting with different borrowers and lenders [14], as
shown in Figure 1(a). In PPI networks, the expression-level
of different genes can also change over time, which is reg-
ulated by their complex chemical reactions with different
molecules [19].

There are many approaches on time series prediction, which
mainly exploit the autocorrelation within an instance at dif-
ferent time points during the inference process [5, 12, 9].



(a) Prosper P2P Lending Network
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(b) progress of fund-raising across time
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(c) progress of fund-raising within a life cycle

Figure 1: An example of collective evolution inference problem in P2P Lending networks. (a) an example of
heterogeneous information network in P2P lending. (b) fund-raising progress of the loan listings across time.
(c) fund-raising progress for the loan listings across fund-raising periods, i.e., their life cycles.

However, in many real-world applications, the response vari-
ables of related instances can co-evolve over time and their
evolution are not following a static correlation across time,
but are following an internal life cycle. For example, in the
fund-raising networks, evolution of the fund-raising activi-
ties in a loan listing usually follows its fund-raising period
(life cycle), which includes a predefined starting time and
ending time. The activities of the loan listing may show dif-
ferent patterns at different stages of its life cycle, as shown
in Figure 1(c). This problem can be called as evolution in-
ference, where each instance can evolve within its life cycle,
and the response variable is associated with a series of val-
ues. As shown in Figure 2(b), the goal of evolution inference
is to estimate yeii .

In this paper, we study the problem of collective evolu-
tion inference, where the goal is to predict the values of
the response variables for a group of related instances at
the end of their life cycles. This problem is very impor-
tant in various applications, e.g., predicting fund-raising re-
sults in crowd-funding and predicting gene-expression levels
in bioinformatics. Formally, collective evolution inference
problem corresponds to predicting the response variables
of a group of related instances at the end of their life cy-
cles. This problem is highly challenging because different
instances in the network can co-evolve over time and they
can be at different stages of their life cycles and thus have
different evolving patterns. We summarize the unique chal-
lenges of collective evolution inference as follow:
• Collective Evolution with Life Cycles: One major
challenge of the collective evolution inference problem lies
in the fact that the response variables values (response val-
ues for short) of the instances are evolving with a certain
life cycle. Fortunately, the instances which have strong cor-
relations are more likely to share similar evolution pattern
during their life cycles. To better understand the collective
evolution with life cycles, we give an example in Figures 1(b)
and 1(c), which describes the evolution of the fund-raising
ratio of the loan listings in P2P lending networks. As shown
in Figure 1(b), the fund-raising ratio is evolving during fund-
raising period. It is easy to think that the fund-raising ratio
at time T depends on previous status at time T−1. However,
the learning strategy of collective inference strictly follows
the assumption that the response values of each instance
will not change, which ignores the temporal information of
the instances. Moreover, if we aligned the evolution of each
loan listing by fund-raising period, as shown in Figure 1(c),
the loan listings 1 and 3 which created by same borrower
are more likely to obey similar fund-raising tendency during
their life cycles. But collective inference usually focus on

(a) Collective Inference (b) Evolution Inference

(c) Collective Evolution Inference

Figure 2: Comparison of different inference prob-
lems. Yi denotes the response variable of the i-th
instance. yki denotes the value of response variable
Yi at time point k. Here si is the starting time point
of the life cycle in the i-th instance, and ei is the
ending time of its life cycle. The instances directly
linked by an dotted line are related.

a “snapshot” of dynamic networks, while the snapshot cap-
tures the network at a certain time point. In a certain time
point, the instances may be at different stages of their life
cycles, which increased the difficulty of collective evolution
inference.
• Heterogeneous Dependencies: Another challenge of
collective evolution inference is the complex correlations among
instances in HINs. It turns out strongly connected instances
are more likely to show up with similar growth/ evolving
patterns in the same stages of their life cycles. The fun-
damental problem is how to effectively use the information
provided by these multiple types of nodes and links, as well
as the evolving tendency of each node. Collective inference
approaches usually focus on homogeneous networks[1, 17]
with one type of links and nodes. It is necessary to study
how to exploit the complex dependencies among nodes’ evo-
lution in their life cycles in HINs, in order to predict the
related instances more effectively.

In this paper, we first present collective evolution infer-
ence problem, which extends collective inference problem
into dynamic networks, with the concept of life cycle. Then,
we design a novel algorithm to solve the collective evolution
inference problem, called NetCycle, which collectively infer
the final values of a collection of nodes in a dynamic hetero-
geneous network by modeling the evolution tendency of the
response variable. Finally, the experiments on real-world
networks show the effectiveness of our algorithm. To our



best knowledge, this kind of problem has not been studied
in the literature until recently.

2. PROBLEM DEFINITION
In this section, we first introduce some related concepts

and notations, then define the problem.

