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ABSTRACT

Graph classification has become an important and active
research topic in the last decade, where each instance is
represented as a graph with complex structures. Current
research on graph classification focuses on mining discrim-
inative subgraph features under supervised settings. The
basic assumption is that a large number of labeled graphs
is available. However, labeling graph data is quite expen-
sive and time-consuming in many real-world applications,
such as testing molecular medicine’s anti-cancer activities.
In order to minimize the labeling efforts for subgraph min-
ing in graph classification, we address the problem of how
to actively select the most important graphs to obtain class
labels where the objective is to mine the optimal subgraph
features in order to construct accurate graph classifiers. This
problem is challenging and different from previous works on
active learning in that there are no predefined feature vec-
tors and subgraph enumeration is NP-hard. In other words,
the active sample selection and feature selection are “simul-
taneously correlated” problems for graph data. The simple
reason is that before the most important graph can be esti-
mated, a set of optimal subgraph features must be at hand.
We demonstrate how to estimate the usefulness of a query
graph and effectiveness of subgraph features at the same
time, by maximizing the dependence between subgraph fea-
tures and graph labels via a max-min view of pool-based
active learning framework. Then we propose a branch-and-
bound algorithm to efficiently search for optimal features
and the optimal query graph simultaneously by judiciously
pruning the subgraph search space. Empirical studies on
real-world tasks demonstrate that our active feature and
sample selection approach can obtain promising results for
graph classification with much fewer (around 30% or even
less) labeled graphs.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications-
Data Mining
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1. INTRODUCTION
With ever-increasing applications of data mining in dis-

parate domains, graph data have become ubiquitous and
increasingly important in modeling objects with complex
structural information. Examples include chemical com-
pounds, XML documents and program flows, etc. There
is a great need for building models to automatically clas-
sify graph objects into different classes. For example, in
chemoinformatics, researchers want to be able to predict the
anti-cancer activities of chemical compounds in order to find
new molecular drugs for cancers and chronic diseases [24,
15]; in computer software engineering, researchers are in-
terested in studying how to identify errors/bugs in program
flows automatically [5]. Motivated by these challenges, graph
classification has received considerable attention in the last
decade.

In the literature, graph classification problem has been
extensively studied [16, 22, 3]. Conventional approaches fo-
cus on mining discriminative subgraph features [26] under
supervised settings, which assume explicitly or implicitly
that a large number of labeled graphs is available before
the subgraph feature mining process. However, in many
real-world applications, labeling graphs can be extremely
expensive and time-consuming. For example, in molecular
medicine, it requires time, efforts and excessive resources to
test a drug’s anti-cancer activities by pre-clinical studies and
clinical trials; in software engineering, the domain experts
need to examine an entire program flow carefully in order to
decide whether there is an error in the program. The label-
ing cost for graph classification can be significantly reduced
if one can train a model to actively select the most impor-
tant graphs to query labels. This setting is also known as
active learning or active query selection which aims to design
models to exploit unlabeled data more effectively by itera-
tively selecting important examples to query, thus it can
achieve comparable performances as supervised approaches
while using much less labeled data. It has been shown use-
ful in many real-world applications such as text classification
[23, 27].

Formally, the active learning problem for graph data cor-
responds to minimizing the labeling cost by learning a model
to actively select important graphs to obtain class labels in
order to get promising performances on subgraph feature
selection for graph classification. Active learning is partic-
ularly challenging in graph data. The reason is that, con-
ventional active learning approaches can estimate the im-
portance of each unlabeled examples in vector spaces while
assuming all the useful features are given apriori before the
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Figure 1: An Example of Dual Active Feature and
Sample Selection in Graph Data.

iterative query selection process. But in graph data, the use-
ful features are not given apriori, which require additional
subgraph feature mining and selection by estimating the use-
fulness of subgraph features within all subgraph features in
the graph dataset. What makes this problem even more
interesting and challenging is that subgraph enumeration
and graph isomorphism testing are NP-complete. Thus, it
is impossible to enumerate all subgraph features and adopt
existing approaches of active learning.

In active learning for graph data, the active query selec-
tion problem and the subgraph feature selection problem are
closely related to each other. The reasons are as follows:

• In active query selection, we need to estimate the im-
portance of each unlabeled graph in order to select the most
important graphs to query labels. However, before the most
important graphs can be estimated, a set of useful subgraph
features must be at hand. Unlike conventional data in fea-
ture vector space, graph data are not directly represented in
a meaningful feature space, and the active sample selection
performance on graph data directly depends on the quality
of the subgraph feature set we mined from the graph dataset.
In other words, this is a chicken-egg problem. For example,
suppose we aim to select the most important graphs to query
labels like graph G3 in Figure 1, which are both close to the
class boundary (informative) like graph G4 and representa-
tive to a cluster of unlabeled graphs like G5. However, the
informativeness and representativeness of a graph object de-
pends on which feature set is used. The better feature set
we use, the better we can estimate the importance of the
query graphs among unlabeled graphs.

