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Abstract—Brain network discovery has attracted much atten-
tion in recent years, which aims at inferring a set of cohesive
regions (i.e., the network nodes) and the connectivity between
these regions (i.e., the network edges) in human brain from the
neuroimaging data (e.g., fMRI, PET scans). Previous methods
on brain network discovery mainly focus on either estimating
the connectivity based on predefined brain regions, or inferring
the brain regions and connectivity independently. However, the
tasks of discovering brain regions and their connectivity are
highly related to each other and should be discovered collectively,
instead of independently. In this work, we propose a coherent
data-driven method called SGGL (Spectral Group Graphical
Lasso) to derive the nodes and edges of a brain network
simultaneously. We propose a screening strategy to reduce the
time cost of solving the corresponding optimization problem.
Extensive experiments are performed on both synthetic data and
real data from ADHD-200 project. The results demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

The modern science of graphs and networks has brought
significant advances to people’s understanding of complex
systems and the interactions within them. One of the most so-
phisticated systems, human brain, has recently attracted much
interest due to the growing availability of high resolution brain
imaging data. Brain can be viewed as a network structure, in
which neurons are organized into multiple homogeneous re-
gions, and complex interactions exist between neurons within
and across different regions. The network representation of
human brain as shown in right-hand-side of Figure [ is useful
in many ways. For example, previous studies show that one
can employ subgraph selection to build classification models
on brain networks to aid disease diagnosis [I]. However, the
nodes and edges in brain networks are usually not given and
should be derived from the brain imaging data. Thus, the
discovery of brain networks is required before one can conduct
network analysis on human brain, as illustrated in Figure .

Formally, the brain network discovery problem corresponds
to infer a set of functionally homogeneous brain regions as the
network nodes and the connectivity across these regions as the
network edges from the brain imaging data. Previous works in
this line usually focus on inferring the edges based on known
groups [2] (as shown in Figure P(a]) or inferring nodes and
edges independently (as shown in Figure PZ(b)). In Figure [(a],
the network nodes are already given by some predefined brain
atlas, which are usually extracted by neurology professionals
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using anatomical analysis. Besides, the independent inference
framework shown in Figure infer the nodes and edges
of the brain network separately. On one hand, it derives the
groups from the time series data. On the other hand, it infers
the edges between these derived groups using the time series
data. Although above two methods are straightforward and
popular approaches to infer the brain network, they are limited
due to following reasons:

e In edge/link discovery, existing methods, such as
sparse Gaussian graphical model [B], [#], assume the
nodes/groups are given. However, the given groups may
be inferred anatomically and contain subregions that are
each characterized by different functional connectivity
patterns. It may limit the quality and utility of the inferred
network.

o In node/group discovery, existing methods, such as k-
means [8] and spectral clustering [8], usually infer
groups without considering edges/links or assume that the
edges/links are given. However, in brain imaging data, the
edges/links are usually not given and should be derived
from the data. Inferring the group without considering the
edges/links may lead to unsatisfactory results.

¢ In both methods shown in Figure and Z(b), once the
groups are derived, it is difficult or impossible for one
to improve it based on edges/links discovered in latter
stages.

¢ Due to the existence of the log determinant in the group
graphical Lasso problem, it is computationally expensive
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Fig. 2. Comparison of different brain network inference methods. (a) inference with known groups; (b) independent inference; (c) the proposed collective

discovery of brain network.

to solve the corresponding maximum likelihood problem.

Thus, a coherent method which can infer both nodes and
edges simultaneously is desired to address the aforementioned
issues. In this paper, we propose such a method called SGGL,
which is illustrated in Figure P(c], to infer brain network
collectively by alternating optimizing the process of node
inference and edge inference. In SGGL, the inferred edges
(links) are used to further update the groups (nodes). We
build an iterative algorithm using alternating optimization. Our
proposed method leverages the synergy of group inference
and link inference, which can improve the quality of the
inferred brain network. The major contributions of this work
are summarized as follows:

o We identify the limitations of existing methods for brain
network discovery. We show that the node discovery
and edges discovery should be considered together and
inferred simultaneously.