2.1 Evolution Inference
Suppose we have a data set D = {(xi,yi, si, ei)}ni=1 with

n instances. Here xi ∈ Rd corresponds to the feature vec-
tor of the i-th instance in the d-dimensional space. yi =(
ysii , y

si+1
i , · · · , yeii

)
corresponds to a time series of values

for the response variable Yi of the i-th instance. Yi is evolv-
ing between time si (starting time) and ei (ending time).
∀t ∈ [si, ei], y

t
i corresponds to the value of Yi at time t. Here

the response variable Yi is only evolving during the period
of time [si, ei], i.e., the life cycle of the i-th instance. si
is the starting time of the life cycle for Yi, when the re-
sponse variable Yi starts to evolve. ei is the ending time
of the life cycle for Yi, after which the response variable
Yi stops changing. Each instance in D can have a differ-
ent life cycle, with different starting time and ending time.
X = {x1, · · · ,xn} represents the set of features for all in-
stances in D. Y = {y1, · · · ,yn} represents the set of target
values for all instances in D.

The indices of the instances in D are then divided into a
training set L ⊂ {1, · · · , n} and a test set U ⊂ {1, · · · , n},
where L ∪ U = {1, · · · , n} and L ∩ U = ∅. ∀i ∈ L, the
evolution of the response variable Yi, i.e. yi, is fully ob-
served. While in the test set U , ∀i ∈ U , the evolution of
the response variable Yi is only partially observed with dif-
ferent fractions. Suppose the life cycle of each instance has
M stages, based upon the fraction of the evolution process
being observed, the test set U can be divided into M dis-
joint groups, i.e., U =

⋃M
k=1 Uk. For ∀i ∈ Uk, the evolution

process of Yi is only observed on the first k stages of its

life cycle, i.e., yki =
(
ysii , · · · , y

si+k−1
i

)
. ∀1 ≤ k ≤ M and

∀i ∈ Uk, the task of evolution inference on the i-th in-
stance is to predict the value of Yi at the end of its life cycle,
i.e., yeii , based upon xi and yki . We use YeU = {yeii |∀i ∈ U}
to denote all the target values for prediction. We then use
YoU = {yki | ∀1 ≤ k ≤ M, i ∈ Uk} to denote all the observed
evolution process in the test set and YL = {yi | ∀i ∈ L}
to denote all the evolution process in the training set. The
overall goal of evolution inference is to estimate the proba-
bility distribute Pr (YeU |X ,YL,YoU ).

In this work, we simplify the problem by assuming the
lengths of all life cycles are equal, i.e., each instance has the
same length in its life cycle. This assumption can be easily
extended to unequal-length cases by normalization.

2.2 Collective Evolution Inference
To estimate Pr (YeU |X ,YL,YoU ), conventional inference ap-

proaches usually require i.i.d. assumptions, and ignore de-
pendency between different instances. The inference for each
instance is performed independently:

Pr (YeU |X ,YL,YoU ) ∝
∏
i∈U

Pr(yeii |xi)

Link-based Dependency
Collective inference approaches assume that the instances

which directly linked in the network are related [1]. Given a

(a) collective inference

(b) collective evolution inference
Figure 3: The basic idea of collective inference and
collective evolution inference. Here k represents the
k-th stage of life cycle. Uk is the instances set which
stay in k-th stage of life cycle at current time T . The
single circle means observed values of the response
variable, and the double circle means predict values
of the response variable.

network G = (V, E), V is the set of instances (nodes), V = D.
E ⊆ V × V is the set of links between instances. We use T
to represent the current time. ∀vi ∈ V, collective inference
methods can model Pr(yeii |Y

T
Ni
,xi). Here YTNi

contains all

variables Yj(∀vj ∈ Ni) at time T , i.e., YTNi
= {yTj |vj ∈ Ni},

and Ni denotes the instances set which correlated with vi,
Ni ⊆ V. Hence, by considering the correlation between
instances, we will have:

Pr (YeU |X ,YL,YoU ) ∝
∏
vi∈U

Pr(yeii |Y
T
Ni
,xi) (1)

Collective Evolution with Life Cycles
Note that different instances may be at different stages of

their life cycles at time T , so it is inappropriate to infer yeii
with YTNi

, because the evolution tendency varies at differ-
ent stages, which may mislead the inference result. Corre-
lated instances share similar evolving pattern during their
life cycles rather than during the absolute time. Suppose
vi ∈ Uk, one better way is to replace YTNi

by using YkNi
.

Here YkNi
= {ysj+kj |vj ∈ Ni}, contains all response values

Yj(∀vj ∈ Ni) at k-th stage of their life cycle.
Moreover, with the assumption that the network is static,

collective inference methods usually ignore the evolution in-
formation. In order to utilize this information, one way is
to iteratively predict the target value ysi+ki based upon pre-

vious value ysi+k−1
i , until si + k = ei, e.g., autoregressive

model of order one (AR(1) for short). These methods can

model Pr(ysi+ki |ysi+k−1
i ,xi), but the results usually have

large errors when the prediction horizon is long, because it
only utilizes previous evolution process. Note that the in-
stances with strong correlations may obey similar evolution
tendency during their life cycles, as shown in Figure 1(c).
By considering both link-based dependencies and evolution
information of instances, the idea of collective evolution in-
ference is to model Pr(ysi+ki |ysi+k−1

i ,YkNi
,xi), which utilizes

the correlations between instances during their life cycles to
reduce prediction errors. The task of collective evolution



Table 1: Important Notations.