• In subgraph feature selection, we also need to select the
most important subgraph features for the graph classifica-
tion within a graph dataset. Conventional subgraph feature
selection approaches for graph data focus on supervised set-
tings [24, 15]. The feature evaluation strategies strictly fol-
low the assumption that a large number of labeled graphs is
given apriori. However, in active learning settings, we can
only afford to query a small number of unlabeled graphs and
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obtain their labels. The subgraph feature selection perfor-
mance depends closely on the quality of the graphs which
are queried in active sample selection process. For exam-
ple, in Figure 1, suppose we are given two labeled graphs
(G1 and G2), and only a small group of the useful subgraph
features appeared in the labeled graphs like F1 and F2. If
we select an unlabeled graph like G3 to query, which is rep-
resentative to a cluster of unlabeled graphs and far away
from the two labeled graphs, we are more likely to find new
useful features like F3. From the feature selection view, the
iterative query selection process is also a process to actively
exploit useful features in the subgraph feature space. The
better query graphs we select, the more effectively we can
exploit the useful subgraph features.

Thus, the active sample selection and subgraph feature se-
lection are correlated problems in graph data and should to
be considered simultanously. Together they become a whole
new problem, called “dual active feature and sample selec-
tion for graph classification”. i.e., in order to minimize the
labeling efforts for subgraph feature mining in graph classi-
fication, how to actively select the most important graphs
to obtain class labels where the objective is to mine the
most useful subgraph features in order to construct accu-
rate graph classifiers.

Despite its value and significance, the dual active feature
and sample selection for graph classification has not been
studied in this context so far. One straight-forward solu-
tion to this problem would be the two-stage active learn-
ing framework for graph classification as shown in Figure 2.
The feature selection and active sample selection are consid-
ered separately into two steps by iteratively selecting opti-
mal subgraph features and selecting important query graphs.
Obviously, in feature selection step, only the subgraph fea-
tures that appeared in the label graphs can be found within
this framework. And the estimation for the query graph in
active sample selection may not be accurate since the useful
features that only appeared in the unlabeled graphs are not
able to be exploited in the feature selection step.

In this paper, we introduce a novel framework to the above
problems by exploiting useful subgraph features and opti-
mal query graph samples simultaneously. Our framework is
illustrated in Figure 3. Different from the two-stage active
learning method, the proposed approach, called gActive, can
simultaneously estimate the usefulness of a query graph and



Table 1: Important Notations.

Symbol Definition

D = {G1, · · · , Gn} the given graph dataset, Gi denotes the i-th graph in the dataset.
nl, na and nu the number of labeled graphs, unlabeled graphs including and excluding the query graph in D
l = {1, · · · , nl} the index set for labeled graphs in D
s and u the index of the selected graph and the index set of the rest unlabeled candidate graphs in D.
a = {nl + 1, · · · , n} the index set for all unlabeled graphs in the pool including the selected graph. a = {s} ∪ u

y = [y1, · · · , yn]
⊤ the class label vector for graphs in D, yi ∈ {+1,−1, 0}

S = {g1, · · · , gm} the set of all subgraph patterns in the graph dataset D.

xi = [x1
i , · · · , x

m
i ]⊤ the binary vector for Gi using subgraph features in S, xk

i ∈ {0, 1} and xk
i = 1 iff gk ⊆ Gi

fi = [f1
i , · · · , f

n
i ]⊤ the binary vector for subgraph pattern gi in the D

X = [Xij ](m×n) the matrix of all binary feature vectors in the dataset, X = [x1, · · · ,xn] = [f1, · · · , fm]⊤

T the set of selected subgraph patterns, T ⊂ S

K(T ) = [Kij ](n×n) the kernel matrix of all the graphs using the selected subgraph features T
L(ys,yl) = [Lij ](n×n) the label kernel matrix of all the graphs based on the class labels

H = [Hij ](n×n) the centering matrix, Hij = δij − n−1. (δij = 1 iff i = j, otherwise 0)
DT an m × m diagonal matrix indicating which features are selected from S into T

Πl, Πu and Πs mapping matrices, Πl ∈ {0, 1}(nl×n), Πs ∈ {0, 1}(1×n), Πu ∈ {0, 1}(nu×n) and [Π⊤

l ,Π⊤

s ,Π⊤

u ] = In

effectiveness of subgraph features by maximizing the depen-
dence between subgraph features and graph labels based on
a max-min view of pool-based active learning. Then we pro-
pose a branch-and-bound algorithm to efficiently search for
optimal features and the query graph by judiciously pruning
the subgraph search space. Empirical studies on real-world
tasks demonstrate that our dual active feature and sam-
ple selection approach can obtain promising results in graph
classification with much fewer labeled graphs.

