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ABSTRACT
The problem of graph classification has attracted great in-
terest in the last decade. Current research on graph classi-
fication assumes the existence of large amounts of labeled
training graphs. However, in many applications, the la-
bels of graph data are very expensive or difficult to ob-
tain, while there are often copious amounts of unlabeled
graph data available. In this paper, we study the problem of
semi-supervised feature selection for graph classification and
propose a novel solution, called gSSC, to efficiently search
for optimal subgraph features with labeled and unlabeled
graphs. Different from existing feature selection methods
in vector spaces which assume the feature set is given, we
perform semi-supervised feature selection for graph data in
a progressive way together with the subgraph feature min-
ing process. We derive a feature evaluation criterion, named
gSemi, to estimate the usefulness of subgraph features based
upon both labeled and unlabeled graphs. Then we pro-
pose a branch-and-bound algorithm to efficiently search for
optimal subgraph features by judiciously pruning the sub-
graph search space. Empirical studies on several real-world
tasks demonstrate that our semi-supervised feature selection
approach can effectively boost graph classification perfor-
mances with semi-supervised feature selection and is very
efficient by pruning the subgraph search space using both
labeled and unlabeled graphs.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining
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1. INTRODUCTION
Graphs are ubiquitous and have become increasingly im-

portant in modeling diverse kinds of objects. In many real-
world applications, instances are not represented as feature
vectors, but as graphs with complex structures, e.g., chem-
ical compounds, program flows and XML web documents.
One central issue in graph mining research is graph classifi-
cation, which has a wide variety of real world applications,
e.g. drug activity predictions, toxicology tests and kinase
inhibitions. A major difficulty in graph classification lies in
the complex structure of graphs and lack of vector repre-
sentations. Selecting a proper set of features for graph data
is an essential and important procedure for graph classifica-
tion.

The general problem of feature selection is well studied
in the literature. Semi-supervised feature selection problem
for graph data, however, has not been studied in this con-
text so far. Conventional feature selection approaches on
graph data assume, explicitly or implicitly, that there exists
a large amount of labeled training data. However, in many
real world applications, the labels of graph data are very
expensive or difficult to obtain. Creating a large training
dataset can be too expensive, time-consuming or even infea-
sible. For example, in molecular medicine, it requires time,
efforts and excessive resources to test drugs’ anti-cancer ef-
ficacies by pre-clinical studies and clinical trials, while there
are often copious amounts of unlabeled drugs or molecules
available from various sources.

Thus it is much desired that the large amounts of unla-
beled graphs can be effectively utilized to select better fea-
tures for graphs, and improve the graph classification perfor-
mances. For example, in Figure 1, we show a dataset with
two labeled graphs and four unlabeled graphs. Based only
on the two labeled graphs, subgraph feature “a-b” and “a-c”
are both discriminative features. Clearly, when we consider
the distribution of the four unlabeled graphs, “a-b” is more
likely to be useful than “a-c”. This is because the unlabeled
graphs are not separable based on the subgraph feature “a-
c”.

Despite its value and significance, the semi-supervised fea-
ture selection for graph classification is a much more chal-
lenging task due to the specific characteristics of the task.
The reasons are listed as follows.



Figure 1: An example of semi-supervised feature
selection on graph data. The subgraph feature “a-
b” is more useful than “a-c” based on both labeled
and unlabeled graphs.

1. Lack of labels. Conventional feature selection in graph
classification approaches focuses on supervised settings
[7, 14, 13]. The mining strategy of discriminative sub-
graph patterns strictly follows the assumption that
there exists a large amount of labeled graphs. How-
ever, many real-world graph classifications usually suf-
fer from a lack of training graphs. It is usually labori-
ous, or even infeasible to create a large training set of
graph instances.

2. Lack of features. Another fundamental problem in
semi-supervised feature selection on graph data lies in
the complex structures and lack of feature represen-
tations of graphs. Conventional feature selection ap-
proaches in vector spaces, which assume a candidate
feature set is available, cannot be directly applied to
graph data, because it is usually infeasible to generate
all the subgraph features of a graph dataset before fea-
ture selection. The number of subgraphs is usually too
large to be fully generated, since it grows exponentially
with the graph size. Furthermore checking subgraph
isomorphism is NP-complete.

In order to efficiently find discriminative subgraph fea-
tures, conventional supervised subgraph feature min-
ing approaches rely on the label information from a
large training set to prune the subgraph search space
and select useful features [14]. However, when the
number of labeled graphs is not large enough, the use-
fulness of the mined subgraph features can be weak,
and the pruning of the subgraph mining process can
be ineffective.