« We propose a coherent data-driven method that can dis-
cover nodes and edges of the brain network collectively.

o We propose a screening strategy to reduce the time cost
of solving the group graphical Lasso problem.

o We evaluate the proposed model using both synthetic data
and real-world ADHD-200 data. Results demonstrate the
effectiveness of the proposed methods.

II. NETWORK DISCOVERY

Throughout this paper, R denotes the set of all real numbers,
R™ stands for the n-dimensional euclidean space. The set of
all m x n matrices with real entries is denoted as R™*",
All matrices are written in bold format. All sets are written
in calligraphical format. We write X > 0 to denote that X
is positive definite. We write tr(-) to refer the trace of a
matrix, which is defined to be the sum of the elements on
the main diagonal of the matrix. We use det(X) to denote
the determinant of a real square matrix X. Suppose X is
a square matrix, DiagMat(X) denotes the matrix formed by
retaining the elements on the main diagonal of X and set other
elements to 0. The important notations used in this paper are
also summarized in Table I.

Assume we are given a p-variate normal observations
X € R"*P, where n denotes the number of samples and p

denotes the number of variables. The n samples have mean
of p and covariance of 3. Thus, we have the formulation
xM . xm) N(p,X). We can assume p = 0 without
losing generality, the problem of estimating the inverse of
covariance matrix ® ~ X! from X can be cast as follows
(3], (4]

argmin — logdet ©® + tr(SO®) + A||O||; (1)

©>0

Eq. (M) is also known as Graphical Lasso (GLasso), where
S = %XXT is the empirical covariance matrix and /¢
regularization is posed to encourage sparsity (A is the pa-
rameter to control the sparseness of estimated matrix). Note
that Eq. (W) is convex and can be solved by various dual
methods [B], [], [6] and primal methods [[], [R]. In this paper,
we consider a variation of GLasso, which desires block-wise
sparse estimation of X~ !:

arg min — log det ©® + tr(S®) + Z Aijl{®a,.c; HlF (@
©>0 —
iJ

where G; is the set of indices for all the elements in group

i. And we use D = {Gy,...,G} to denote the set of all

such groups, where L is the total number of groups. Without

losing generality, we pose separate regularizer \;; for each

group pair (G, G;).

A. Link Inference

We first assume that the groups D are given and to solve
Eq. @). Let f(©) = —logdet ®+tr(S®). We can replace the
non-differentiable regularization term with a linear function.
To do this, we introduce an additional variable h;; for each
group pair (G;, G;), then Eq. (B) is equivalent to

arg min f(@) + Z)\”h” , S.t. hij > ||®Gi,Gj||F 3)
©~0,h o

where h = (hi1, hio, ..., hp1). We note that each constrain in
(B) is actually an ¢ norm cone [H]. Thus, Eq. (B) can be solved
by the spectral projected-gradient (SPG) method [I0]. To solve
Eq. (B), SPG needs to compute the minimizer iteratively as
follows

O, = Pe(O, — avf(®)) 4)



TABLE I
IMPORTANT NOTATIONS.

Symbol | Definition
p | the number of variables or objects
n | the number of samples
X € R™"*P | n observations of p-variate Gaussian distribution
3 € RPXP | The covariance of p-variate Gaussian distribution
S € RPXP | The empirical covariance matrix
© € RPXP | The true precision matrix of a network
© € RPXP | The estimated precision matrix of a network
L | the number of groups
G; | the set of indices in group %
D ={G1,...,Gr} | the set of group indices sets
DiagMat(-) | the matrix obtain by only retaining the elements on the diagonal of -
A the regularization terms

where f(@) = f(®)+>_,; ; Aijhij, o is the maximal step size
selected by non-monotonic Armijo backtracking line search
[IT] and Pc is the Euclidean projection onto a closed convex
set C:

Pe(x) = argmin ||z — y||r 3)

yeC

where C = {®|h;; > [|®¢, q,||r} for our problem. It is
usually computationally expensive to solve problem (8) [12].
Fortunately, since groups in Eq. (B) are non-overlapping with
each other, so each projection can be solved independently. For
any given variable h;; of group pair (G;,G;), the projection
has closed form solution [I73], [9] as follows