2. RELATED WORK
To the best of our knowledge, this paper is the first work

on dual active feature and sample selection problem for
graph classification. Some research works have been done
in related areas.

Active learning or active query selection deals with the
problem of minimizing the labeling cost by designing active
learner to choose which examples to label. Many works have
been proposed base on various active learning settings (refer
[21] for a detailed survey). Conventional active learning ap-
proaches focus on dealing with data in vector spaces, where
it is assumed that all the useful features are available apri-
ori and features should be fixed along the iterative labeling
process. One well-know type of approaches is querying the
most informative examples, where the active learner iter-
atively select the uncertain examples by the classifier [23,
1] or examples that has the largest disgreement among a
committee of classifiers [6, 10, 20]. One problem with this
type of approaches is that it is unable to exploit the struc-
ture among abundant unlabeled data and can be sensitive
to outliers or noise in the dataset. Another type of active
learning approaches is querying the most representative ex-
amples, where the active learners exploit the cluster struc-
ture of unlabeled data using clustering methods [18, 7] or
optimal experimental design [28]. The main problem with
this type of approaches is it is usually unsupervised and un-
able to make use of the labeling information from the labeled
data. There are also works aim to combine the measure of
informativeness and representiveness in vector space to find
optimal query examples [8, 13].

Mining subgraph features from graph data have also been
studied in recent years. The aim of such approaches is to
extract useful subgraph features from a set of graphs by
adopting some filtering criteria. Upon whether the label in-
formation is considered in the feature mining process, the

existing works can roughly be classified into two types: un-
supervised and supervised. In the unsupervised approaches,
the frequencies are used as the subgraph feature evaluation
criterion, where the aim is to collect frequently appearing
subgraph features. For example, Yan and Han developed a
depth-first search algorithm: gSpan [25], which can build a
lexicographic order among graphs, and map each graph to an
unique minimum DFS code as its canonical label. Based on
the lexicographic order, gSpan algorithm adopts the depth-
first search in the DFS code tree to mine frequent connected
subgraphs efficiently. There are also many other frequent
subgraph feature mining approaches have been developed in
the last decade, e.g. AGM [14], FSG [17], MoFa [2], FFSM
[12], and Gaston [19]. In the other hand, supervised sub-
graph feature mining approaches have also been proposed in
the literature, such as LEAP [24], CORK [22], which search
for discriminative subgraph features for graph classifications.
In addition, gSSC [16] addresses the problem of feature selec-
tion for graph classification under semi-supervised settings.

3. PROBLEM FORMULATION

3.1 Dual Active Feature and Sample Selection
Consider a graph classificaiton problem where we are given

a graph dataset D = {G1, · · · , Gn} that consists of n graphs.
Let y = [y1, · · · , yn]

⊤ denote the associated graph labels
vector with yi ∈ {+1, 0,−1} where 0 implies that the graph
is unlabeled. Active learning in graph data is the tasks of
selecting one graph Gs from the pool of unlabeled graphs
to query its labels. For convenience, we partition the graph
dataset into three parts: the labeled graphs Dl, the currently
selected query graph Gs and the rest unlabeled graphs Du.
We also use Da = Du ∪ {Gs} to denote all the unlabeled
graphs. The class labels vector y can also be partitioned
accordingly,

y =

[

yl

ys
yu

]

=

[

yl

ya

]

and ya =

[

ys
yu

]

where yl, ys and yu represent the class labels assigned to the
graphs in Dl, {Gs} and Du respectively. We denote nl as
the number of labeled graphs, nu as the number of unlabeled
graph except the query graph and na as the number of all
the unlabeled graphs na = nu +1. Here we assume the first
nl graphs in the dataset are labeled.



Definition 1 (Graph). A graph is represented as G =
(V , E,L, l), where V is a set of vertices V = {v1, · · · , vnv}, E ⊆
V ×V is a set of edges, L is the set of labels for the vertices and
the edges. l : V ∪ E → L, l is a function assigning labels to the
vertices and the edges.