Figure 2 illustrates the feature selection process in con-
ventional graph classification approaches. Obviously, when
there is only a small number of labeled graphs available, su-
pervised approaches cannot work well due to two reasons:
(1) During the subgraph features mining procedure, super-
vised feature selection approaches for graph classification
need to employ evaluation criteria to select discriminative
subgraph features based on labeled graphs. However, when

the labeled graphs are too few, the usefulness of the se-
lected subgraph features can be weak, and thus detriment
to the classification performances. (2) During the subgraph
feature mining procedure, most supervised graph classifica-
tion approaches require a branch-and-bound search to avoid
exhaustive enumeration of all subgraphs in a dataset. How-
ever, when there are not enough labeled graphs, the pruning
ability of the upper-bound based on labeled graphs can be
poor, thus making it infeasible to find discriminative sub-
graph features within a reasonable amount of time.

In this paper, we introduce a novel framework to the above
problems by mining subgraph features using both labeled
and unlabeled graphs. Our framework is illustrated in Fig-
ure 3. Different from existing supervised feature selection
methods for graph classification, our approach, called gSSC,
can utilize both labeled and unlabeled graphs to find op-
timal subgraph features for graph classification. We first
derive a feature evaluation criterion, named gSemi, based
upon a given graph dataset with both labeled and unla-
beled graphs. Then we propose a branch-and-bound algo-
rithm to efficiently search for optimal subgraph features by
deriving an upper-bound of gSemi and pruning the subgraph
search space using labeled and unlabeled graphs. In order to
evaluate our model, we perform comprehensive experiments
on real-world graph classification tasks. The experiments
demonstrate that the proposed semi-supervised feature se-
lection method for graph classification outperforms super-
vised approaches and is very efficient by pruning the sub-
graph search space using both labeled and unlabeled graphs.

The rest of the paper is organized as follows. We start
by a brief review on related works of graph feature selec-
tion and semi-supervised feature selection in Section 2. We
then introduce the preliminary concepts, give the problem
analysis and present the gSemi criterion in Section 3. In
Section 4, we derive an upper-bound of gSemi and propose
the gSSC method. Then Section 5 reports the experiment
results on real-world graph classification tasks. In Section 6,
we conclude the paper.

Figure 2: Supervised Feature Selection Process for
Graph Classification

Figure 3: gSSC Semi-Supervised Feature Selection
Process for Graph Classification



2. RELATED WORK
To the best of our knowledge, this paper is the first work

on semi-supervised feature selection problem for graph clas-
sification. Some research works have been done in related
areas.

Extracting subgraph features from graph data have been
investigated by many researchers. The goal of such ap-
proaches is to extract informative subgraph features from
a set of graphs. Typically some filtering criteria are used.
Upon whether considering the label information, there are
two types of approaches: unsupervised and supervised. A
typical evaluation criterion is frequency, which aims at col-
lecting frequently appearing subgraph features. Most of the
frequent subgraph feature extraction approaches are unsu-
pervised. For example, Yan and Han develop a depth-first
search algorithm: gSpan [15]. This algorithm builds a lexi-
cographic order among graphs, and maps each graph to an
unique minimum DFS code as its canonical label. Based on
this lexicographic order, gSpan adopts the depth-first search
strategy to mine frequent connected subgraphs efficiently.
Many other approaches for frequent subgraph feature ex-
traction have also been developed, e.g. AGM [5], FSG [8],
MoFa [2], FFSM [4], and Gaston [10]. Moreover, supervised
subgraph feature extraction problem has also been studied in
literature, such as LEAP [14] and CORK [13], which look for
discriminative subgraph patterns for graph classifications.

Dimensionality reduction and feature selection in vector
spaces have also been studied. Several recent works use pair-
wise constraints as weak supervision for dimensionality re-
duction, i.e. must-link constraints [1] (pairs of instances
with the same class) and cannot-link constraints [12] (pairs
of intstances with different classes). Feature selection meth-
ods in vector spaces using both labeled and unlabeled in-
stances have also been proposed [16, 11], which select useful
features within a pre-defined feature set. These methods as-
sume that a set of candidate features is given before the fea-
ture selection. However, conventional semi-supervised fea-
ture selection approaches cannot be directly applied to graph
data, because it is usually infeasible to generate all the sub-
graph features of a graph dataset before feature selection.
The number of subgraphs is usually too large to be fully
generated, since it grows exponentially with the graph size.
Instead, our proposed semi-supervised feature selection for
graph data works in a progressive way: the semi-supervised
feature selection is integrated to the subgraph feature gen-
eration, which can skip most of the bad subgraph features
without even generating them.