(@, hig), it 2|lr < hij,
(:i‘,hij), if HCCHF > hija
Pc(w,hij) = Ha:||p + hij > 0, (6)
if HCEHF > hij7
(0,0)7 Hw||F+th SO
where & = ﬁ”m‘l‘”%,” and h = HEHF% Accordingly,

the sub-problem Eq. (#) can be solved in O(|®]) using
Eq. (B). Note that in Eq. (B), ® is constrained to be positive
definite, it is proved that one can always find such step size
« satisfying the constraint [[Z]. The algorithm is summarized
in Alg. .

Algorithm 1 SPG Method for Solving Eq. (B)

Require: S, D {G1,...,Gr}, A

1,..., L} iterman

Initialize © «+ (DiagMat(S)) ™1, iter + 0

Project the initial estimation ®¢ < P¢(®g)

ft < f(©0) , g1 < Vf(©o)

repeat
Initialize « using Barzilai-Borwein step size
Choose the « by performing the non-monotonic

Armijo backtracking line search

7: Compute the new projection @411 + Pe(O; — agy)
using Eq. (B).

: Compute the new objective function fi41 < f(@y1)
Compute the new gradient jyy1 < Vf(©;41)

until ¢ter = iter,,q, or convergence

Return ©; 4

AN A > Ao

11:

B. Group Inference

Group inference can be done by applying clustering meth-
ods such as k-means directly on the p-variate normal ob-
servations X, but it is difficult for one to refine the groups
afterwards. We notice that the output of the Gaussian graphical
model can be viewed as a similarity matrix or affinity matrix,
which can be used as the input for spectral clustering [I4].
The similarity matrix is defined as a symmetric matrix S,
where S;; > 0 measures the similarity between variable i
and variable j.

Spectral clustering requires all elements in the affinity
matrix to be non-negative. Thus, an thresholding can be done
after we obtain the estimated precision matrix ©, one simple
thresholding function is

Q(O) = abs(O) (7)

where abs(-) produces the absolute value for each element in
.

C. Collective Network Discovery

Algorithm 2 SGGL (Spectral Group Graphical Lasso)
Require: S, k&, \, A, iterax

1: Initialize @ < GLasso(S,\)

2: Initialize Dy « SpectralClus(2(Oy),k)

3: Initialize iter < 0

4: repeat

5 Update ©;,1 <« SPG(S,D;, A) using Algorithm [

with screening
Update D41 + SpectralClus(Q(Os4q),k)
7. until iter = iter,,,, or convergence
8: Return ®t+laDt+1

In this section, we present the proposed SGGL method.
Without the group information given a priori, we first utilize
the Gaussian graphical model to infer an initial network in
which each variable itself is a group. We do this by assuming
the network is sparse, so it is equivalent to solve Eq. ().
Given the empirical covariance matrix S and the regularization
parameter Aj;, the estimated precision matrix ®y can be
derived by applying existing GLasso algorithm. In the next
step, we first transform @ using thresholding function (-),



and then apply widely used spectral clustering on 2(©) to
obtain the initial group Dy. In the iterative part, SGGL first
updates the estimated precision matrix by solving Eq. @ with
group information given by Dy. Then it updates the estimated
group by applying spectral clustering on the updated precision
matrix. This process is repeated until the algorithm converges
or the maximum number of iterations is reached. Generally,
one can set \;; = A to assign the same regularization
term for every group pairs in D. However, one can penalize
each group separately by assigning a regularization vector
A = {\jli,j = 1,...,L} to the SGGL method. This can
be useful in various circumstances, for example, one may
want to assign different magnitude of regularization on the
off-diagonal blocks and diagonal blocks to encourage different
sparsity between groups and within. The convergence check
can be performed in several ways. We choose to compute the
update of the precision matrix in each iteration as

up = [|@py1 — O |F ®)

In our implementation, the iterative procedure stops when
up < 107°. The SGGL algorithm is summarized in Alg. D.

