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Abstract—In the era of big data, we can easily access informa-
tion from multiple views which may be obtained from different
sources or feature subsets. Generally, different views provide
complementary information for learning tasks. Thus, multi-view
learning can facilitate the learning process and is prevalent in
a wide range of application domains. For example, in medical
science, measurements from a series of medical examinations
are documented for each subject, including clinical, imaging,
immunologic, serologic and cognitive measures which are ob-
tained from multiple sources. Specifically, for brain diagnosis,
we can have different quantitative analysis which can be seen as
different feature subsets of a subject. It is desirable to combine all
these features in an effective way for disease diagnosis. However,
some measurements from less relevant medical examinations can
introduce irrelevant information which can even be exaggerated
after view combinations. Feature selection should therefore be
incorporated in the process of multi-view learning. In this paper,
we explore tensor product to bring different views together
in a joint space, and present a dual method of tensor-based
multi-view feature selection (DUAL-TMFS) based on the idea of
support vector machine recursive feature elimination. Experi-
ments conducted on datasets derived from neurological disorder
demonstrate the features selected by our proposed method yield
better classification performance and are relevant to disease
diagnosis.

Index Terms—tensor; brain diseases; multi-view learning;
feature selection.

I. INTRODUCTION

Many neurological disorders are characterized by ongoing

injury that is clinically silent for prolonged periods and irre-

versible by the time symptoms first present. New approaches

for detection of early changes in subclinical periods would

afford powerful tools for aiding clinical diagnosis, clarifying

underlying mechanisms and informing neuroprotective inter-

ventions to slow or reverse neural injury for a broad spectrum

of brain disorders, including HIV infection on brain [10], [12],

Alzheimer’s disease [30], Parkinson’s Disease, Schizophrenia,

Depression, etc. Early diagnosis has the potential to greatly

alleviate the burden of brain disorders and the ever increasing

costs to families and society. For example, total healthcare

costs for those 65 and older, are more that three times higher

in those with Alzheimer’s and other dementias [15].

As diagnosis of neurological disorder is extremely challeng-

ing, many different diagnosis tools and methods have been

developed to obtain a large number of measurements from

various examinations and laboratory tests. Information may be

available for each subject for clinical, imaging, immunologic,

serologic, cognitive and other parameters, as shown in Fig-

ure 1. In Magnetic Resonance Imaging (MRI) examination,

for example, multiple strategies are used to interrogate the

brain. Volumetric measurements of brain parenchymal and

ventricular structures, and of major tissue classes (e.g. white

matter, gray matter and CSF) can be derived. Volumetric

measurements can also be quantified for a large number of

individual brain regions and landmarks. While a single MRI

examination can yield a vast amount of information concerning

brain status at different levels of analysis, it is difficult to

consider all available measures simultaneously, since they have

different physical meanings and statistic properties. Capabil-

ity for simultaneous consideration of measures coming from

multiple groups is potentially transformative for investigating

disease mechanisms and for informing therapeutic interven-

tions.

As mentioned above, medical science witnesses everyday

measurements from a series of medical examinations doc-

umented for each subject, including clinical, imaging, im-

munologic, serologic and cognitive measures. Each group

of measures characterize the health state of a subject from

different aspects. Conventionally this type of data is named as

multi-view data, and each group of measures form a distinct

view characterizing subjects in one specific feature space. An

intuitive idea is to combine them to improve the learning

performance, while simply concatenating features from all

views and transforming a multi-view data into a single-view

data would fail to leverage the underlying correlations between

different views. We observe that tensors are higher order arrays

that naturally generalize the notions of vectors and matrices

to multiple dimensions. In this paper, we propose to use a

tensor-based approach to model features (views) and their

correlations hidden in the original multi-view data. Taking the

tensor product of their respective feature spaces corresponds

to the interaction of multiple views.

In the multi-view setting for neurological disorder, or for

medical studies in general, however, a critical problem is that

there may be limited subjects available yet introducing a large

number of measurements. Within the multi-view data, not all

features in different views are relevant to the learning task,
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Fig. 1. An example of multi-view learning in medical studies.

and some irrelevant features may introduce unexpected noise.

The irrelevant information can even be exaggerated after view

combinations thereby degrading performance. Therefore, it is

necessary to take care of feature selection in the learning pro-

cess. Feature selection results can also be used by researchers

to find biomarkers for brain diseases. Such biomarkers are

clinically imperative for detecting injury to the brain in the

earliest stage before it is irreversible. Valid biomarkers can be

used to aid diagnosis, monitor disease progression and evaluate

effects of intervention [13].

Considering feature selection, most of the existing studies

can be categorized as filter models [17], [20] and embedded

models based on sparsity regularization [7], [6], [26], [27].

While in this paper, we focus on wrapper models for feature

selection. We propose a dual method of tensor-based multi-

view feature selection (DUAL-TMFS), taking care of both

the input space and the reconstructed tensor product space

and exploiting their underlying correlations. In addition, our

proposed method can naturally extend to many views and

nonlinear kernels. Empirical studies on datasets collected

from the Chicago Early HIV Infection Study [19] demon-

strate that the proposed method can obtain better accuracy

for classification tasks on multi-view feature selection than

compared approaches. While the empirical studies are based

on medical data from a clinical application in HIV infection

on brain, the DUAL-TMFS technique developed for detecting

brain anomalies have considerable promise for early diagnosis

for other neurological disorders.

For the rest of the paper, we first state the problem of multi-

view feature selection for classification and introduce related

notations in section II. Then we introduce our DUAL-TMFS

algorithm in section III. Experimental results are discussed in

section IV. In section VI, we conclude the paper.

II. PROBLEM DEFINITION

In this section, we state the problem of multi-view feature

selection for classification and introduce the notation. Table I

lists some basic symbols that will be used throughout the

paper. Note that although we use the same symbol to represent

a set of data instances and the space that contains them, it is

always clear from the context what we mean.