3. PROBLEM FORMULATION
In this section, we formulate the semi-supervised feature

selection problem for graph classification based on subgraph
features.

3.1 Semi-Supervised Feature Selection
Before presenting the semi-supervised feature selection model

for graph classification, we first introduce the notations that
will be used throughout this paper. Let D = {G1, · · · , Gn}
denote the entire graph dataset, which consists of n graph
objects, represented as connected graphs. The data set in-
cludes both labeled and unlabeled graphs. We assume that
the first l graphs within D are labeled by {y1, · · · , yl}, where
yi ∈ {−1,+1} denotes the binary class label assigned to Gi.
For convenience, we also denote the labeled graph dataset

by Dl = {G1, · · · , Gl}, and the unlabeled graph dataset as
Du = {Gl+1, · · · , Gn}, D = Dl ∪ Du.

Definition 1 (Connected Graph). A graph is rep-
resented as G = (V, E,L), where V is a set of vertices
V = {v1, · · · , vnv}, E ⊆ V × V is a set of edges, L is the
set of symbols for the vertices and the edges. A connected
graph is a graph such that there is a path between any pair
of vertices.

Definition 2 (Subgraph). Let G′ = (V ′, E′,L′) and
G = (V, E,L) be connected graphs. G′ is a subgraph of
G(G′ ⊆ G) iff: (1) V ′ ⊆ V, (2) E′ ⊆ E, (3) L′ ⊆ L. If
G′ is a subgraph of G, then G is a supergraph of G′.

In this paper, we adopt the idea of subgraph-based graph
classification approaches, which assume that each graph ob-
ject Gi is represented as a feature vector xi = [x1

i , · · · , xm
i ]�

corresponding to a set of subgraph patterns {g1, · · · , gm}.
Denote xk

i as the binary feature associated with the sub-
graph pattern gk. x

k
i = 1 iff gk is a subgraph ofGi (gk ⊆ Gi),

otherwise xk
i = 0.

The key issue of semi-supervised feature selection for graph
classification is how to find the most informative subgraph
patterns from a limited number of labeled graphs and a large
number of unlabeled graphs. So, in this paper, the studied
research problem can be described as follow: in order to train
an effective graph classifier, how to efficiently find a set of
optimal subgraph features from both labeled and unlabeled
graphs?

Mining the optimal subgraph features from both labeled
and unlabeled graphs is a non-trivial task due to the follow-
ing problems:

(P1) How to properly evaluate the usefulness of a set of sub-
graph features based upon both labeled and unlabeled
graphs?

(P2) How to find the optimal subgraph features within a
reasonable amount of time by avoiding the exhaustive
enumeration? The subgraph feature space of graph ob-
jects is usually too large, because the number of sub-
graphs grows exponentially with the size of the graphs.
It is infeasible to completely enumerate all the sub-
graph features for a given graph dataset.

In the following sections, we will first introduce the optimiza-
tion framework for selecting informative subgraph features
from labeled and unlabeled graphs. Next we will describe
our subgraph mining strategy using the evaluation criteria
derived from the optimization solution.

3.2 Optimization Framework
We first address the problem (P1) discussed in Section 3.1

by defining the subgraph feature selection as an optimization
problem. Our target is to find an optimal set of subgraph
features from both labeled and unlabeled graphs. Formally,
let us introduce the following notations:

• S = {g1, g2, · · · , gm}: the given set of all the subgraph
features, which are used to predict class membership
of graph instances. Usually there is only a subset of
the subgraph features T ⊆ S relevant to the graph
classification task.

• T ∗: the optimal set of subgraph features T ∗ ⊆ S .



• J(T ): an evaluation criterion to estimate the useful-
ness of subgraph feature subset T .

• X: the matrix consisting binary feature vectors us-
ing S to represent the graph dataset {G1, G2, · · · , Gn}.
X = [x1,x2, · · · ,xn] = [f1,f2, · · · ,fm]� ∈ {0, 1}m×n,
where X = [Xij ]

m×n, Xij = 1 iff gi ⊆ Gj . The first l
graphs are labeled as y1, · · · , yl.

• C and M: C = {(i, j)|yiyj = −1} denotes the cannot-
link pairwise constraint sets among labeled graphs.
M = {(i, j)|yiyj = 1} denotes the must-link pairwise
constraint sets among labeled graphs.