D. Screening

Due to the existence of the log determinant, it is computa-
tionally expensive to solve the penalized log likelihood model
in Eq. (B) or Eq. (@) by applying Algorithm [0 directly. The
screening strategy has commonly been used to reduce the size
of optimization problems as well as the computational time for
solving the problems. In [I3], Kolar et al. proposed a sufficient
condition for the solution of (P) to be block diagonal:

1S, llr < AMVG N Gy M+l )

where C{A)7 ey CJ(\?‘) are the block structures of the optimal
solution to (B) with regularization term equals to A, SGi’Gj
denotes the sub-matrix of the empirical covariance matrix
S, and G; is the i-th group of features. We utilize the
sufficient condition to derive the screening rule for () as
follows. We first compute the empirical covariance matrix
S from the data. Then we define the group-based F-norm
matrix S(F), where each entry Sl(f) = [ISq,,q,l|r. Given
A= {\jli,j=1,...,L}, we perform a thresholding on the
entries of S() as

g { 1, if S > Ay

(10)
0, otherwise

to obtain the graph edge skeleton E). Similarly, E®) defines
a symmetric graph on nodes V' = {1,...,L} given by
G = (V,E™) | where each node actually stands for a
group of features. In order to find the connected components
of GM, we apply DFS algorithm to decompose it into N’
isolated parts: GV = UZL:1 Qé)‘). Since each component Qé)‘)
is corresponding to a block structure C N in the optimal
solution ®* of (¥), we can conclude that Oca, cy = 0
for all [ # I’. Thus, one can instead solve (D) by deriv-
ing G)Cf"cf" PN independently, which are much

@CO\ C)‘
N/ N/ L.
smaller problems compared to the original one.

III. EXPERIMENTAL EVALUATION
A. Synthetic Data with Ground-Truth

We first evaluate our model using synthetic data, where
ground-truth is available. We follow the approach in [I6]
to generate the synthetic precision matrix. Particularly, we
first generate block diagonal matrix ® with p features and
L diagonal blocks (groups), each block ®O¢, g, is of size
p/L x p/L and has random sparsity structures. We control the
density of each block on diagonal to be 0.7 = 0.1, and then
we add off-diagonal blocks to ® as follows to simulate the
interconnections between groups. We first select SL(L — 1)/2
pairs of groups randomly, where 3 is the parameter of inter-
connection density. We control the density of each off-diagonal
block to be about 0.3 4= 0.05. Given the precision matrix ®,
we draw 7 samples from the Gaussian distribution to compute
the empirical covariance matrix.

Three synthetic precision matrices and empirical covariance
matrices are generated using the parameters as follows

o Dataset 1(Weak Interconnections) : p = 50, L = 5,5 =
0,7 =40,60,...,200.

o Dataset 2(Moderate Interconnections): p = 50,L =
5,8 =0.15,r = 40, 60, .. ., 200.

« Dataset 3(Strong Interconnections): p =
5,68 =0.45,r = 40,60, ..., 200.

In all three datasets, the same group index is used:

G; = {10i — L 10ib,i=1,...,5 an

For each ground-truth precision matrix, we randomly draw r
samples 20 times, where 7 varies from 40 to 200 with a step
size of 20.

On edge detection, we compare SGGL with two baseline
methods:

¢ GLasso : The graphical lasso method [3].

e k-means + GGL: A pipeline method, which first per-
forms k-means clustering on the time series data to derive
the groups, then applies group graphical Lasso with the
inferred groups to obtain the estimated precision matrix.

On group detection, we compare SGGL with two clustering
methods: k-means and spectral clustering. Both methods are
widely used baselines in the literature [5].

To evaluate the quality of edge detection. We follow [I6]
to define the accuracy and F21 score of edge detection as
Accuracy = qi F1 nni% where ng is the number
of true edges detected by the algorlthm ng is the number of
true edges and n, is the total number of edges detected. We
control the number of edges detected by all compared methods
to be similar.

To evaluate the quality of group inference, we follow [I7]
to use normalized mutual information (NMI) score and purity
score. Higher NMI score or higher purity score indicates better
quality of group detection.