Symbol Definition
G = (V, E) A heterogeneous network.

V = {V1, · · · ,VK} The set of nodes, involving K types of nodes. The target node type is V1.
D = {(xi,yi, si, ei)}ni=1 The data set with n instances, D = V1.

X = {x1, · · · ,xn} The set of inherent attributes for all instances in D.
Y = {y1, · · · ,yn} The set of response variables for all instances in D.

si and ei The starting time and ending time of life cycle of i-th instance in D.

yi =
(
ysii , y

si+1
i , · · · , yeii

)
A time series of values for the response variable Yi of the i-th instance in D.

T and t T denotes current time, while t can indicates any time.
L and U The training set and testing set, where L

⋃
U = D and L

⋂
U = ∅.

U =
⋃M
k=1 Uk For ∀i ∈ Uk, the evolution process of Yi is only observed on the first k stages of its life cycle at

time T , i.e., yki =
(
ysii , · · · , y

si+k−1
i

)
.

Ni The instances set which correlated with node v1i. Ni ⊆ V1.
S = {P1, · · · ,P|S|} The set of meta paths type. Each Pl denotes a composite relationship between instances in V1.

inference is to estimate:

Pr (YeU |X ,YL,YoU ) ∝
∏
vi∈U

Pr(yeii |y
ei−1
i ,YeiNi

,xi) (2)

ysi+ki =

{
F
(
ysi+k−1
i ,YkNi

,xi
)

T < si + k ≤ ei
ysi+ki si + k ≤ T

Here F denotes the models which estimate response variable
Yi at time si + k, e.g., AR(1).

Compared with collective inference, collective evolution
inference avoids inferring YeU simultaneously, by aligning the
life cycle of each instance into the same position. And it also
makes use of the evolution process during the life cycles of
instances. We use time T to indicate si and ei (∀vi ∈ V),
as shown in Figure 3, we describe the difference between
collective inference and collective evolution inference based
upon Eq. 1, 2. Note that ∀vi ∈ Uk, T = si + k − 1, and
∀vi ∈ L, T ≥ ei, i.e., yTi = yeii .
Heterogeneous Dependencies

In many real-world applications, the networks include mul-
tiple types of nodes and links, which are called heterogeneous
information networks [10].

Definition 1. Heterogeneous information network is a spe-
cial kind of information network, which can be represented
as a directed graph G = (V, E). V denotes the set of nodes,
includingK types of instances: V1 = {v11, · · · , v1n1}, · · · ,VK
= {vK1, · · · , vKnK}, where vji represents the ith instance of
type j. E ⊆ V × V denotes the links between the instances
in V, which involves multiple types of links.

For example, as shown in Figure 1(a), the P2P Lending
network includes multiple types of nodes, e.g., loan listing,
borrower, lender, group, which are connected through mul-
tiple types of links, e.g., created, bidding, friend, joined. In
this paper, we focus on studying the collective evolution in-
ference problem on one type of nodes, instead of on all of
them in HINs. The reason is different type of nodes have
different variables in HINs, so it’s unreasonable to assume
all types of nodes share the same set of response variables.

Without loss of generality, we define the first node type V1
as the target node type, i.e., V1 = D. By mining the linkage
structure of HINs, multiple types of dependencies among
instances can be extracted. In next section, we propose a
method to solve the collective evolution inference in HINs.
We summarized all notations in Table 1.

Figure 4: Examples of different types of Meta-path
between two loan listings in P2P Lending Network.

3. PROPOSED METHOD
In this section, we first introduce a concept named meta

path [11] in section 3.1, which is often used to extract com-
plex relationships among the instances in HINs. Then, we
discuss how to solve the collective evolution inference prob-
lem in HINs based on meta path in section 3.2, and propose
a simple and effective algorithm for meta path-based collec-
tive evolution inference in section 3.3. Finally, we discuss
how to predict the node evolution process during the life
cycle in section 3.4.

3.1 Meta Path
The meta path is defined as a sequence of relations in the

network schema. The instances in HINs are inter-connected
through multiple types of links. Each type of links from node
type Vi to node type Vj corresponds to a binary relation R,
where R(vip, vjq) holds if the object vip and vjq are linked
in R. For example, in Figure 1(a), the link type “bidding”
is a relation between lender nodes and loan listing nodes,
where R(vip, vjq) holds if the lender node vip has a link of
type “bidding” to the loan listing node vjq in the network.

We can write the link type as “lender
bidding−−−−−→ loan listing”.

A meta path P corresponds a type of path within the
network, containing a certain sequence of link types. For
instance, we give three types of meta path between loan list-

ings in Figure 4, e.g., a meta-path “loan listing
bidding−1

−−−−−−−→
lender

bidding−−−−−→ loan listing” denotes the composite relation-
ship between loan listing nodes, where the semantic mean-
ing of this meta-path is that the two loan listing nodes had
been invested by same lender nodes. Here the link type
“bidding−1” represents the inverted relation of “bidding”.

3.2 Meta path-based Collective Evolution In-
ference



Figure 5: Meta path-based collective evolution in-
ference in heterogeneous networks.