We focus on using subgraph patterns to define the feature
space of graph classification, which assumes that a graph ob-
ject Gi is represented as a binary vector xi = [x1

i , · · · , x
m
i ]⊤

associated with a set of subgraph patterns {g1, · · · , gm}.
Here xk

i ∈ {0, 1} is the binary feature of Gi corresponding to
the subgraph pattern gk, and xk

i = 1 iff gk is a subgraph of
Gi (i.e. gk ⊆ Gi). Now suppose the full set of subgraph fea-
tures in the graph dataset D is S = {g1, · · · , gm}, which we
use to predict the class labels of the graph objects. Usually
the full feature set S is very large and only a subset of the
subgraph features T ⊆ S is relevant to the graph classifica-
tion task. Let X denote the matrix consisting of the binary
feature vectors using S to represent the graph dataset D.
X = [x1,x2, · · · ,xn] = [f1, f2, · · · , fm]⊤ ∈ {0, 1}m×n, where
X = [Xij ]m×n

, Xij = 1 iff gi ⊆ Gj . We briefly summarize
the notations in Table 1.

Definition 2 (Subgraph). Let G′ = (V ′, E′,L′, l′) and
G = (V , E,L, l) be graphs. G′ is a subgraph of G (G′ ⊆ G) iff
there exist an injective function ψ : V ′ → V s.t. (1) ∀v ∈ V ′,
l′(v) = l (ψ(v)); (2) ∀(u, v) ∈ E′, (ψ(u), ψ(v)) ∈ E and l′(u, v) =
l (ψ(u), ψ(v)). If G′ is a subgraph of G, then G is a supergraph
of G′.

The key issue of dual active feature and sample selection
for graph classification is how to simultaneously find the
most important query graph from a pool of unlabeled graphs
with a set of optimal subgraph patterns for graph classifica-
tion. So, in this paper, the studied research problem can be
described as follow:
1) How to estimate the importance of a query graph among
unlabeled graphs combined with the optimal subgraph fea-
ture selection process?
2) How to properly evaluate the usefulness of a set of sub-
graph features based upon the labels of the graphs including
the potential class label of the query graph?
3) How to determine the optimal subgraph features within a
reasonable amount of time by avoiding the exhaustive enu-
meration based upon the labels of graphs?

3.2 Optimization Framework
In this section, we address the problems discussed in Sec-

tion 3.1 by defining the dual active feature and sample se-
lection for graph classification as an optimization problem.
The goal is to find an optimal query graph in a pool of un-
labeled graphs together with feature selection process.

We propose the following general optimization framework
to select the optimal query graph with a max-min view
of pool-based active learning by maximizing the minimium
score of an evaluation function.

G
∗
s = argmax

Gs∈Da

min
ys∈{±1}

E(Gs, ys,D,yl) (1)

where Da denotes the pool of all the unlabeled graphs, and
E denotes an evaluation function for querying a graph Gs

in Da. As the label of the selected graph Gs is unkown,
and hence can be either 1 or −1, we need to consider both
alternatives and select the worse case to maximize. In this
max-min view of active learning, it guarantees the selected
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graph Gs will lead to a large value for the query selection
evaluation function E(Gs, ys,D,yl).

An important aspect of active learning for graph data is
that the useful features are not given apriori, and we need
to make use of the label information to select a subset of
optimal subgraph features during the active sample selec-
tion process. Hypothetically, if we know the class label of
a selected query graph Gs in addition to the labeled graphs
in Dl, we can select an optimal feature set by defining the
query selection evaluation function as follow:

E(Gs, ys,D,yl) = max
T ⊆S,|T |=t

J(Gs, ys,D,yl, T ) (2)

where we select a subset of subgraph features T from S ,
that can maximize a feature selection evaluation function
J(Gs, ys,D,yl, T ).

3.2.1 Intuitions

For evaluation function, we assume that the optimal query
graph together with its optimal subgraph feature sets should
have the following properties:

Query Selection View: from the active query selection
view, we assumes that (a) Dependence Maximization: based
on a feature set T , the query graph Gs should be able to
maximize the dependence between features of the graphs
and the labels in a max-min view as in Eq. 1. (b)Informative
and Representative: the selected query graph should be both
informative and representative among the pool of unlabel
graphs. i.e. the query graph Gs should be close to some of
the unlabeled graphs in the dataset, such that Gs is more
likely to be representative of a group of unlabeled graphs
instead of being outliers. In the other hand, the query graph
Gs should also be far way from the labeled graphs in Dl, such
that the label of Gs is unlikely to be redundant.

Feature Selection View: from the subgraph feature se-
lection view, we note that the optimal feature set can be
very different depending on which graph we query and what
class label we get from the domain expert. For example,
in Figure 4, we have a graph dataset with seven graph ob-
jects. Suppose the query graph we selected is Gs, and we
denote the optimal feature set as T +

s when Gs is positive.
T −
s represents the optimal feature set when Gs is negative.