Figure B shows the comparison between SGGL and graph-
ical lasso in terms of edge detection. The left column shows
the sparsity patterns of ground truth of Dataset 1 and Dataset 2
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Fig. 3. Comparison between SGGL and Graphical Lasso in terms of edge detection. Left: the ground truth precision matrices; middle: the precision matrices
estimated by Graphical Lasso; right: the precision matrix estimated by SGGL . Upper: the precision matrices inferred for Dataset 1; Bottom: the precision

matrices inferred for Dataset 2

described above. The middle column denotes the sparsity
patterns detected by graphical lasso. The right column presents
the sparsity patterns detected by the proposed SGGL method.
For each dataset, A is adjusted to make sure that both graph-
ical lasso and SGGL generates similar number of nonzero
entries in the estimated precision matrix. We can observe that
compared to the graphical lasso method, the proposed SGGL
method generates a more interpretable results with much less
noises. These results demonstrate that SGGL outperforms
graphical lasso in terms of detecting true edges in the precision
matrix.

Figure B shows the results of the accuracy and F1 scores
on edge detection. We can observe that in terms of accuracy,
the proposed SGGL method outperform other two baselines
on all datasets consistently, and in terms of F1 score, SGGL
achieves competitive or better performance compared to the
baselines. SGGL does especially well on data set 3, when the
connection is denser. These results demonstrate that SGGL
outperforms the compared methods in terms of edge detection.
Figure B shows the comparison of SGGL , k-means and
spectral clustering in terms of NMI score and purity score.
We can observe from Figure B that for dataset 2 and dataset
3, SGGL achieves higher or equal NMI score and purity
score than two baselines consistently. For dataset 1 with
weak interconnections, SGGL performs slightly worse than k-
means, but the results are very close. It indicates that SGGL
may not have much advantages compared to k-means when

the components in the network are very isolated, but such case
is relatively rare in real-world dataset such as social networks
and brain networks. Thus, these results demonstrate that SGGL
outperforms state-of-art clustering baselines in terms of group
detection.

B. Real World ADHD-200 Data

We evaluate our method using real world fMRI data from
ADHD-200 project”. ADHD (Attention Deficit Hyperactivity
Disorder) is a chronic condition that happens on more than
5% - 10% of school-age children. The annal costs on treating
ADHD exceeds 36 billion in the United States. The dataset we
used is distributed by nilearn®. There are in total 40 subjects
in the dataset, 20 of which are labeled as ADHD, and the
other 20 subjects are labeled as TDC. The rsfMRI scan of
each subject in the dataset is a series of snapshots of 3D brain
images of size 61 x 73 x 61 over ~180 time steps.

The first set of experiments are performed on the default
mode network (DMN) of human brain. DMN is a network
of interacting brain regions known to have activity highly
correlated with each other and distinct from other networks
in the brain. In details, we extract time series from four pre-
defined regions in DMN: Posterior Cingulate Cortex, Left
Temporoparietal junction, Right Temporoparietal junction and
Medial prefrontal cortex. We regard each DMN region as a

Thttp://fcon_1000.projects.nitrc.org/indi/adhd200
Zhttp://nilearn.github.io/
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Fig. 4. Comparison in terms of accuracy and F1 score on detecting true edges. Sample size varies from 40 to 200 with a step size of 20.

sphere and the radius is set as 8 mm for all regions. We
apply SGGL, k-Means and Spectral clustering on the time
series data without the group information, to see how well can
each method recover the known groups. In Figure B, we show
the comparison of clustering performance in term of NMI
score. We compare the proposed SGGL method with k-Means
and spectral clustering using RBF affinity. One can observe
that SGGL achieves better NMI score compared to the other
two methods, indicating SGGL improves group detection in
human brain. In Figure [, we present the connectivity pattern
of ADHD group derived by SGGL method. The network
discovered for TDC group is very similar, indicating that the
strength of DMN is not affected by ADHD, which may be due
to the simplicity of the DMN itself. From Figure [, we can
observe that all four regions in DMN are strongly connected
to each other, which is consistent with the essences of DMN.
Thus, we can see the effectiveness of the proposed SGGL
method in discovering the groups and connectivity of human
brain.