• YkNi
= PathRelFeature

(
v1i,Yk, S = {P1, · · · ,P|S|}

)
For each meta-path Pl ∈ S:

1. Get related instances for node v1i through meta path
Pl, i.e., the related index set C = Pl(i)

2. YkPl(i)
= Aggregation ({yj |v1j ∈ C})

Return [YkP1(i)
, · · · ,YkP|S|(i)]

T

Figure 6: The function of constructing relational fea-
tures(PathRelFeature).

In HINs, there are complex dependencies not only among
instances directly linked through links, but also among in-
stances indirectly linked through different meta paths. In or-
der to solve the collective evolution inference problem more
effectively, we explicitly consider different types of meta
path-based dependencies among instances.

Meta path-based dependencies refer to the dependencies
among instances that are inter-connected through a meta
path, e.g., the co-borrower relation between loan listings

can be represented as the meta-path “loan listing
created−1

−−−−−−−→
borrower

created−−−−−→ loan listing”. Most relationships studied
in network data can naturally be captured by different meta
paths. Given a set of meta paths S = {P1, · · · ,P|S|}, Pl(i)
denotes the nodes set where the nodes relate to node v1i
through the meta path Pl, Pl(i) = {v1j |(v1i, v1j) ∈ Pl}.
The meta path-based dependencies can be used as follows:

Pr (YeU |X ,YL,YoU ) ∝
∏
vi∈U

Pr(yeii |y
ei−1
i ,YeiP1(i)

, · · · ,YeiP|S|(i),xi)

(3)

ysi+ki =

{
F
(
ysi+k−1
i ,YkP1(i)

, · · · ,xi
)

T < si + k ≤ ei
ysi+ki si + k ≤ T

Here YkPl(i)
= {ysj+kj |vj ∈ Pl(i)}, denotes the response val-

ues set in k-th stage of life cycle, which the instances belong
to Pl(i). The basic idea of meta path-based collective evolu-
tion inference as shown in Figure 5. An aggregation function
(e.g., mean, count, etc.) is often used to extract relational
features from meta paths-based correlated variables set [11],
as shown in Figure 6.

3.3 NetCycle Algorithm
In this section, we propose an algorithm, called NetCycle,

to estimate Eq. 3. Inspired by the success of ICA frame-
work [1] in collective inference, we designed a similar infer-

ence procedure for our NetCycle method as shown in Fig-
ure 7. The algorithm includes the following steps:
Meta-path Construction: Given a HIN, we first extract
all non-redundant meta-paths for correlations of target in-
stances type separately. A meta-path Pl in S is non-redundant
if Pl cannot be reconstructed by combining any subset of the
meta-paths in S. We only extract short meta-paths with a
maximum path length p max. It has been shown in [21] that
long meta-paths are not quite useful in capturing the linkage
structure of HINs.
Segmentation Training: We construct M extended train-

ing sets ∀1 ≤ k ≤ M,Dk =
{

(x′
k
i , y

si+k
i )

}
by converting

each instance xi to x′
k
i using the functions in Figure 6,

and combining with previous value ysi+k−1
i . Here Yk =

{ysj+kj |v1j ∈ V1}, contains all response variables Yj(∀v1j ∈
V1) at k-th stage of their life cycle in Figure 6. We train
one segment model on each stage, by using the extended
training sets.
Collective Evolution Inference: Overall, it is an ex-
tension of iterative inference algorithm [1] for the inference
step. During the inference, we iteratively update the re-
sponse variables set predictions of the testing instances in
k-th stage of life cycle, for each v1i ∈

⋃k
j=1 Uj . We use the

predicted value yT−j+ki as one of input attribute in predict
the response values set in k + 1 stage, until k = M . In the
end, we will get YeU for the testing instances.

Suppose the complexity of base learner A is C, the time
complexity of learning the NetCycle model is O(pmax · V3

1 +
M · C). While the time complexity of constructing meta
paths is O(pmax · V3

1 ), which usually constructed through
matrix multiplication.

3.4 Extension: Node Evolution Process Pre-
diction

During the collective evolution inference process, for each
instance v1i in test set U , suppose v1i ∈ Uk, the NetCycle
algorithm can not only infer the target value yeii , but also
acquire the whole time series values of response variable Yi,

i.e.,
(
ysii , · · · , y

si+k
i , ysi+k+1

i , · · · , yeii
)

. It can help to dis-

cover the evolution tendency over the instances’ life cycle.
Further, the parameters weight learned by segment models
fk, can help to reflect the importance of each feature during
life cycle (including inherent attributes, previous value and
topology features). Greater weight means greater impact
on evolution, we can use it to find the major factor of node
evolution in different stages. For example, in P2P lending
network, recently work [2] validated that the fund raising
process is mainly influenced by the investment rate in early
stage, and mostly affected by social interactions (e.g., herd-
ing effect) in latter stage over fund-raising period.

4. EXPERIMENTS

4.1 Data Collection
In order to validate the collective evolution inference per-

formances, we apply our methodology to three real-world
HINs (Summarized in Table 2).
•Prosper Dataset: Our first two datasets studied in this
paper were extracted from Prosper P2P Lending platform1.