Suppose we have a multi-view classification task with

n labeled instances represented from m different views:{(
x
(1)
i ,x

(2)
i , · · · ,x(m)

i , yi

)}n

i=1
, x

(v)
i ∈ R

Iv , i ∈ {1, · · · , n},

v ∈ {1, · · · ,m}, where Iv is the dimensionality of the v-th

view, and yi ∈ {−1, 1} is the class label of the i-th instance.

We denote Xi = {x(1)
i , · · · ,x(m)

i }, X (v) = {x(v)
1 , · · · ,x(v)

n },

Y = {y1, · · · , yn}, and D = {(X1, y1), · · · , (Xn, yn)},

respectively. The task of multi-view classification is to find

a classifier function f : R
I1 × · · · × R

Im → {−1, 1}
that correctly predicts the label of an unseen instance X =
{x(1), · · · ,x(m)}.

One of the major challenges of multi-view classification

comes from the fact that the combination of multiple views can

potentially incur redundant and even conflicting information

which is unfavorable for classifier learning. In order to tackle

this problem, feature selection has been the focus of interest

for quite some time and much work has been done in a

supervised setting. A straightforward solution is to handle each

view separately and conduct feature selection independently.

This paradigm is based on the assumption that each view is

sufficient on its own to learn the target concept [29]. However,

individual views can often provide complementary information

to each other leading to improved performance in real-world

applications.

More generally, learning that involves conceptual multi-view
is not just providing tools to analyze the data in multiple ways,

which is more about managing the correlations among differ-

ent views. Most previous feature selection approaches focus

on exploiting multi-view features simultaneously to facilitate

the learning process, which usually use the reconstructed data

to represent the original multi-view information and perform

analysis, such as the method (a) and method (b) shown in

Figure 2. However, intrinsic properties of raw multi-view

features and hidden relationships between the original data

and its reconstruction are totally ignored in these methods.

Taking into account the latent interactions among views and

the redundancy triggered by multiple views, in this paper, we

aim at combining multiple features in a principled manner

and performing feature selection to obtain a consensus and

discriminative low-dimensional feature representation. In par-

ticular, we will leverage the relationship between the original

multi-view features and reconstructed data to facilitate the

implementation of feature selection.

III. PROPOSED METHOD

As noted in the introduction, one of the key issues for

multi-view classification is to choose an appropriate tool to



TABLE I
LIST OF SYMBOLS

Symbol Definition and Description

s each lowercase letter represents a scale
v each boldface lowercase letter represents a vector
M each boldface capital letter represents a matrix
T each calligraphic letter represents a tensor, set or space
⊗ denotes tensor product
〈., .〉 denotes inner product
|.| denotes absolute value
‖.‖F denotes (Frobenius) norm of vector, matrix or tensor

model features (views) and their correlations hidden in the

original multi-view features, since this directly determines

how information will be used. The concept of tensor serves

as a backbone for incorporating multi-view features into a

consensus representation by means of tensor product, where

the complex multiple relationships among views are embedded

within the tensor structures. By mining structural information

contained in the tensor, knowledge of multi-view features can

be extracted and used to establish a predictive model. In this

paper, we propose a dual method of tensor-based multi-view

feature selection (DUAL-TMFS) in the tensor product space

inspired by the idea of support vector machine recursive fea-

ture elimination (SVM-RFE) [9]. Our goal is to select useful

features in conjunction with the classifier and simultaneously

exploit the correlations among multiple views.

A. Tensor Propagation for Multiple Views

We start by introducing some related concepts and notation

about tensors, and conceptually analyzing our motivation of

utilizing tensor to organize all the multi-view information.

Tensors are higher order arrays that generalize the notions

of vectors (first-order tensors) and matrices (second-order ten-

sors), whose elements are indexed by more than two indices.

Each index expresses a mode of variation of the data and

corresponds to a coordinate direction. The number of variables

in each mode indicates the dimensionality of a mode. The

order of a tensor is determined by the number of its modes.

The use of this data structure has been advocated in virtue of

certain favorable properties. A key to this work is to borrow the

tensor structure to fuse all possible dependence relationships

among different views. We first recall the definition of tensor

product (i.e., outer product) of two vectors and then give a

formal mathematical definition of the tensor, which provides

an intuitive understanding of the algebraic structure of the

tensor.

DEFINITION 1 (Tensor product): The tensor product of two

vectors x ∈ R
I1 and y ∈ R

I2 , denoted by x⊗ y, represents a

matrix with the elements (x⊗ y)i1,i2 = xi1yi2 .

DEFINITION 2 (Tensor): A tensor is an element of the tensor

product of vector spaces, each of which has its own coordinate

system.

The tensor product of vector spaces forms an elegant

algebraic structure for the theory of tensors. Such structure

endows the tensor with the inherent advantage in representing

real-world data, which naturally results from the interaction

of multiple factors. Each mode of the tensor corresponds

to one factor. For this reason, we conclude that the use of

tensorial representation is a reasonable choice for adequately

capturing the possible relationships among multiple views of

data. Another advantage in representing all the multi-view

information in the tensor data structure is that we can flexibly

explore those useful knowledge in the tensor product space by

virtue of tensor-based techniques.

Based on the definition of tensor product of two vectors,

we can then express x ⊗ y ⊗ z as a third-order tensor in

R
I1 ⊗ R

I2 ⊗ R
I3 , of which the elements are defined by

(x⊗ y ⊗ z)i1,i2,i3 = xi1yi2zi3 for all values of the indices.