We propose the following general optimization framework
to select optimal subgraph feature set:

T ∗ = argmax
T ⊆S

J(T ) s.t. |T | ≤ t, (1)

where | · | denotes the size of the feature set and t is the
maximum number of feature selected. The objective func-
tion in Eq. 1 has two components: the evaluation criterion
J(T ) and the subgraph features of graphs S .

We assume that the optimal subgraph features set should
have the following properties: (a) cannot-link : labeled graphs
in different classes should be far away from each other; (b)
must-link : labeled graphs in the same class should be close
to each other; (c) separability : unlabeled graphs should be
able to be separated from each other. Intuitively, (a) and (b)
only consider the constraints from labeled graphs, and tend
to select the most discriminative subgraph features based on
the graph labels. They are similar to the LDA [9] criterion.
Note (c) incorporates the distribution of unlabeled graphs,
and tends to select the subgraph features that can sepa-
rate graphs far from each other. It is similar to the PCA’s
assumption, which is expressed as the average squared dis-
tance between unlabeled samples. An opposite example for
property (c) is: The subgraph features that are too rare or
too frequent in the dataset are not useful at all, because
unlabeled graphs cannot be separated from each other us-
ing these subgraph features. Similar assumptions have also
been used by previous works on dimensionality reduction in
vector spaces [16].

Based upon the above properties, we derive an evaluation
criterion J(T ) as follow:

J(T ) =
α

2|C|
∑

yiyj=−1

(DT xi −DT xj)
2

− β

2|M|
∑

yiyj=1

(DT xi −DT xj)
2

+
1

2|Du|2
∑

Gi,Gj∈Du

(DT xi −DT xj)
2

(2)

where DT = diag(d(T )) is a diagonal matrix indicating
which features are selected into feature set T from S , d(T )i =
I(gi ∈ T ). α, β are two parameters, which control the
weights of the three types of constraints. Different settings
of α and β can refer to different scenarios, and reflect differ-
ent beliefs we have for the problem. A discussion on the pa-
rameter setting will be presented analytically in Section 4.4
and empirically in Section 5.4.

By defining a matrix W = [Wij ]
n×n as

Wij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α
|C| if yiyj = −1

− β
|M| if yiyj = 1
1

|Du|2 if Gi, Gj ∈ Du

0 otherwise

(3)

we can rewrite the J(T ) in Eq. 2 as follow:

J(T ) =
1

2

∑
i,j

(DT xi −DT xj)
2 Wij

= tr(DT
�X (D −W )X�DT )

= tr(DT
�XLX�DT )

=
∑
gk∈T

(fk
�Lfk)

(4)

where tr(·) is the trace of a matrix, D is a diagonal matrix
whose entries are column sums of W , i.e. Dii =

∑
j Wij .

L = D −W is a Laplacian matrix.
By denoting function h(gk, L) = fk

�Lfk, the optimiza-
tion in Eq. 1 can be written as

max
T

∑
gk∈T

h(gk, L)

s.t. T ⊆ S , |T | ≤ t

(5)

Definition 3 (gSemi). Let D = {G1, · · · , Gn} denote
a graph dataset, with first l graphs labeled as y1, · · · , yl. Sup-
pose W is a matrix defined as Eq. 3. L is a Laplacian ma-
trix defined as L = D −W , where D is a diagonal matrix,
Dii =

∑
j Wij. We define a quality criterion q called gSemi,

for a subgraph feature g as

q(g) = h(g, L) = fg
�Lfg (6)

where fg = [f
(1)
g , · · · , f (n)

g ]� ∈ {0, 1}n is the indicator vector

for subgraph feature g, f
(i)
g = 1 iff g ⊆ Gi (i = 1, 2, · · · , n).

Since the Laplacian matrix L is positive semi-definite, for
any subgraph pattern g, q(g) ≥ 0.

The optimal solution to the problem in Eq. 5 can be found
by using gSemi to make feature selection on a set of sub-
graphs S . Suppose the gSemi values for all subgraphs are
denoted as q(g1) ≥ q(g2) ≥ · · · ≥ q(gm) in sorted order.
Then the optimal solution to the optimization problem in
Eq. 5 is:

T ∗ = {gi|i ≤ t}. (7)

4. gSSC
In this section, we address the problem (P2) discussed

in Section 3.1 by proposing an efficient method to find the
optimal set of subgraphs features from a dataset with both
labeled and unlabeled graphs.