From the feature selection perspective, the optimal subgraph
feature set should also satisfy the following properties: (a)
dependence maximization: graphs with the same class labels
should have similar subgraph features, thus be close to each
other; while graphs with different labels should have differ-
ent features and far away from each other. (b) representa-
tiveness and informativeness: the query graph Gs should be
close to the other unlabeled graphs and far away from the
existing labeled graphs.



3.2.2 The Solution

According to a kernel-based dependence evaluation crite-
rion name Hilbert-Schmidt Independence Criterion (HSIC)
[11], we propose the following evaluation function for active
feature selection:

J(Gs, ys,D,yl, T ) =tr [ K(T ) H L(ys,yl) H ]

+ α
1⊤Ku,s(T )

nu

− β
1⊤Kl,s(T )

nl

(3)

whereK(T ) = [Kij ](n×n) denotes the kernel matrix of graphs
based on a subgraph feature T and Kij = 〈DT xi, DT xj〉.
DT = diag(dT ) is a diagonal matrix indicating which fea-
tures are selected into the feature set T from S , dT =
[d(T )i](m×1) and d(T )i = I(gi ∈ T ) ∈ {0, 1}. L(ys,yl) =

[Lij ](n×n) = yy⊤ denotes the graph kernel based on their

class labels, where y = [ y⊤
l , ys,y

⊤
u ]⊤ and Lij = 〈yi, yj〉 is

used in our current implementation, other kernels can also
be directly used in this formulation. α and β are two pa-
rameters, which control the weights of the three terms in
the evaluation function. Here the first term denotes the de-
pendence between subgraph features and the labels of graph
objects. The second term represents the average similarities
of the query graph selected to the other unlabeled graphs,
and the third term represents the average similarities of the
query graph to the labeled graph.

The evaluation function in Eq. 3 can be as follow:

tr
(
K(T )Hyy⊤H

)
= tr

(
X⊤DT DTX H yy⊤ H

)

= tr
(
DT X H yy⊤ H X⊤DT

)

=
∑

gi∈T

(
f⊤i H yy⊤ H fi

)

and similarly we have:

α
1⊤Ku,s(T )

nu

− β
1⊤Kl,s(T )

nl

=
α

nu

1⊤X⊤
u DT DT xs −

β

nl

1⊤XlDT DT xs

=
α

nu

tr
[
DT xs1

⊤X⊤
u DT

]
−

β

nl

tr
[
DT xs1

⊤X⊤
l DT

]

=
α

nu

tr
[
DT XΠs1

⊤Π⊤
uX

⊤DT

]
−

β

nl

tr
[
DT XΠs1

⊤Π⊤
l X

⊤DT

]

=
α

nu

∑

gi∈T

(
f⊤i Πs1

⊤Π⊤
u fi

)
−

β

nl

∑

gi∈T

(
f⊤i Πs1

⊤Π⊤
l fi

)

where Πl and Πu are projection matrix as defined in Table 1,
such that Xl = XΠl, Xu = XΠu and xs = XΠs

Now we can rewrite J(Gs, ys,D,yl, T ) in Eq. 2 as

J(Gs, ys,D,yl,T )

=
∑

gi∈T

f⊤i

(
H yy⊤ H +

α

nu

Πs1
⊤Π⊤

u −
β

nl

Πs1
⊤Π⊤

l

)
fi

=
∑

gi∈T

f⊤i M fi

where we define

M = H yy⊤ H +
α

nu

Πs1
⊤Π⊤

u −
β

nl

Πs1
⊤Π⊤

l (4)

By defining an evaluation criterion h(gi, Gs, ys,D,yl) =
f⊤i M fi, the optimization for dual active feature and sample
selection can be written as

G∗
s = argmax

Gs∈Da

min
ys∈{±1}

max
T ⊆S,|T |=t

∑

gi∈T

h(gi, Gs, ys,D,yl) (5)

Definition 3 (gFScore). Let D = {G1, · · · , Gn} denote a
graph dataset, with first nl graphs labeled as y1, · · · , ynl

. Sup-
pose we have a query graph Gs with its potential label ys, and
M is a matrix defined as Eq. 4. We define a quality criterion
h(gi, Gs, ys,D,yl) = h(gi,M) = f⊤i M fi called gFScore, for a
subgraph feature gi.

The optimal solution to Eq. 5 can be found by using gFS-
core to mine the top-t subgraph feature sets for cases when
each unlabeled graph is selected as query graph Gs and each
case of the class label for Gs. As shown in Figure 6, we need
to mine 2×na optimal subgraph feature sets from the graph
dataset, i.e. T +

i denotes the optimal feature set when the
i-th graph is selected as the query graph with the case when
it is labeled as a positive graph; T −

i denotes the optimal fea-
ture set when Gi is queried and labeled as negative. Then,
we can directly use Eq. 5 to find the optimal graph to query.