Proceeding in the same way, X = (xi1,...,im) is used to denote

an mth-order tensor X ∈ R
I1×···×Im and its elements. For

v ∈ {1, · · · ,m}, Iv is the dimensionality of X along the v-th

mode. To indicate the object resulting by fixing the v-th mode

index of X to be iv , we introduce the generic subscript : and

denote by X:,...,:,iv,:,...,:.

In addition, we define the inner product and norm associated

with tensor, which will be used in the following.

DEFINITION 3 (Inner product): The inner product of two

same-sized tensors X ,Z ∈ R
I1×···×Im is defined as the sum

of the products of their elements:

〈X ,Z〉 =
I1∑

i1=1

· · ·
Im∑

im=1

xi1,...,imzi1,...,im (1)

Most importantly, note that for tensors X = x(1)⊗· · ·⊗x(m)

and Z = z(1) ⊗ · · · ⊗ z(m), it holds that

〈X ,Z〉 = 〈x(1), z(1)〉 · · · 〈x(m), z(m)〉 (2)

For the sake of brevity, in the following we will use the

notation
∏m

i=1 ⊗x(i) and
∏m

i=1〈x(i), z(i)〉 to denote x(1) ⊗
· · · ⊗ x(m) and 〈x(1), z(1)〉 · · · 〈x(m), z(m)〉, respectively.

DEFINITION 4 (Tensor norm): The norm of a tensor X ∈
R

I1×···×Im is defined to be the square root of the sum of all

elements of the tensor squared, i.e.,

‖X‖F =
√

〈X ,X〉 =
√√√√ I1∑

i1=1

· · ·
Im∑

im=1

x2
i1,...,im

(3)

As can be seen, the norm of a tensor is a straightforward

generalization of the usual Frobenius norm for matrices and

of the Euclidean or l2 norm for vectors.

B. Multi-view SVM in the Tensor Setting

Following the introduction above to the concepts of tensors,

we describe how multi-view classification can be consistently

formulated and implemented in the framework of the standard

SVM in the tensor setting.

By the reasoning given in section III-A, we use tensor prod-

uct operation to bring m-view feature vectors of each instance

together, leading to a tensorial representation for common

structure across multiple views, and allowing us to adequately

diffuse relationships and encode information among multi-

view features. In this manner, we have essentially transformed



the multi-view classification task from an independent domain

of each view {(X (1), · · · ,X (m)),Y} to a consensus domain

{X (1) × · · · × X (m),Y} as a tensor classification problem.

For the sake of simplicity, we are slightly abusing notation

by using Xi to denote
∏m

v=1 ⊗x
(v)
i . Then the dataset of

labeled multi-view instances can be represented as D =
{(X1, y1), · · · , (Xn, yn)}. Note that each multi-view instance

Xi is an mth-order tensor that lies in the tensor product space

R
I1×···×Im , but one must keep in mind that each element of Xi

is the tensor product of multi-view features in the input space,

which we denote by xi(i1,...,im). Now, based on the definitions

of inner product and tensor norm, we can formulate multi-view

classification as a global convex optimization problem in the

framework of the standard SVM as follows:

min
W,b,ξ

1

2
‖W‖2F + C

n∑
i=1

ξi (4)

s.t. yi(〈W,Xi〉+ b) ≥ 1− ξi (5)

ξi ≥ 0, ∀i = 1, · · · , n. (6)

where W can be regarded as the weight tensor of the separat-

ing hyperplane in the tensor product space R
I1×···×Im , b is the

bias, ξi is the error of the i-th training sample, and C is the

trade-off between the margin and empirical loss. As such it can

be solved with the use of optimization techniques developed

for SVM, and the weight tensor of W can be obtained from

W =

n∑
i=1

αiyiXi (7)

where αi is the dual variable corresponding to each instance.

The resulting decision function is

f (X ) = sign (〈W,X〉+ b) (8)

where X denotes a test multi-view instance given by the tensor

product of its multi-view features x(v) for all v ∈ {1, · · · ,m}.

We simply call the model as multi-view SVM.

Despite this property, there are two major drawbacks in-

curred by the combination of multiple views. First, the di-

mensionality of the resulting tensor in a multi-view dataset can

be extremely large, which grows at an exponential rate with

respect to the number of views. Direct application of the multi-
view SVM will suffer from the curse of dimensionality. Second,

such tensors may contain much redundant and irrelevant in-

formation due to the intrinsic multi-view property, which will

negatively influence the performance of the learning process.

Therefore, in order to implement multi-view classification

using multi-view SVM, it is necessary to perform dimensional-

ity reduction by feature extraction or selection to concentrate

multi-view information and improve tensorial representation.

Many tensor-based algorithms have been proposed as dimen-

sionality reduction for classification problems. However, to

the best of our knowledge, all of them discard the original

multi-view features after constructing tensors. In the following,

we investigate their relationship to each other and proceed to

develop a wrapper feature selection approach DUAL-TMFS.

View 3

View 2

View 1

Modeling Feature selection

Method (a)

Method (b)

Method (c)

Fig. 2. Schematic view of the key differences among three strategies of
multi-view feature selection. Method (a) concatenates features from all views
in the input space. Method (b) converts multiple views into a tensor and
directly performs feature selection in the tensor product space. Our method
(c) efficiently conducts feature selection in the input space while effectively
leveraging relationships between the original data and its reconstruction in the
tensor product space.

C. Dual Feature Selection in the Tensor Product Space

Based on the multi-view SVM classifier in the tensor setting,

in this subsection, we approach the problem of identifying and

concentrating multi-view knowledge via tensors by proposing

the linear DUAL-TMFS method. We will extend it to the

nonlinear case in the next subsection.

Inspired by SVM-RFE [9], we can see from Eq. (8)

that the inner product of weight tensor W = (wi1,...,im)
and input tensor X = (xi1,...,im) determines the value of

f (X ). Intuitively, the input features that are weighted by the

largest absolute values influence most on the classification

decision, and correspond to the most informative features.