1https://www.prosper.com/



Input:
G : a heterogeneous information network, M : number of stages in a life cycle, p max: maximum meta-path length (default=4).
X : attribute vectors for all instances, A: a base learner for local model, MaxIt: maximum # of iteration (default=10)

Meta-path Construction:
- Construct the meta-path set S = {P1, · · · ,P|S|}:

Breadth search on schema graph of G, starting from V1 by adding short meta-path Pl that ends with V1 into S first:
1. If the length of meta-path Pl is greater than p max, exit the BFS;
2. If current meta-path Pl cannot be reconstructed by the paths in S, then add Pl into S; Otherwise, prune the current path from BFS.

Segment Training:
- For each stage k = 1, · · · ,M , learn the segment model fk:

1. Construct an extended training set Dk = {(x′ki , y
si+k

i )} by converting each instance xi to x′ki as follows:

x′ki =
(
xi, y

si+k−1

i ,PathRelFeature(v1i,Yk
L, S)

)
. Note that y

si−1

i = [ ]

2. Let fk = A(Dk) be the segment model trained on Dk.
Collective Evolution Inference:

- For each stage k = 1, · · · ,M :

Bootstrap: Estimate the response values sets in k-th stage, for each v1i ∈
⋃k

j=1 Uj , suppose v1i ∈ Uj , produce an estimated values

yT−j+k
i (i.e., y

si+k

i ) as: yT−j+k
i = fk

(
(xi, y

T−j+k−1
i , 0)

)
. Note that yT−j

i = [ ].

Iterative Inference:Repeat until convergence or #iteration > MaxIt

1. Construct the associate features x′i for each testing instance v1i ∈
⋃k

j=1 Uj) as follows:

x′T−j+k
i =

(
xi, y

T−j+k−1
i ,PathRelFeature(v1i,Yk

L
⋃
{yT−j+k

i |v1i ∈
⋃k

j=1 Uj}, S)
)

.

2. Update yT−j+k
i as yT−j+k

i = fk(x′T−j+k
i ) for each testing instance v1i ∈

⋃k
j=1 Uj (Suppose v1i ∈ Uj).

Output: Ye
U =

(
y
e1
1 , · · · , y

e|U|
|U|

)
: the response values sets of testing instances (v1i ∈ U).

Figure 7: The NetCycle algorithm

(a) Prosper Datasets

(b) DBLP Dataset

Figure 8: Schema of datasets. The numbers of each node type and link type tagged under the corresponding
type.

Prosper.com provides abundant lending information on web-
site, including loan information, bidding, borrower and in-
vestor information, etc. The network schema of Prosper
datasets is shown in Figure 8(a). In this network, there
are four types of nodes: loan listing, borrower, lender and
group, connected by four types of relations/links: created,
friend, bidding and joined relationship. We treat loan list-
ings as our target instances, with their funds-raising ratio
as the response variables. Then the life cycle of the in-
stances is the loan listing’s fund-raising period. Each loan
listing has five inherent attributes: maximum rate borrower
willing to accept br, debt-to-income ratio dr, total amount
requested ta, whether or not borrower is a home owner h,
and loan description length dl [2]. We extract two subsets
of loan listings in the network from 2006∼2011, and remove
all isolated points (which did not receive any fund). The
first dataset is extracted from Prosper: 2006∼2007, and the
second from Prosper: 2008∼2009, each have 30K loan list-
ings, we add 100K unobserved loan listings which randomly
sampled from 2006∼2011 for each dataset. The fund-raising
period of each loan is divided into M stages, here M = 10
for all experiments in these two datasets.
•DBLP Dataset: The third dataset, i.e., DBLP four ar-
eas [8], is a bibliography information network extracted from
DBLP2, which involves three types of nodes: conference, pa-
per and author, connected by two types of relations/links:
conference-author links and co-author links. We treat au-

2http://dblp.uni-trier.de/db/

Table 2: Summary of datasets.
Dataset Node Link Feature Instance

Type Type

Prosper: 4 4 5 30K+
2006 ∼ 2007 100K(Unobserved)

Prosper: 4 4 5 30K+
2008 ∼ 2009 100K(Unobserved)

DBLP Dataset 3 2 150 2792

thors as our target instances, with the number of published
papers as the response variables. In this dataset, the life
cycle is defined as the first five years since the author pub-
lished his/her first paper. The inference task is to predict
the numbers of papers published in the first five years of each
author’s academic life, which we call authors’ academic ca-
reer problem, because most PhD degree take five years, i.e.,
M = 5. For each author, we extracted a bag-of-words rep-
resentation of all the paper titles published by this author
as inherent attributes, which includes 150 words (terms) as
node features. In this paper, we select the authors who pub-
lished more than 2 papers, and the network schema of DBLP
dataset is shown in Figure 8(b). For detailed description of
the DBLP dataset, please refer to [8].

4.2 Algorithms for comparison
In order to demonstrate the effectiveness of our method-

ology, we compared with the following state-of-the-art algo-
rithms (summarized in Table 3):
• LIBLINEAR [4]: This method is the base learner for fol-



Table 3: Types of models, based on the kinds of
features used.