The straightforward method is the exhaustive enumera-
tion: We first enumerate all subgraph patterns in the graph
dataset, and then calculate the gSemi values for all subgraph
patterns. This method is usually impractical, because the
number of subgraphs grows exponentially with the size of the
graphs. Inspired by recent graph classification approaches,
e.g. [14], which put their evaluation criteria into the sub-
graph pattern mining process and develop constraints to



prune search spaces, we take a similar approach by deriv-
ing a different constraint from both labeled and unlabeled
graphs. In order to avoid the exhaustive search, we proposed
a branch-and-bound algorithm, named gSSC, which is sum-
marized as follow: a) Adopt a canonical search space where
all the subgraph patterns can be enumerated. b) Search
through the space, and find the optimal subgraph features
by gSemi. c) Propose an upper bound of gSemi and prune
the search space. Details with these three steps will be de-
scribed in the next subsections.

4.1 Subgraph Mining
In this paper, we adopted a depth first search algorithm,

gSpan proposed by Yan et al[15], to enumerate all subgraphs
from a graph dataset. The key idea of gSpan[15] is that,
instead of enumerating subgraphs and testing for isomor-
phism, they first build a lexicographic order of all the edges
of a graph, and then map each graph to an unique mini-
mum DFS code as its canonical label. The minimum DFS
codes of two graphs are equivalent iff they are isomorphic.
Details can be found in [15]. Based on this lexicographic or-
der, a depth-first search (DFS) strategy is used to efficiently
search through all the subgraphs in a DFS code tree. By a
depth-first search through the DFS code tree’s nodes, we can
enumerate all the subgraphs of a graph in their DFS codes’
order. And the nodes with non-minimum DFS codes can be
directly pruned in the tree, which saves us from performing
an explicit isomorphic test among the subgraphs.

4.2 Upper Bound of gSemi
By adopting gSpan’s DFS Code Tree, we can efficiently

enumerate all the subgraph patterns of a graph dataset in a
canonical search space. We now derive an upper bound for
the gSemi value which can be used to prune the subgraph
search space. A convenient method to compute a upper-
bound on gSemi value is given as follow:

Theorem 1 (Upper bound of gSemi). Given any two
subgraphs g, g′ ∈ S, g′ is a supergraph of g (g′ ⊇ g). The
gSemi value of g′ (q(g′)) is bounded by q̂(g) (i.e., q(g′) ≤
q̂(g)). q̂(g) is defined as follow:

q̂(g) � fg
�L̂fg (8)

where the matrix L̂ is defined as L̂ij � max(0, Lij). fg =
{I(g ⊆ Gi)}ni=1 ∈ {0, 1}n is a vector indicating which graphs
in a graph dataset {G1, · · · , Gn} contain the subgraph g, I(·)
is the indicator function. Suppose the gSemi value of g is
q(g) = fg

�Lfg.

Proof.

q
(
g′
)
= fg′

�Lfg′ =
∑

i,j:Gi,Gj∈G(g′)

Lij

where G(g′) � {Gi|g′ ⊆ Gi, 1 ≤ i ≤ n}. Since g′ is
the supergraph of g (g′ ⊇ g), according to anti-monotonic

property, we have G(g′) ⊆ G(g). Also L̂ij � max(0, Lij), we

have L̂ij ≥ Lij and L̂ij ≥ 0. So,

q
(
g′
)
=

∑
i,j:Gi,Gj∈G(g′)

Lij ≤
∑

i,j:Gi,Gj∈G(g′)

L̂ij

≤
∑

i,j:Gi,Gj∈G(g)

L̂ij = q̂ (g)

Thus, for any g′ ⊇ g, q(g′) ≤ q̂(g).

T = gSSC(D, yl, min sup, t)
Input:

D : Graph data set {G1, · · · , Gn}
yl : The first l graphs’ labels, where

yl = [y1, · · · , yl]�
min sup : Minimum support threshold

t : number of subgraph feature selected
Process:

1 T = ∅, θ = 0;
2 Recursively visit the DFS Code Tree in gSpan:
3 g = currently visited subgraph in DFS Code

Tree
4 if |T | < t, then
5 T = T ∪ {g};
6 else if q(g) > ming′∈T q(g′), then
7 gmin = argming′∈T q(g′) and T = T /gmin;
8 T = T ∪ {g} and θ = q(gmin);
9 if q̂(g) ≥ θ and freq(g) ≥ min sup, then

10 Depth-first search the subtree rooted from
node g;

11 return T ;
Output:
T : Set of optimal subgraph features

Figure 4: The gSSC algorithm

4.3 Pruning Search Space
We can now utilize the upper bound to efficiently prune

the DFS Code Tree with a branch-and-bound method. Dur-
ing the depth-first search through the DFS Code Tree, we
always maintain the temporally suboptimal gSemi value (de-
noted by θ) among all the gSemi values calculated before. If
q̂(g) < θ, the gSemi value of any supergraph g′ of g (g′ ⊇ g)
is no greater than θ. Thus, we can safely prune the subtree
from g in the search space. If q̂(g) ≥ θ, we cannot prune
this space since there might exist a supergraph g′ ⊇ g that
q(g′) ≥ θ.