Therefore, the absolute weights |wi1,...,im | or the square of the

weights (wi1,...,im)
2

can be used as feature ranking criterion

to select the most discriminative feature subset. Based on this

observation, we can conduct feature selection on multi-view
SVM.

Let us denote the ranking score of each feature xi1,...,im as

ri1,...,im . Our target is to perform feature elimination in the

tensor product feature space by

argmin
i1,··· ,im

(ri1,...,im) (9)

SVM-RFE performs SVM-based feature selection in the

vector space, as the method (a) shown in Figure 2. A straight-

forward approach, which can be seen as a natural tensorial

extension of SVM-RFE, is to directly perform feature elimi-

nation in the tensor product space using the following feature

ranking criterion:

ri1,...,im = (wi1,...,im)
2

(10)

As the method (b) shown in Figure 2, however, the number

of variables wi1,...,im is equivalent to the dimensionality of the

resulting tensors in tensor product space. Obviously, it is com-

putationally intractable to enumerate all values of wi1,...,im in



such a high-dimensional tensor product space. On the other

hand, the original multi-view features usually contain much

redundant and irrelevant features. It can be further exaggerated

over the manipulation of tensor product, thereby degrading

the generalization performance. In order to overcome these

problems, it would be desirable to remove irrelevant features

before manipulating the tensor product.

Considering that each view has specific statistical properties

and its intrinsic physical meanings, we conduct multi-view

feature selection in the input space and maintain independent

rankings of features in each view. We leverage the weight

coefficients W in the tensor product space to facilitate the

implementation of feature selection in the input space. That

is, for the v-th view, supposing x(v) = [x
(v)
1 , · · · , x(v)

Iv
], the

ranking score of the feature x
(v)
iv

, iv ∈ {1, · · · , Iv} in the input

space is r
(v)
iv

, which means r
(v)
iv

is a function of wi1,...,im .

Now we can formulate the problem in terms of the process,

for which we need to minimize the following function in each

view v ∈ {1, · · · ,m}:

argmin
iv

(
r
(v)
iv

)
(11)

An alternative approach is to evaluate the value of r
(v)
iv

from

wi1,...,im by virtue of the relationship between the input space

and the tensor product space. Based on the definition of the

tensor product, we can see that the feature x
(v)
iv

in the input

space will diffuse to X:,...,:,iv,:,...,: in the tensor product space,

thus to W:,...,:,iv,:,...,:. Intuitively, it means that the contribution

of x
(v)
iv

determining the value of decision function f (X )
transfers to X:,...,:,iv,:,...,:. For this reason, the ranking score of

x
(v)
iv

can be estimated from the elements of W:,...,:,iv,:,...,:. To

realize such purpose, we set r
(v)
iv

equal to the sum of the square

of all elements in W:,...,:,iv,:,...,:, which is given as follows:

r
(v)
iv

=

I1∑
i1=1

· · ·
Iv−1∑

iv−1=1

Iv+1∑
iv+1=1

· · ·
Im∑

im=1

(wi1,··· ,im)2 (12)

By substituting the exact solution given in Eq. (7) into the

right-hand side of this equality, we find that

r
(v)
iv

=
n∑

i=1

n∑
j=1

αiαjyiyjx
(v)
i(iv)

x
(v)
j(iv)

k �=v∏
1≤k≤m

〈x(k)
i ,x

(k)
j 〉 (13)

In this way, compared with performing feature selection

in the tensor product space, the computational complexity is

largely reduced, since irrelevant and redundant features can

be detected by the classifier constructed in the tensor product

space, but removed in the input space, which concentrates the

multi-view information within tensor operations. Conducting

feature selection in the input space is superior in terms of

better readability and interpretability, because it maintains

the physical meanings of the original features without any

manipulation. This property has its significance in many real-

world applications such as finding clinical markers to a specific

disease.

Nevertheless, although this is expected to improve tensorial

representation of multi-view data and perform feature selection

for multi-view classification, it can result in potential over-

fitting, since the number of variables wi1,...,im grows at an

exponential rate as m (i.e., the number of views) increases.

Especially in medical studies, there may be limited subjects

available yet introducing a large number of measurements in

many views. Therefore, the problem reduces to improving

the generalization capability of multi-view SVM in the tensor

setting, for which we need a more sophisticated approach to

reduce the number of variable wi1,...,im (i.e., the number of

elements of W that need to be estimated) and facilitate feature

selection without incurring extensive computation.

In the context of supervised tensor learning, tensor decom-

positions are usually used to reduce the number of unknown

tensors (i.e., the dimensionality of tensor), and meanwhile

avoid overfitting. Following assumptions in the supervised

tensor learning framework [24], here we assume that W
can be decomposed as W =

∏m
v=1 ⊗w(v), where w(v) =

[w
(v)
1 , · · · , w(v)

Iv
]. By applying Eqs. (2) and (3), we can then

represent the optimization problem in Eqs. (4)-(6) as:

min
w(v),b,ξ

1

2

m∏
v=1

∥∥∥w(v)
∥∥∥2
F
+ C

n∑
i=1

ξi (14)

s.t. yi

(
m∏

v=1

〈
w(v),x

(v)
i

〉
+ b

)
≥ 1− ξi (15)

ξi ≥ 0, ∀i = 1, · · · , n. (16)

thus the optimal decision function is:

f (X ) = sign

(
m∏

v=1

〈
w(v),x(v)

〉
+ b

)
(17)

Clearly, in this manner, the number of variables with respect

to W is greatly reduced from
∏m

v=1 Iv to
∑m

v=1 Iv . Moreover,

from Eq. (17), we can see that the influence of input feature

x
(v)
iv

on the value of decision function f (X ) constructed in the

tensor product space is determined only by its corresponding

weight coefficient w
(v)
iv

, i.e., the feature ranking criterion

defined in Eq. (12) can be simplified as:

r
(v)
iv

=
(
w

(v)
iv

)2
(18)

THEOREM 1: The ranking criterion Eq. (18) is equivalent
to Eq. (12) for each view.