Method Self Neigh. Time Publication
attr. labels info

LIBLINEAR X [4]

Herding Para3 X X [2]

GNetMine X [8]

HCC X X [11]

HCC(with kernel) X X X [11, 20]4

NetCycle(w/o network) X X This paper

NetCycle X X X This paper

lowing algorithms. It supposes that each instance is inde-
pendent in the network.
• Herding Para [2]: This method is only applied to Prosper
dataset. This method extract the temporal features of bid-
ding behavior to predict whether the loan will raised enough
funds with logistic regression. However, it is a verifying ex-
periment which can only be used after fund-raising period.
We use a horizontal line to represent this method’s perfor-
mance in each stage.
• GNetMine [8]: This is a graph-based transductive classi-
fication approach based on information propagation model,
which makes prediction on heterogeneous network. It only
uses static network structure, and assumes each node type
shared by a group of similar labels.
• HCC [11]: This is a collective classification approach,
which works on heterogeneous network by exploiting depen-
dencies based on multiple meta paths in the network. The
same as our method, it focus on predict one type of nodes
in heterogeneous networks.
• HCC (with kernel) [20]: This framework can model both
temporal and relational dependencies in dynamic networks,
by giving different weight with Temporal-relational kernel to
links in temporal dimension. But the paper focuses on link
prediction instead of collective inference problem. In order
to compare with the method, we combine the idea of mod-
eling dynamic networks with kernels and HCC method, to
solve the collective inference problem in dynamic networks.
• NetCycle (w/o network): This is weak version of our
method without network structure. It only uses the inherent
attributes of nodes and the previous values of the nodes re-
sponse variables, which does not considers the dependencies
between related instances.
• NetCycle: This is our method proposed in Section 3.3,
which tries to solve collective evolution inference in HINs.

For a fair comparison, all above algorithms use LIBLIN-
EAR with L2 regularized logistic regression as base classifier,
and use LIBLINEAR [4] with L2-regularized support vector
regression as base regression model. The weight of regular-
ized item λ is set to be 0.001, and the maximum number
of iterations Maxiter is set to be 10. The evaluation met-
ric of classification is accuracy, and the evaluation metric of
regression is root mean square error (RMSE). For all exper-
iments, we use k = 0 represents the start stage of nodes life
cycles, and use k = 1 represents the end stage of nodes life
cycles. 5-fold cross validations are used in all experiments.

3Prosper datasets only.
4Sharan et al. proposed a original way to model temporal
network, however, they focus on link prediction problem, we
combined the idea with HCC as one of compared method.
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Figure 9: Collective evolution classification results.

4.3 Performances of Collective Evolution Clas-
sification

In our first experiment, we evaluate the effectiveness of the
proposed NetCycle method on collective evolution classifica-
tion problem. We apply our method on two problems: one
is “biding detection” problem, which tries to predict whether
the loan listing will raise enough funds after fund-raising pe-
riod. We binary the predicting result of fund-raising ratio
to Succeed or Failed for comparison. Another is “academic
career” problem, which tries to predict whether one author
will engage in academic after graduation. The task can be
represented as whether the author will publish his/her paper
after five years. By hiding the response variables and links
after stage k, we test all algorithms since different begin-
ning stage k, and predict the final values of nodes response
variables after their life cycles. Note that people pay more
attention to positive instances, e.g., investor only care about
the loan listings which can receive enough funds in the end,
and people care more about whether the author will continue
engage in academic career after PhD. We add Fβ score as
another classification evaluation metric, here we set β = 0.5.
The results are reported in Figure 9. Due to the accuracy
and F score are too small of logistic regression and NetCycle
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Figure 10: Collective evolution regression results.

(w/o network) in DBLP dataset (less than 55%), so we did
not shown the result in Figure 9(c).

The first observation in Figure 9 we have as follows: most
collective classification methods, e.g., HCC and GNetMine,
can achieve better accuracies than the baseline logistic re-
gression. These results support that the heterogeneous de-
pendencies among instances can improve classification per-
formance. We also find that NetCycle (w/o network) and
Herding Para are consistently and significantly outperforms
than baseline, which support our claim that the evolution
information of instances can also improve classification per-
formance. Compared with all above algorithms, NetCycle
always has best performance in each stage of life cycle, which
explains that both heterogeneous dependencies among in-
stances and the evolution information of node response vari-
ables can improve prediction performance in classification
task. Finally, we find that HCC method with kernel does
not perform well, although it utilizes both heterogeneous de-
pendencies among instances and the temporal information of
instance. One possible reason is that it is hard to choose the
suitable kernel to model the graph. Our algorithm almost
have the best performance in all datasets.

4.4 Performances of Collective Evolution Re-
gression

Compare with all above competing algorithms, NetCycle
is not only able to solve classification problem, but also able
to solve regression problem. In order to validate the effec-
tiveness of NetCycle, we made slight modifications to the
competing algorithms, by referring the works of [13] in col-
lective regression. The competing algorithms include: LI-
BLINEAR, HCC, HCC (with Kernel) and NetCycle (w/o
network). In this experiment, we apply NetCycle in collec-
tive evolution regression on two problems: predicting “how
much fund of the loan will be raised after bidding period”,
and predicting “how many papers one author will publish
during his/her PhD”. The results are shown in Figure 10.