The algorithm gSSC is summarized in Figure 4. We ini-
tialize a set of selected subgraphs T as an empty set. In or-
der to speed up the mining process, we can prune the search
space from gSpan by always maintaining the currently top-t
best subgraphs according to q. During the course of mining,
whenever we reach a subgraph g with q̂(g) ≤ mingi∈T q(gi),
we can prune the branches originating from g. This is be-
cause for any supergraph g′ ⊇ g we have q(g′) ≤ q̂(g),
according to the bound defined in Eq. 8. As long as the
resulting subgraph g can improve the gSemi value of any
subgraphs gi ∈ T , it is accepted into T and the least best
subgraph is dropped off from T . And then we start search-
ing for the next subgraph in the DFS Code Tree.

We further note that in our experiments among almost
all datasets gSemi provides such a bound that we can even
omit the support threshold min sup and still find a set of
optimal subgraphs within a reasonable time cost.

4.4 Discussion
In this section we show the connection between our frame-

work and various application scenarios of graph classifica-
tion.

Parameter Setting: There are two parameters in the
objective function: α and β, which represent the weights of
different constraints based on both labeled and unlabeled



graphs. Different settings of these parameters fit the opti-
mization to different scenarios of graph classification:

• α 	= 0, β = 0. In this case, we only consider the
cannot-link constraints and unlabeled graph’s separa-
bility in subgraph feature selection. No must-link con-
straint is considered, i.e. labeled graphs within the
same classes are not necessarily close together. α con-
trols how much we assume labeled graphs within differ-
ent classes should be far from each other. This setting
of parameters is useful when there is a large diver-
sity within graphs from the same class. For example,
drug molecules that have the same toxicology activi-
ties on one animal can have very different structures.
Furthermore, if α = +∞, we only trust the cannot-link
constraints. This reduce the problem into a supervised
feature selection task.

• α = 0, β 	= 0. In this setting of parameter, we only
consider themust-link constraints and unlabeled graph’s
separability in subgraph feature selection. The larger
β is, the more we trust the must-link constraints in
feature selection. No cannot-link constraint is consid-
ered, i.e. labeled graphs in different classes are not
necessarily far from each other.

• α = 0, β = 0. In this case, we don’t trust label con-
straints. Only unlabeled graph’s separability is con-
sidered in subgraph feature selection. This reduce the
problem into an unsupervised feature selection task for
the unlabeled graph data.

• α 	= 0, β 	= 0. In this case, we consider all con-
straints (must-link, cannot-link, unlabeled separabil-
ity) with different weights. This setting is a typical
setting for semi-supervised feature selection, where we
need to consider both labeled and unlabeled graphs.
The smaller the values of α and β, the more we trust
the separability constraints from unlabeled graphs.

5. EXPERIMENTS
In this section, we conduct extensive experiments to exam-

ine the effectiveness and efficiency of gSSC in semi-supervised
feature selection for graph classification.

5.1 Experimental Setup
Data Collections: In order to evaluate the performances

of our semi-supervised feature selection approach for graph
classification, we tested our algorithm on five real-world
graph classification datasets including the following tasks:
(Summarized in Table 1)

Table 1: Summary of experimental datasets.
“Pos%” denotes the average percentage of postive
graphs in each dataset.

Name #Graph Pos% Details
MCF-7 27784 8.19 Breast Cancer
NCI-H23 40460 5.06 Lung Cancer
OVCAR-8 40626 5.08 Ovarian Cancer
PTC-MM 336 41.0 Male Mice Toxicology
PTC-FM 349 38.4 Female Mice Toxicology

1) Anti-cancer activity prediction: The first three bench-
mark datasets are collect from PubChem Website1.
The task is to classify chemical compounds’ anti-cancer
activities on three types of cancers, i.e. breast, lung
and ovarian. The datasets consist information on the
biological activities of small molecules, containing anti-
cancer activity records of more then 10,000 chemical
compounds against the three types of cancers. Each
chemical compound is represented as a graph. We col-
lected 3 graph datasets with active and inactive la-
bels from PubChem Website. The original datasets
are unbalanced, where the active class is around 5%.
We randomly sample 500 inactive compounds and 500
active compounds from each dataset for performance
evaluation.