Proof. Based on the definition of tensor product, we have

wi1,...,im = w
(1)
i1

· · ·w(m)
im

. Substituting this into Eq. (12), it



can be written as:

r
(v)
iv

=
∑
i1

· · ·
∑
iv−1

∑
iv+1

· · ·
∑
im

(wi1,··· ,im)
2

=
∑
i1

· · ·
∑
iv−1

∑
iv+1

· · ·
∑
im

(
w

(1)
i1

· · ·w(m)
im

)2

=
(
w

(v)
iv

)2 j �=v∏
1≤j≤m

∥∥∥w(j)
∥∥∥2
F

=P (−v)
(
w

(v)
iv

)2
(19)

where P (−v) =
∏j �=v

1≤j≤m ‖w(j)‖2F . For the v-th mode, the

multiplier P (−v) is constant and non-negative, thus has no

effect on ranking orders. The proof is complete.

Now we illustrate how to solve the optimization problem

in Eqs. (14)-(16). In an iterative manner, we can update the

variables associated with a single mode at each iteration. That

is, for the v-th mode, we need to fix variables in other modes

and solve the following optimization problem:

min
w(v),b(v),ξ(v)

P (−v)

2

∥∥∥w(v)
∥∥∥2
F
+ C

n∑
i=1

ξ
(v)
i (20)

s.t. yi

(
Q

(−v)
i

〈
w(v),x

(v)
i

〉
+ b(v)

)
≥ 1− ξ

(v)
i (21)

ξ
(v)
i ≥ 0, ∀i = 1, · · · , n. (22)

where P (−v) and Q
(−v)
i are constants that denote P (−v) =∏j �=v

1≤j≤m ‖w(j)‖2F and Q
(−v)
i =

∏j �=v
1≤j≤m〈w(j),x

(j)
i 〉.

Let x
(v)′

i = (Q
(−v)
i /

√
P (−v))x

(v)
i and w(v)′ =√

P (−v)w(v), then the optimization problem in Eqs. (20)-(22)

is equivalent to the following problem:

min
w(v)′ ,b(v),ξ(v)

1

2

∥∥∥w(v)′
∥∥∥2
F
+ C

n∑
i=1

ξ
(v)
i (23)

s.t. yi

(〈
w(v)′ ,x

(v)′

i

〉
+ b(v)

)
≥ 1− ξ

(v)
i (24)

ξ
(v)
i ≥ 0, ∀i = 1, · · · , n. (25)

which reduces to the standard linear SVM, and thus can be

efficiently solved by available algorithms, obtaining w(v) as

follows:

w(v) =
1

P (−v)

n∑
i=1

Q
(−v)
i α

(v)
i yix

(v)
i (26)

where α
(v)
i is the dual variable corresponding to each instance

in the v-th mode, obtained in Eqs. (23)-(25).

It is illustrated in Figure 2 that, the method (c) leveraging

the ranking criterion Eq. (18) jointly considers the input

space and the tensor product space, and effectively exploits

their underlying relationship. We summarize our proposed

dual method of multi-view feature selection (DUAL-TMFS) in

Figure 3.

Input:
- Training examples in multiple views:

X(v) = {x(v)
1 , · · · ,x(v)

n }, v = 1, 2, · · · ,m
- Class labels: Y = {y1, · · · , yn}
- Number of features selected in each view: pv

Initialize:
- Subset of surviving features: s(v) = [1, 2, · · · , Iv]

Iterate through each view v:
Repeat until length(s(v)) ≤ pv

- Restrict training examples to good feature indices:

X(v)∗ = X(v)(s(v), :)
- Train the classifier: α = SVM-TRAIN(X(v)∗,Y)
- Compute the weight vector w(v) according to Eq. (26)

- Compute the ranking criteria r(v) according to Eq. (18)

- Find the feature with smallest ranking criterion:

f = argmin(r(v))
- Eliminate the feature with smallest ranking criterion:

s(v) = s(v)(1:f -1,f+1:length(s(v)))
Output:

- Subset of selected features in each view:

s(v), v = 1, 2, · · · ,m
Fig. 3. The DUAL-TMFS algorithm

D. Extension to Nonlinear Kernels
As discussed above, tensor is an effective approach of

capturing correlations across multiple views. However, correla-

tions between features within the same view are not considered

by taking the tensor product of features in different views. In

such case, we can replace the linear kernel with a nonlinear

kernel. Through implicitly projecting features into a high

dimensional space within each view, a nonlinear kernel can

work together with the tensor tools to exploit correlations

across different views as well as those within each view.
In the case of nonlinear SVMs, we first represent optimiza-

tion problem in Eqs. (23)-(25) in the dual form as:

min
α

1

2
α(v)THα(v) − α(v)T1 (27)

s.t.

n∑
i=1

α
(v)
i yi = 0 (28)

0 ≤ α
(v)
i ≤ C, ∀i = 1, · · · , n. (29)

where H is the matrix with elements yhykκ(x
(v)′

h ,x
(v)′

k ).
To compute the change in cost function caused by re-

moving input component iv in the v-th mode, one leaves

the α’s unchanged and one re-computes matrix H . This

corresponds to computing κ(x
(v)′

h (−iv),x
(v)′

k (−iv)), yielding

matrix H(−iv), where the notation (−iv) means that compo-

nent iv has been removed in the v-th mode. Thus, the feature

ranking criterion for nonlinear SVMs is:

r
(v)
iv

=
1

2
(α(v)THα(v) − α(v)TH(−iv)α

(v)) (30)

The input corresponding to the smallest difference r
(v)
iv

shall

be removed. In the linear case, κ(x
(v)′

h ,x
(v)′

k ) = 〈x(v)′

h ,x
(v)′

k 〉



and α(v)THα(v) = ‖w(v)′‖2F . Therefore r
(v)
iv

= P (−v)

2 (w
(v)
vi )2,

which is equivalent to the one we proposed in the previous

section for linear SVMs.