The first observation in Figure 10 we have is that most
approaches have better performance than the baseline in
each dataset, especially in latter stage of life cycle. We also
find that although most algorithms’ RMSEs have slightly
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Figure 11: Node evolution during life cycle

decreasing tendency as time goes on, our methods (includ-
ing w/o network) have more obviously decreasing tendency
during life cycle, with the help of evolution information of
the response variables during life cycles. Compared with
NetCycle (w/o network), NetCycle have better performance
in the early stage of life cycle, which demonstrates the het-
erogeneous dependencies among instances can improve clas-
sification performance in collective regression problem. In
all datasets, NetCycle has outstanding performance in each
stage with life cycles.

4.5 Performances of Node Evolution Process
Prediction

In our third experiment, we validate NetCycle (including
w/o network) on predict node evolution process in Prosper:
2006∼2007 dataset. we record the evolution process of the
nodes since stage k = 0.1, and use following evaluation met-
rics to estimate the prediction performance in each stage
during life cycle, including: precision of positive nodes, re-
call of positive nodes, accuracy and RMSE. The results are
shown in Figure 11, similar trend holds for the other two
datasets which cannot be shown due to space limitation.

We can find that both NetCycle and NetCycle (w/o net-
work) have high precision in early stage, and only have little
descend as time goes on. The decreasing tendency of Net-
Cycle is more slightly than NetCycle (w/o network). The
recall of positive nodes is also very high in early stage, but
the decreasing tendency of recall are more obviously than
the decreasing tendency of precision for both algorithms.
The results show that the decreasing performance in dataset
mostly due to the descend of recall. The last two figures are
accuracy and RMSE, the errors of accuracy and RMSE are
monotone increasing for both algorithms, however, NetCy-
cle has much slower increment speed of errors than NetCycle
(w/o network), which demonstrates our claim that the in-
stances are collective evolution with life cycles.

4.6 Influence of different Meta paths
In this experiment, we study the influence of different

meta paths on the collective evolution inference performance
of our NetCycle model. Different types of meta paths have
different semantic meanings, which correspond to different



Table 4: Summary of Meta Paths among Loan Nodes
Notation Meta Path Semantics of the Dependency

LBL Loan
created−1
−−−−−−−−→ Borrower

created−−−−−→ Loan Co-borrower relation

LLeL Loan
bidding−1

−−−−−−−−→ Lender
bidding−−−−−→ Loan Co-investor relation

LBBL Loan
created−1
−−−−−−−−→ Borrower

friend−−−−−→ Borrower
created−−−−−→ Loan Loan’s borrower are friend

LLeLeL Loan
bidding−1

−−−−−−−−→ Lender
friend−−−−−→ Lender

bidding−−−−−→ Loan Loan’s lender are friend

LBLeL Loan
created−1
−−−−−−−−→ Borrower

friend−−−−−→ Lender
bidding−−−−−→ Loan Loan’s borrower and Loan’s lender are friend

LLeBL Loan
bidding−1

−−−−−−−−→ Lender
friend−−−−−→ Borrower

created−−−−−→ Loan Loan’s lender and Loan’s borrower are friend

LBGBL Loan
created−1
−−−−−−−−→ Borrower

joined−−−−−→ Group
joined−1

−−−−−−−→ Borrower
created−−−−−→ Loan Loan’s borrower joined same group

LLeGLeL Loan
bidding−1

−−−−−−−−→ Lender
joined−−−−−→ Group

joined−1

−−−−−−−→ Lender
bidding−−−−−→ Loan Loan’s lender joined same group

LBGLeL Loan
created−1
−−−−−−−−→ Borrower

joined−−−−−→ Group
joined−1

−−−−−−−→ Lender
bidding−−−−−→ Loan Loan’s borrower and lenders joined same group

LLeGBL Loan
bidding−1

−−−−−−−−→ Lender
joined−−−−−→ Group

joined−1

−−−−−−−→ Borrower
created−−−−−→ Loan Loan’s lenders and borrower joined same group
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Figure 12: Influence of meta path on NetCycle.

types of dependencies among the instances in HINs. We
summarize all metapaths in Table 4, which are extracted
from P2P lending network. In order to illustrate the in-
fluence of each path, we apply NetCycle with 6 groups of
meta paths in the Prosper networks, including: only bor-
rowers{LBL}, only lenders{LLeL}, users{LBL and LLeL},
withfriend{users, LBBL, LBLeL, LLeLeL and LLeBL}, with-
group{users, LBGBL, LBGLeL, LLeGLeL and LLeGBL}
and all. We test each meta-path group in 3 stages of loan’s
life cycle in Prosper:2006∼2007 dataset, the results as shown
in Figure 12. We find that NetCycle can get better perfor-
mance with the increase of the number of meta-path types.
This support our intuition that meta path is very expres-
sive and can represent indirect relationships that are very
important for collective evolution inference tasks.