3.2.3 Upper Bound of gFScore

Now we address the problem how to efficiently mine the
optimal subgraph feature sets without exhaustive enumera-
tion of all subgraph patterns in a graph dataset. Because
the number subgraph patterns in graph dataset is usually
extremely large, exponential to the size of the graphs, it
is infeasible to enumerate each of the graphs and calculate
its gFScore in order to find the top-t optimal subgraph fea-
tures. Inspired by recent graph classification approaches [24,
22, 16], which put their feature evaluation criteria into the
subgraph mining process and develop constraints to prune
the subgraph search space in gSpan [25], we take a simi-
lar approach by deriving a different constraint to prune the
pattern search space in the gSpan DFS code search tree.

A convenient method to compute an upper-bound on gF-
Score is given as follow:

Theorem 1 (Upper bound of gFScore). Suppose we have
two subgraph patterns gi, gj ∈ S and gj is a supergraph of gi
(gj ⊇ gi). The gFScore value of gj is bounded by h̃(gi,M) , i.e.,

h(gj ,M) ≤ h̃(gi,M). h̃(gi,M) is defined as follow:

h̃(gi,M) , fi
⊤M̃fi (6)

where the matrix M̃ is defined as M̃pq , max(0,Mpq).

Proof.

h (gj ,M) = fj
⊤Mfj =

∑

p,q:Gp,Gq∈D(gj)

Mpq (7)

where D(gj) , {Gk|gj ⊆ Gk, 1 ≤ k ≤ n}. Since gj is the su-
pergraph of gi (gj ⊇ gi), according to anti-monotonic property,

we have D(gj) ⊆ D(gi). Also M̃pq , max(0, Mpq), we have

M̃pq ≥Mpq and M̃pq ≥ 0. So,

h (gj ,M) =
∑

p,q:Gp,Gq∈D(gj)

Mpq ≤
∑

p,q:Gp,Gq∈D(gj)

M̃pq

≤
∑

p,q:Gp,Gq∈D(gi)

M̃pq = h̃ (gi,M)
(8)

Thus, for any gj ⊇ gi, h(gj ,M) ≤ h̃(gi,M).



Input:
D: the graph dataset {G1, · · · , Gn} t: the maximum number of features.
yl: the vector of class labels for labeled graphs, min sup: the minimum frequency.

Initialize:

- Construct the feature evaluation functions h(g,M) and initialize candidate feature lists:
1. Calculate 2× na matrices using Eq. 4 by considering each case for Gs and ys as follow:

M
+
i = H L(yi = +1,yl) H + α

nu
Πi1

⊤Π⊤
u − β

nl
Πi1

⊤Π⊤
l
, (∀ i, nl < i ≤ n)

M
−
i = H L(yi = −1,yl) H + α

nu
Πi1

⊤Π⊤
u − β

nl
Πi1

⊤Π⊤
l
, (∀ i, nl < i ≤ n)

2. Initialize 2× na empty lists for candidate subgraph features as follow:

∀ i (nl < i ≤ n), let T +
i = T −

i = ∅ with maximum size t, and pruning thresholds θ+i = θ−i = −∞

Recursive Features Mining:

- Depth-First Search the gSpan’s code tree and update the feature lists as follow:
1. Update each of the candidate feature lists using the current subgraph feature gc:

∀ i, if h(gc,M
+
i ) is larger than the worst feature in T +

i , replace it and update θ+i = min
g∈T +

i

h(g,M+
i )

∀ i, if h(gc,M
−
i ) is larger than the worst feature in T −

i , replace it and update θ−i = min
g∈T −

i

h(g,M−
i )

2. Test pruning criteria for the sub-tree rooted from node g as follow:
if freq(gc) < min sup, prune the sub-tree of gc
if ∀ i (nl < i ≤ n), h̃(gc,M

+
i ) ≤ θ+i and h̃(gc,M

−
i ) ≤ θ−i , prune the sub-tree of gc

3. Recursion: Depth-first search the sub-tree rooted from node gc

Active Query Selection:

- Select the query graph using Eq. 5

Output:

Gs: The selected query graph.

T +
s : the optimal subgraph feature set if Gs is labeled as a positive graph.

T −
s : the optimal subgraph feature set if Gs is labeled as a negative graph.