2) Toxicology prediction (PTC): The last two benchmark
datasets are collected from PTC datasets2 [3]. The
task is to classify chemical compounds’ carcinogenicity
on two animal models, i.e. MM (Male Mouse) and FM
(Female Mouse). The datasets consist carcinogenicity
records of more than 300 chemical compounds. Each
chemical compound is assigned with carcinogenicity la-
bels for these animal models. On each animal model
the carcinogenicity label is one of {CE, SE, P, E, EE,
IS, NE, N}. We assume {CE, SE, P} as ‘positive’ la-
bels, and {NE, N} as ‘negative’, which is the same set-
ting as [6, 7]. Each chemical compound is represented
as a graph with an average of 25.7 vertices.

Comparing Methods: In order to demonstrate the ef-
fectiveness of our semi-supervised features selection approach
for graph classification, we compare our methods with two
baseline methods, including a supervised feature selection
approach and an unsupervised approach.

The compared methods are summarized as follows:

• Semi-Supervised (gSSC): The proposed semi-supervised
feature selection method for graph classification. We
first use gSSC to find a set of subgraph features. The
parameters in gSSC are set to α = β = 1 unless oth-
erwise specified.

• Supervised (IG): We compare with a supervised fea-
ture selection method for graph classification. In this
approach, a set of frequent subgraphs within labeled
graphs are first mined. Then a supervised feature se-
lection based upon Information Gain (IG), an entropy
based measure, is used to select a subset of discrimi-
native features from frequent subgraphs.

• Unsupervised (Top-k): We also compare with an un-
supervised feature selection method. In this approach,
the evaluation criterion for subgraph feature selection
is based upon frequency. The top-k frequent subgraph
features in labeled graphs are selected.

All experiments are conducted on machines with 4 GB RAM
and Intel XeonTMQuad-Core CPUs of 2.40 GHz.

5.2 Performances on Graph Classification
In our experiments, the labeled training graphs are ran-

domly sampled from each datasets. All the remaining graphs

1http://pubchem.ncbi.nlm.nih.gov
2http://www.predictive-toxicology.org/ptc/
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Figure 5: Classification accuracy with different number of features. (#label=30)
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Figure 6: Classification accuracy with different number of features. (#label=50)
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Figure 7: Classification accuracy with different number of features. (#label=70)

are used as unlabeled testing graphs. The results are average
of over 30 runs of randomly sampled graph dataset. After
the subgraph feature sets are selected by each method, the
nearest neighbor (1-NN) classifier is used for classification.

The result of the feature selection methods with differ-
ent number of labeled training graphs are displayed in Fig-
ure 5 (# labeled graphs =30), Figure 6 (# labeled graphs
=50) and Figure 7 (# labeled graphs =70). We show the
number of selected subgraphs t among frequent subgraphs
(min sup = 10%), together with classification accuracy as
the evaluation metric.

In all these datasets, our semi-supervised feature selection
algorithm (gSSC) outperform the supervised approach (IG).
gSSC can achieve a good performances with a few labeled
training graphs together with a large amount of unlabeled
graphs. Although the performance of IG improves with a
larger number of features, the IG cannot reach the best
performance achievable by gSSC. These results support our
first intuition that semi-supervised feature selection meth-
ods based on gSemi can boost the performance of graph
classification with large amount of unlabeled graphs.

We further observe that gSSC’s performances are better
than our second baseline Top-k, i.e. unsupervised feature se-
lection approaches without label information. These results
support our second intuition that the gSemi evaluation cri-
terion in gSSC can find better subgraph patterns for graph
classification than unsupervised top-k frequent subgraph se-
lection approaches.

5.3 Pruning Search Space
In our second experiment, we evaluated the effectiveness of

the upper-bound for gSemi proposed in Section 4.2. In this
section we compare the runtime performance of two versions
of implementation for gSSC: ‘nested gSSC’ versus ‘un-nested
gSSC’. The ‘nested gSSC’ denotes the proposed method
using the upper-bound proposed in Section 4.2 to prune
the search space of subgraph enumerations; the ‘un-nested
gSSC’ denotes the method without the gSemi’s upper-bound
pruning, which first uses gSpan to find a set of frequent sub-
graphs, and then selects the optimal set of subgraphs via
gSemi. We run both approaches and record the average
CPU time used on feature mining and selection. The result
is shown in Figure 8.