IV. EXPERIMENTS

In this section, we conduct experiments on datasets collected

from HIV infected brain disease, to evaluate our proposed

method in different aspects. In section IV-C, we have seven

methods compared on the classification tasks composing of

two views. Experiments extend to more than two views in

section IV-D. In nonlinear cases, our method can still be

effectively applied, as shown in section IV-E.

A. Data Collections

In order to evaluate the performance of multi-view feature

selection for classification, we compare methods on datasets

collected from the Chicago Early HIV Infection Study [19],

which have 56 HIV and 21 seronegative control subjects

enrolled. For each subject, hundreds of clinical, imaging,

immunologic, serologic and cognitive measures were docu-

mented. This illustrates the curse of dimensionality because

there are far more variables of interest than available subjects.

Thus, it is important to incorporate feature selection in the

learning process for disease diagnosis.

There are seven groups of measurements investigated in our

datasets, including neuropsychological tests, flow cytometry,

plasma luminex, freesurfer, overall brain microstructure, lo-
calized brain microstructure, brain volumetry. Each group can

be regarded as a distinct view that partially reflects subject

status, and measurements from different medical examinations

can provide complementary information. Simultaneous consid-

eration of all the data, exploiting correlations among multiple

measurements can be transformative for investigating disease

mechanisms and for informing therapeutic interventions. Dif-

ferent views are sampled to form multiple combinations. The

datasets used for our experiments are summarized in Table II.

Additionally, features are normalized within [0, 1].

B. Compared Methods

In order to demonstrate the effectiveness of our multi-kernel

learning approach, we compare the following methods:

• CF refers to single-kernel SVM applying on concatenated

features.

• TPF refers to single-kernel SVM applying on the tensor

product feature space [11]. By taking the tensor product

of features from different views, adequate correlations

among different views are exploited.

• LINEAR-MKL is a conventional multi-kernel method [5].

Different kernels can naturally correspond to different

views. Through an optimization framework, weights can

be learned that reflect the relative importance of different

views. It implements a linear combination of multiple

kernels.

• RFE-CF denotes the method that directly applies SVM-

RFE on the concatenation of all the features [9].

• RFE-TPF denotes the method that SVM-RFE is applied

on the tensor product feature space [21].

• MIQP-TPFS refers to the method of iterative tensor prod-

uct feature selection with mixed-integer quadratic pro-

gramming [21]. It explicitly considers the cross-domain

interactions between two views in the tensor product

feature space. The bipartite feature selection problem is

formulated as an integer quadratic programming problem.

A subset of features is selected that maximizes the sum

over the submatrix of the original weight matrix.

• DUAL-TMFS is the proposed dual method of tensor-based

multi-view feature selection in the tensor product feature

space. It effectively exploits the correlations among dif-

ferent views in the tensor product feature space, and also

efficiently completes feature selection in the input space

at the same time.

A detailed comparison between these methods is summa-

rized in Table III, against four dimensions on whether the

schemes can conduct feature selection, discriminate against

different views, be applicable to many views and compatible

with nonlinear kernels. Note that sparsity regularization mod-

els [8], [27] are not considered as we focus on wrapper models

in this paper, without looking into embedded models.

For a fair comparison, we use LibSVM [3] with linear

kernel as the base classifier for all the compared methods.

In the experiments, 3-fold cross validations are performed on

balanced datasets. The soft margin parameter C is selected

through a validation set. For all the methods with feature

selection, the number of features selected is explicitly set to

50%.

C. Two Views

We first study the effectiveness of our proposed method on

the task of learning from two views. Results on D2.1 and D2.2

are shown in Table IV, where the average performances of the

compared methods with standard deviations are reported with

respect to four evaluation metrics: accuracy, precision, recall

and F1-measure.

In comparison of the top three methods not conducting

feature selection, there is no clear advantage for any of the

methods. Performance can vary depending on datasets, if the

redundancy coming from different views is not taken care

of. Thus, it is necessary to select discriminative features and

eliminate redundant ones when multiple views are combined.

While considering feature selection, DUAL-TMFS signifi-

cantly improves the accuracy over other methods by effec-

tively pruning redundant and irrelevant features. On the other

hand, simply applying SVM-RFE method on either the input

space (i.e., RFE-CF) or the tensor product feature space (i.e.,
RFE-TPF) cannot achieve better performance. For RFE-CF,

correlations between multiple views are not exploited when

selecting features; while for RFE-TPF, features are directly

selected in the tensor product space, leaving the potential of

overfitting. MIQP-TPFS can take advantage of feature selection

by maximizing the sum over the weight submatrix in the tensor

product feature space.



TABLE II
SUMMARY OF DATASETS. “�” INDICATES THE VIEW IS SELECTED IN THE DATASET, WHILE “�” INDICATES NOT SELECTED. EACH NUMBER IN BRACES

INDICATES THE NUMBER OF FEATURES IN EACH VIEW.

Name D2.1 D2.2 D3.1 D3.2 D4.1 D4.2 D5.1 D5.2 D6.1 D6.2

#Views 2 2 3 3 4 4 5 5 6 6

neuropsychological tests (36) � � � � � � � � � �
flow cytometry (65) � � � � � � � � � �
plasma luminex (45) � � � � � � � � � �
freesurfer (28) � � � � � � � � � �
overall brain microstructure (21) � � � � � � � � � �
localized brain microstructure (54) � � � � � � � � � �
brain volumetry (12) � � � � � � � � � �

TABLE III
SUMMARY OF COMPARED METHODS.