Figure 5: The gActive algorithm
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Figure 6: Candidate Subgraph Pattern Lists

We can now utilize the upper bound to efficiently prune
the DFS Code Tree in gSpan by maintaining 2×na top-t best
candidate feature lists as shown in Figure 6 with branch-
and-bound pruning. During the course of subgraph pattern
mining, we calculate the upper-bound of each subgraph pat-
tern in the search tree. If the subgraph pattern node with its
children nodes cannot update any of the candidate feature
lists, we can prune the sub-tree of gSpan rooted from this
node, and it is guaranteed by the upper-bound that we will
not miss any better subgraph patterns for any of the candi-
date feature lists. Thus the subgraph feature mining process
can speed up without loss of performance. The algorithm of
gActive is summarized in Figure 5.

4. EXPERIMENTS

4.1 Experimental Setup
Data Collections: In order to evaluate the performances

of our dual active feature and sample selection approach for
graph classification, we tested our algorithm on nine real-
world graph classification datasets as summarized in Table 2.

1) Anti-cancer activity prediction (NCI): The first eight

Table 2: Summary of experimental datasets.
“# Pos” denotes the number of active graphs in the
dataset.

Dataset # Pos # Graph Details

NCI1 2040 40526 Lung Cancer
NCI33 1636 40209 Melanoma
NCI41 1561 27585 Prostate Cancer
NCI47 2011 40447 Central Nerve System
NCI81 1396 40700 Colon Cancer
NCI83 2276 27992 Breast Cancer
NCI123 3112 40152 Leukemia
NCI145 1940 40164 Renal Cancer
AIDS 266 7781 HIV Anti-virus

benchmark data sets are collected from PubChem Website1.
The task is to classify chemical compounds’ anti-cancer ac-
tivities on each of the eight types of cancers, e.g. breast
cancer, lung cancer and leukemia. The data sets consist
information on the biological activities of small molecules,
containing anti-cancer activity records of more then 20,000
chemical compounds against the eight types of cancers. Each
chemical compound is represented as a graph. We collected
8 graph data sets with active and inactive labels from Pub-
Chem Website. The original datasets are unbalanced, where
the active class is around 5%. We randomly sample 500
inactive compounds and 500 active compounds from each
dataset for performance evaluation.

2) AIDS anti-virus prediction (HIV): The last benchmark
dataset is collected from the AIDS anti-viral screen pro-
gram2. The task is to classify chemical compounds’ anti-
virus activities on HIV. The data sets consist of screen-
ing records for more than 7700 chemical compounds. Each
chemical compound is assigned with the screening result in

1http://pubchem.ncbi.nlm.nih.gov
2http://dtp.nci.nih.gov/
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(c) NCI41
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(d) NCI47
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(e) NCI81
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(f) NCI83
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(g) NCI123
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(h) NCI145
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Figure 7: Graph classification accuracy after different number of graphs being queried.

one of the following three categories: confirmed active (CA),
confirmed moderately active (CM) and confirmed inactive
(CI). We assume CA+CM as positive labels, and CI as neg-
ative, which is the same setting as [9]. The original data
sets are unbalanced, where the active class is around 3%.
We randomly sampled 266 inactive compounds and used the
original 266 active compounds for performance evaluation.

Comparing Methods: In order to demonstrate the ef-
fectiveness of our dual active feature and sample selection
approach for graph classification, we compare our method
with four baseline methods, including both supervised and
unsupervised feature selection approaches combined with su-
pervised and unsupervised active sample selection approaches.
The compared methods are summarized as follows:

• Dual Active Feature and Sample Selection (gActive):
The proposed method in this paper which selects an im-
portant query graph at each iteration while outputting its
corresponding optimal subgraph features. The parameters
in gActive are set to α = β = 10−3 unless otherwise speci-
fied.

• Supervised Feature Selection + Random Sampling (IG +
Random): We compare with a supervised feature selection
method with random sampling. A set of frequent subgraphs

within the graph dataset are first mined. Then a super-
vised feature selection based upon Information Gain (IG),
an entropy based measure, is used to select a subset of dis-
criminative features from frequent subgraphs. We randomly
select a query graph from the pool.

• Supervised Feature Selection + Margin (IG + Margin):
We compare with a supervised feature selection method with
margin-based active learning for graph classification. In
this approach, a set of frequent subgraphs within the graph
dataset are first mined and we use information gain to select
a subset of discriminative features from frequent subgraphs.
Then margin-based active learning [23], a representative ac-
tive learning approach is used to select informative graphs.

• Unsupervised Feature Selection + Random Sampling (Top-
k + Random): We also compare with an unsupervised fea-
ture selection method with random sampling. In this ap-
proach, we use the top-k frequent subgraph features in the
pool dataset. Then we randomly select query graphs from
the pool.

• Unsupervised Feature Selection + Margin (Top-k + Mar-
gin): We also compare with an unsupervised feature selec-
tion method with margin-based active learning for graph
classification. In this approach, we use the top-k frequent



subgraph features in the pool dataset. Then margin-based
active learning is used to select informative graphs to query.