4.7 Case Studies
To better understand the output of our methods, we give

a case study of the weights of meta paths in each stage of
life cycle, to show the effectiveness of NetCycle in match-
ing the node evolution pattern. The meta paths we used
are from Prosper:2006∼2007 dataset, including: only bor-
rowers (LBL), only lenders (LLeLeL), and with group (LLe-
GLeL). In Figure 13, we display the weights of each meta
path learned by segment models during life cycle.

As shown in Figure 13, the first observation is that all
meta paths have large weights in the early stages, and the
weights of the meta paths have an declining tendency in
the early stages. This result proves a phenomenon: “in-
vestors prefer invest new loan listings”, which validated by
Ceyhan [2]. The weights of meta paths LLeLeL and LLe-
GLeL have an similar increasing tendency in latter stage,
it may be due to the following reason: as time goes on, the
increased numbers of bids will attract more lenders to invest
the loan, which also known as herding effect in financial do-
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Figure 14: Influence of Parameters on NetCycle.

mains. Ceyhan [2] also verified the herding effect in P2P
Lending service. Compared with LLeLeL and LLeGLeL, we
can find that the weights of LBL did not have obviously
variation during loan’s life cycle, because the relationship be-
tween borrower and loan will not change in the fund-raising
period. There exists a sharp increasing tendency for all meta
paths in the last stage, however, the weights of all features
have a sharp variation in the last stage, because we need
normalized the results into discrete values in the last stage.
These variation tendency of meta paths provides insightful
knowledge for us to understand the node evolution process.

4.8 Model selection
There exists two essential parameters in NetCycle, Maxiter

and λ. Maxiter is the maximum number of iterations #
in the iterative inference part of NetCycle, and λ is the
weight of LIBLINEAR’s penalty item (L2 regularization).
In previous experiments, We empirically set Maxiter as 10,
and set λ as 0.001. To test the stability of the perfor-
mances of NetCycle method, we test the accuracies of dif-
ferent values of Maxiter and λ in 3 stages of loan’s life cycle
on Prosper:2006∼2007 dataset, the result as shown in Fig-
ure 14. Similar trend holds for the other two datasets which
cannot be shown due to space limitation.

Figure 14 illustrates that NetCycle performs quite well



and stably, and it is not sensitive to the values of Maxiter
and λ. In Figure 14(a), when the number of iterations is
very small, e.g., Maxiter<3, the results did not performed
well, because the algorithm not reached convergence yet.
However, with the increase of the number of iterations, the
results does not change obviously. In Figure 14(b), we can
find that smaller λ always has better performance at early
stage (k=0.3), and the results does not change obviously
as time goes on (e.g., k=0.6 or 0.9). There does not exist
obvious difference in each stage.

5. RELATED WORK
Our work on collective evolution inference is related to

both collective inference and dynamic networks analysis. We
will introduce recent related works of them in this section.

Collective inference [6] of relational data, including collec-
tive classification [1] and collective regression [13], have been
investigated by many researchers. Basic collective classifi-
cation problem focus on classification in homogeneous net-
work [18]. Ji [7] studied a specialized classification problem
on heterogeneous networks, where different types of nodes
share a same set of label concepts. Kong [11] proposed a
method called HCC based on meta-path to solve the col-
lective classification problem on one type nodes in hetero-
geneous networks. Loglisci [13] studied collective regression
for handling autocorrelation of network data. All of them
only paid attention to static networks, instead of dynamic
networks. In this work, we compare with the methods in [7,
11] as two competing algorithms.

On the other hand, in dynamic networks, Sharan [20] pro-
posed a representational framework to model both tempo-
ral and relational dependencies in networks, but they only
tested the model on the link prediction problem. Yu [22]
used cascading process to predict the propagation of in-
formation. Cho [3] presented point process to model the
Spatial-Temporal Networks. However, they all did not fo-
cus on collective inference problem. We refer the idea of
modeling temporal-relational graph in [20], and applied it to
collective inference method with HCC [11], as one of com-
peting algorithms. Moreover, the evolution inference prob-
lem are very similar with autoregressive process. Both of
them tried to infer a time series values of the instances re-
sponse variables in the future. But autoregressive process
commonly studied the evolution pattern from previous se-
quence, while the evolution inference studied from correlated
instances with the restrictions of life cycle.

In addition, there exists several works in P2P lending net-
works [2, 16, 14]. Ceyhan [2] examined a simple model to
validate the lenders’ bidding behavior during fund-raising
period on bidding detection problem, which we also used as
one of competing algorithms.

6. CONCLUSION
In this paper, we first present the collective evolution

problem in dynamic networks, where the response variables
of the nodes are evolving with a certain period time. Then
we extend the problem into HINs, where the network include
multiple types of nodes connected through multiple types of
links. We propose a effective algorithm, called NetCycle,
to solve the collective evolution inference problem in HINs.
The NetCycle method can not only predict the values of
node response variables for collective inference problems, but

also can predict the evolution tendency of the node response
variables during life cycles. Empirical studies on real-world
tasks demonstrate the effectiveness of the proposed method.
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