Property CF TPF[11] LINEAR-MKL[5] RFE-CF[9] RFE-TPF[21] MIQP-TPFS[21] DUAL-TMFS

conducting feature selection × × × √ √ √ √
discriminating different views × √ √ × √ √ √
applicability to many views

√ √ √ √ × × √
compatibility with nonlinear kernels

√ × × √ × × √

D. Many Views

In real-world applications, there are usually more than two

views. It is desirable to leverage all of them simultaneously.

However, RFE-TPF and MIQP-TPFS need to explicitly compute

the tensor product feature space, resulting in complexity and

space complexity exponential to the number of views. They

are therefore no longer feasible in the case of many views,

due to high dimensionality of the tensor product feature

space. Although DUAL-TMFS also exploits the correlations

among different views in the tensor product feature space, it

can efficiently complete feature selection in the input space.

Thus, our proposed method have time complexity and space

complexity linear with respect to the number of views and can

naturally extend to more than two views. The experimental

results are summarized at D3.1-D6.2 in Table IV.

As can be seen, neither CF nor RFE-CF performs well.

This shows that simply concatenating all features across mul-

tiple views does not work well. We next consider schemes

that discriminate different views. TPF performs badly as it

computes the tensor product feature space, introducing some

potentially irrelevant features coming from the correlations

among multiple views. In general, LINEAR-MKL performs

well in most cases by linearly weighting multiple kernels.

However, by further performing feature selection, DUAL-TMFS

achieves a significant improvement over other methods and

always ranks first on F1 and accuracy, indicating that com-

pared with approaches not distinguishing different views or not

conducting feature selection, a better subset of discriminative

features can be selected for classification by considering the

correlations across multiple views based on tensor.

E. Nonlinear Kernels

As discussed above, tensor is an effective approach of

capturing correlations across multiple views. However, correla-

Accuracy Precision Recall F1
0.7
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1
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RFE−CF
DUAL−TMFS

Fig. 4. Classification performance in the nonlinear case.

tions between features within the same view are not considered

by taking the tensor product of features in different views. In

such case, we can replace a linear kernel with a nonlinear

kernel. Through implicitly projecting features into a high

dimensional space within each view, a nonlinear kernel can

work together with the tensor tools to exploit correlations

across different views as well as that within each view.

Here we replace the linear kernel with the RBF kernel

for all the compared methods, and show experimental results

in Figure 4. LINEAR-MKL is not applicable in the nonlinear

case. Neither do TPF, RFE-TPF and MIQP-TPFS, because they

need to explicitly compute the high dimensional feature space

which is intractable when we apply a nonlinear kernel. It

illustrates that DUAL-TMFS still outperforms other methods in

the nonlinear case, in the sense of accuracy and F1-measure.



TABLE IV
CLASSIFICATION PERFORMANCE “AVERAGE SCORE (RANK)” IN THE

LINEAR CASE. FOR EACH DATASET, THE TOP-3 METHODS ARE WITHOUT

FEATURE SELECTION.

Evaluations

Datasets Methods Accuracy Precision Recall F1

D2.1

CF 0.738 (2) 0.747 (2) 0.833 (1) 0.782 (2)
TPF 0.595 (7) 0.623 (7) 0.833 (1) 0.698 (7)
LINEAR-MKL 0.643 (5) 0.710 (4) 0.792 (4) 0.730 (5)

RFE-CF 0.690 (3) 0.730 (3) 0.750 (7) 0.736 (4)
RFE-TPF 0.643 (5) 0.657 (6) 0.792 (4) 0.713 (6)
MIQP-TPFS 0.667 (4) 0.667 (5) 0.833 (1) 0.737 (3)
DUAL-TMFS 0.762 (1) 0.784 (1) 0.792 (4) 0.786 (1)

D2.2

CF 0.548 (6) 0.657 (3) 0.500 (6) 0.553 (6)
TPF 0.619 (3) 0.639 (5) 0.750 (2) 0.683 (4)
LINEAR-MKL 0.667 (2) 0.730 (2) 0.667 (4) 0.692 (2)

RFE-CF 0.524 (7) 0.607 (7) 0.500 (6) 0.540 (7)
RFE-TPF 0.619 (3) 0.656 (4) 0.750 (2) 0.690 (3)
MIQP-TPFS 0.595 (5) 0.638 (6) 0.667 (4) 0.648 (5)
DUAL-TMFS 0.714 (1) 0.769 (1) 0.792 (1) 0.759 (1)

D3.1

CF 0.762 (2) 0.795 (2) 0.792 (2) 0.791 (2)
TPF 0.690 (5) 0.692 (5) 0.833 (1) 0.753 (5)
LINEAR-MKL 0.738 (3) 0.783 (3) 0.750 (5) 0.763 (3)

RFE-CF 0.714 (4) 0.741 (4) 0.792 (2) 0.761 (4)
DUAL-TMFS 0.833 (1) 0.926 (1) 0.792 (2) 0.846 (1)

D3.2

CF 0.690 (4) 0.727 (3) 0.750 (3) 0.734 (3)
TPF 0.714 (2) 0.711 (4) 0.833 (2) 0.767 (2)
LINEAR-MKL 0.714 (2) 0.822 (1) 0.667 (5) 0.709 (5)

RFE-CF 0.667 (5) 0.692 (5) 0.750 (3) 0.718 (4)
DUAL-TMFS 0.810 (1) 0.820 (2) 0.875 (1) 0.839 (1)

D4.1

CF 0.857 (4) 0.847 (4) 0.917 (3) 0.880 (4)
TPF 0.833 (5) 0.838 (5) 0.875 (5) 0.855 (5)
LINEAR-MKL 0.905 (2) 0.917 (2) 0.917 (3) 0.917 (2)