The second set of experiments aims at discovering the
networks of the entire human brain. We use the AAL brain-
shaped mask (provided by neurology professionals) to extract
the voxels that are considered parts of the brain. We follow
[TR] to use a a middle slice of these scan for the ease of
presentation. Each of the scans can be represented by about
3200 voxels. In Figure B, we present the comparison of the
group inference results between SGGL and spectral clustering.
Figure and show the groups inferred by the proposed
SGGL for TDC and ADHD respectively; Figure and
show the groups inferred by spectral clustering. We can
observe that the results of spectral clustering are very scattered
and it is difficult to capture the difference between the results

of TDC and ADHD from the figures. However, the proposed
SGGL method presents a much interpretable results compared
to the ones of spectral clustering.

In Figure B, we show the comparison of time cost on running
SGGL with and without using screening strategy. We observe
that the proposed screening strategy can achieve about 40%
time gain on ADHD-200 dataset, while time cost of screening
itself is negligible.

IV. RELATED WORKS

This work is related to brain parcellation and barin connec-
tivity analysis, we discuss them briefly in this section.

It is an important and challenging task to infer the brain
parcellation. Early work in this direction have focused on
anatomical atlases. Although one can learn much from these
anatomical brain mapping, no functional or structural con-
nectivity information was used to construct them. Thus, it
is highly possible that regions in anatomical atlases contain
subregions characterized by different functional and structural
patterns. Recent studies in brain parcellation have mainly
focused on data-driven methods, which aimed at obtaining
brain mapping directly from the neuroimaging data. [[Y] have
studied the problem of identifying brain regions that are related
to Alzheimer’s disease from multi-modality neuroimaging
data. [20] have focused on parcellating the brain into a set of
regions that are functionally homogeneous. Specifically, the
voxels within a region should share similar time courses or
generating similar functional connectivity patterns [Z1]. On
the other hand, researchers also have focused on preserving
the spatial contiguity of the parcellated regions to ensure the
interpretability of them [22], [23], [8]. [24] have summarized
the commonly used clustering techniques for inferring brain
mapping and makes comparison among them with various
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Fig. 7. The connectivity of DMN of ADHD group discovered by SGGL. All
regions in the DMN are strongly connected to each other, which is consistent
with the essence of DMN.

evaluation metrics. Especially, [5] have proposed to employ
spatially constrained spectral clustering to build brain atlas
from fMRI data.

The task of brain connectivity analysis has two major
branches: (1) effective connectivity estimation; (2) functional
connectivity estimation. For the first type of connections, many
of researchers have focused on using structure learning method
for Bayesian Networks to obtain a directed network from fMRI
data [25]. As to the estimation of functional connectivity, there
are a few simple approaches such as hierarchical clustering,
pairwise correlations and independent component analysis

(ICA), a comprehensive survey in these directions can be
found in [6]. Sparse Gaussian graphical models (sGGM) [B],
[2], [277], [2R], [?Y9] have been very popular for discovering
large-scale brain connectivity recently due to their solid prob-
abilistic foundation for distinguishing direct connections from
indirect connections (i.e. conditional independent).

Deriving the mapping and connectivity of brain is crucial,
but the brain network system itself is complexed structured.
For instance, neurons are usually organized into multiple
much larger regions and complex interconnections are existed
between and within those regions. In this paper, we propose to
use spectral clustering to discover the underlying cohesive re-
gions, and the group constrained graphical model is employed
to reconstruct the connectivity. Our model is different from
[B0] in several ways. Specifically, the node discovery methods
proposed in [BU] is semi-supervised and supervised, while our
SGGL method is unsupervised. In [B0], they discovered the
edges within a network by estimating the correlations between
nodes instead of inferring direct connections as we do in
Sparse Gaussian Graphical Model (sGGM).

V. CONCLUSION

In this paper, we study the brain network discovery problem.
By using the inferred networks as the input of group inference,
we propose an iterative method, SGGL, to discover groups
and links in the brain network simultaneously. Empirical
experiments on both synthetic data and ADHD-200 dataset
demonstrate that SGGL is promising in discovering meaning-
ful brain networks.
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