In all these datasets, the un-nested gSSC needs to explore
increasingly larger subgraph search spaces as we decrease
the min sup in the frequent subgraph mining. The size
increases exponentially when decreasing min sup. In the
MCF-7 dataset, when the min sup get too low ( min sup <
8%), the subgraph feature enumeration step in un-nested
gSSC can run out of the computer memory. However, the
nested gSSC’s running time does not increase as much, be-
cause the gSemi can help pruning the subgraph search space
using both labeled and unlabeled graphs. As we can see,
the min sup can go to very low value in all datasets for the
“nested gSSC”.

Figure 9 shows the number of subgraph feature explored in
the process of subgraph pattern enumeration. In all datasets,
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Figure 8: Average CPU time for nested gSSC versus un-nested gSSC with varying min sup.

2 5 8 11 14 17
     100

    1000

   10000

  100000

min_sup%

# 
Su

bg
ra

ph
s 

E
xp

lo
re

d

 

 

nested
gSSC

unnested
gSSC

a) MCF-3

 2  5  8 11 14 17
     100

    1000

   10000

  100000

min_sup%

# 
Su

bg
ra

ph
s 

E
xp

lo
re

d

 

 

nested
gSSC

unnested
gSSC

b) NCI-H23

 2  5  8 11 14 17
     100

    1000

   10000

  100000

min_sup%

# 
Su

bg
ra

ph
s 

E
xp

lo
re

d

 

 

nested
gSSC

unnested
gSSC

c) OVCAR-8

Figure 9: Average number subgraph patterns explored during mining for nested gSSC versus un-nested gSSC
with varying min sup.
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Figure 10: Classification accuracy of gSSC with different α and β. (#label=50)

we observe that the number of searched subgraph patterns in
nested gSSC is much smaller than that of un-nested gSSC. In
our experiments, we further noticed that on most datasets,
nested gSSC provides such a strong bound that we may even
allow nested gSSC to omit the minimum support threshold
min sup and still receive an optimal set of subgraph features
within a reasonable time.

5.4 Parameter Settings
In our model we can take different weights on constraints

from labeled graphs and unlabeled graphs. If we use differ-
ent setting for the two parameters α and β, we can take the
feature selection with different weights for the three types
of constraints: must-link, cannot-link and unlabeled sep-

arability. α represents how much we weight the cannot-
link constraints, and β denotes how much we weight the
must-link constraints. The larger α is, the further away the
graphs with different classes are separated from each other.
The larger β is, the closer the graphs with the same classes
are from each other. We test α and β with values among
{0.001, 0.01, · · · 10000} separately. The result in Figure 10
shows that the performance of our model using α with large
values and β with small values is often better than other
settings. The reason is that in these real-world graph classi-
fication tasks, graphs in the same class are not always similar
with each other, actually graphs can be very different within
a same class.

In Figure 10, we find the best parameter setting for MCF-



3 dataset is α = 1, β = 0.1 (accuracy = 0.526), and with
our default parameter setting (α = β = 1) the accuracy is
0.523. For NCI-H23 dataset, the best parameter setting is
α = 1, β = 0.1 (accuracy= 0.556), and the accuracy with
default setting is 0.553. For OVCAR-8 dataset, the best
parameter setting is α = 1, β = 0.1 (accuracy= 0.539), and
the accuracy with default setting is 0.530. Generally, we
can see that the performance of gSSC with default setting (
α = β = 1) is pretty good. If we try to optimize the selection
of α and β value, the accuracy improvement relative the two
base line schemes will be even bigger.

6. CONCLUSION
In this paper, we study the problem of semi-supervised

feature selection for graph classification. It is significantly
more challenging than the conventional setting of supervised
feature selection in graph data because of the lack of labeled
training graphs. To address this challenge, we propose a
feature evaluation criterion, named gSemi, to evaluate sub-
graph features with both labeled and unlabeled graphs, and
derive an upper-bound for gSemi to prune the subgraph
search space. Then we propose a branch-and-bound algo-
rithm to efficiently find a set of optimal subgraph feature
which is useful for graph classification. Empirical studies
on real-world tasks show that our semi-supervised feature
selection approach for graph classification outperforms su-
pervised and unsupervised approaches and is very efficient
by pruning the subgraph search space using both labeled
and unlabeled graphs.
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