• Unsupervised Feature Selection + Sequential TED (Top-
k + TED): We also compare with an unsupervised feature
selection method based with an unsupervised active learn-
ing approach based on experiment design. In this approach,
we use the top-k frequent subgraph features in the pool
dataset. Then the sequential transductive experiment de-
sign approach [28] is used to select representative graphs
from the pool dataset.

All experiments are conducted on machines with Intel
XeonTM Quad-Core CPUs of 2.27 GHz and 24 GB RAM.
LibSVM [4] with linear kernel is used as the base classifier
for all the compared methods, and min sup =10% in gSpan.
The default number of selected features in all the compared
methods is set as 500.

4.2 Performances on Graph Classification
In our experiments, we first randomly sample two labeled

graphs from each dataset and used as initial training set, i.e.
one positive and one negative graph. Then we partition rest
of dataset into two parts with equal size: one part is used
as the candidate pool data for active learning algorithms to
query and the other part is used as test data set for perfor-
mance evaluation. In each iteration, one unlabeled graph in
the pool dataset is selected by each active learning method
to be queried with its class label. Then classification mod-
els are retrained by incorporating the latest labeled graph.
The results shown are the average of 50 runs on randomly
sampled graph datasets.

The result of all the compared methods are shown in Fig-
ure 7. We show the number of queried graphs together with
classification accuracies as the evaluation metric. Active
learning methods iteratively select one graph to query class
label in each iteration. We run each of the methods for 50
iterations and compare the learning curves.

In all these datasets, our dual active feature and sample
selection algorithm (gActive) consistently outperforms other
baseline methods on all the nine datasets. The most signifi-
cant case is the NCI33 and NCI145, where both supervised
and unsupervised feature selection with margin-based active
learning baselines (IG+Margin and Top-k+Margin) are un-
able to improve the accuracy than random based baselines
(IG+Random and Top-k+Random). Our method can still
achieve substantially better performances. This result sup-
port our intuition that the feature selection and active query
selection are correlated problems in graph data and should
be optimized together in one framework. Moreover, we no-
tice that in the dataset NCI41 when both the supervised
and unsupervised feature selection with margin-based active
learning baselines can improve the performance over random
based baselines, our gActive method’s improvements can be
much more significant.

4.3 Parameter Settings
In our model we can take different weights on the three

terms of the optimization in Eq. 3. If we use different set-
tings for the two parameter α and β, we can perform the dual
active feature and sample selection with different weights
for the three types of constraints: dependence maximiza-
tion, representativeness and informativeness. Here α repre-
sents how much we weight for the representativeness, and
β denotes how much we weight the informativeness. The
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Figure 8: gActive accuracies with different α and β.
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Figure 9: CPU time with/without pruning.

larger α is, the closer the query graph is with other un-
labeled graphs. The larger the β is, the further away the
query graph is from the other labeled graphs. We test α

and β with values among {100, 10, 1, 0.1, 0.01, 0.001, 0}
separately. The average results for our model in the first
50 iterations are reported. As shown in Figure 8, the per-
formance of our model using α and β with similar values is
often better than other settings. The reason is that in these
real-world graph classification tasks, the constraint for in-
formativeness and representativeness are equally important
for our active feature and sample selection problem.

In Figure 8(a), we find that the best parameter setting for
NCI47 dataset is α = 0.001, β = 0.001 (accuracy = 63.5%),
which is the same as our default parameter setting. The
best parameter setting for NCI145 dataset is α = 0, β =
0.001 (accuracy = 65.5%), and with our default parameter
setting the accuracy is 65.4%. Generally, we can find that
the performance of our gActive model with default setting
is pretty good. If we try to optimize the selection of α and
β value, the accuracy improvement over other baselines will
be even bigger.

We also compared gActive models with and without prun-
ing in the subgraph search space as shown in Figure 9. The
average CPU time with different min sup during the first it-
eration is reported. We can see that the gActive can improve
the efficiencies by branch-and-bound search in the subgraph
search space.

5. CONCLUSIONS
In this paper, we studied the problem of dual active fea-

ture and sample selection for graph classification in order to
minimize the labeling efforts for feature selection in graph
classification. We demonstrated how to simultaneously es-
timate the usefulness of a query graph and effectiveness of
subgraph features candidates by maximizing the dependence
between subgraph features and graph labels based on a max-
min view of pool-based active learning. We propose to query
the most representative and informative graph and select its
corresponding optimal subgraph features. Then a branch-



and-bound algorithm is proposed to efficiently pruning the
subgraph search space.
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