RFE-CF 0.881 (3) 0.852 (3) 0.958 (1) 0.902 (3)
DUAL-TMFS 0.929 (1) 0.926 (1) 0.958 (1) 0.939 (1)

D4.2

CF 0.857 (3) 0.886 (3) 0.875 (4) 0.874 (3)
TPF 0.810 (5) 0.792 (5) 0.917 (1) 0.847 (5)
LINEAR-MKL 0.905 (2) 0.917 (2) 0.917 (1) 0.917 (2)

RFE-CF 0.833 (4) 0.878 (4) 0.833 (5) 0.852 (4)
DUAL-TMFS 0.929 (1) 0.958 (1) 0.917 (1) 0.936 (1)

D5.1

CF 0.905 (2) 0.963 (1) 0.875 (3) 0.911 (3)
TPF 0.810 (5) 0.812 (5) 0.875 (3) 0.837 (5)
LINEAR-MKL 0.905 (2) 0.917 (4) 0.917 (2) 0.917 (2)

RFE-CF 0.905 (2) 0.963 (1) 0.875 (3) 0.911 (3)
DUAL-TMFS 0.952 (1) 0.963 (1) 0.958 (1) 0.958 (1)

D5.2

CF 0.881 (3) 0.915 (3) 0.875 (4) 0.892 (3)
TPF 0.714 (5) 0.719 (5) 0.833 (5) 0.771 (5)
LINEAR-MKL 0.905 (1) 0.917 (1) 0.917 (1) 0.917 (1)

RFE-CF 0.857 (4) 0.847 (4) 0.917 (1) 0.880 (4)
DUAL-TMFS 0.905 (1) 0.917 (1) 0.917 (1) 0.917 (1)

D6.1

CF 0.881 (4) 0.915 (4) 0.875 (3) 0.892 (4)
TPF 0.833 (5) 0.838 (5) 0.875 (3) 0.855 (5)
LINEAR-MKL 0.905 (2) 0.917 (3) 0.917 (1) 0.917 (2)

RFE-CF 0.905 (2) 0.952 (2) 0.875 (3) 0.911 (3)
DUAL-TMFS 0.952 (1) 1.000 (1) 0.917 (1) 0.956 (1)

D6.2

CF 0.905 (2) 0.921 (3) 0.917 (1) 0.917 (2)
TPF 0.810 (5) 0.810 (5) 0.875 (3) 0.841 (5)
LINEAR-MKL 0.905 (2) 0.917 (4) 0.917 (1) 0.917 (2)

RFE-CF 0.905 (2) 0.952 (2) 0.875 (3) 0.911 (4)
DUAL-TMFS 0.929 (1) 1.000 (1) 0.875 (3) 0.930 (1)

F. Feature Evaluation

Table V lists the most discriminative measures selected

by DUAL-TMFS. Our results are validated by literature on

TABLE V
TOP-3 MEASURES SELECTED IN EACH VIEW.

neuropsychological tests : Karnofsky Performance Scale, NART FSIQ, Rey Trial
flow cytometry : Tcells 4+8-, 3+56-16+NKT Cells 4+8-, Lymphocytes
plasma luminex : MMP-2, GRO, TGFa
freesurfer : Cerebral Cortex, Thalamus Proper, CC Mid Posterior
overall brain microstructure : MTR-CC, MTR-Hippocampus, MD-Cerebral-
White-Matter
localized brain microstructure : MTR-CC Mid Anterior, FA-CC Anterior, MTR-
CC Central
brain volumetry : Norm Peripheral Gray Volume, BPV, Norm Brain Volume

brain diseases. The Karnofsky Performance Status is the most

widely used health status measure in HIV medicine and

research [16]. [2] observes CD4+ T cell depletion during

all stages of HIV disease. Mycoplasma membrane protein

(MMP) is identified as a possible cofactor responsible for the

progression of AIDS. The fronto-orbital cortex, one of the

cerebral cortical areas, is mainly damaged in AIDS brains [28].

Whole brain MTR is reduced in HIV-1-infected patients [18].

[1] concludes HIV dementia is associated with specific gray

matter volume reduction, as well as with generalized volume

reduction of white matter.

V. RELATED WORK

Currently, representative methods for multi-view learning

can be categorized into three groups [29]: co-training, mul-

tiple kernel learning, and subspace learning. Generally, the

co-training style algorithm is a classic approach for semi-

supervised learning, which trains alternatively to maximize

the mutual agreement on different views. Multiple kernel

learning algorithms combine kernels that naturally correspond

to different views, either linearly [14] or nonlinearly [25],

[4] to improve learning performance. Subspace learning algo-

rithms learn a latent subspace, from which multiple views are

generated. Multiple kernel learning and subspace learning are

generalized as co-regularization style algorithms [22], where

the disagreement between the functions of different views is

taken as one part of the objective function to be minimized.

Overall, by exploring the consistency and complementary

properties of different views, multi-view learning is more

effective than single-view learning.

One of the key challenges of multi-view classification comes

from the fact that the incorporation of multiple views will

bring much redundant and even conflicting information which

is unfavorable for classifier learning. In order to tackle this

problem, feature selection has been the focus of interest and

much work has been done. Most of the existing studies can be

categorized as filter models [17], [20] and embedded models

based on sparsity regularization [7], [6], [26], [27]. While in

this paper, we focus on wrapper models for feature selection.

The problem of feature selection in the tensor product space

is formulated as an integer quadratic programming problem

in [21]. However, this method is limited to the interaction

between two views and hard to extend to many views, since it

directly selects features in the tensor product space resulting

in the curse of dimensionality. [23] studies multi-view feature

selection in the unsupervised setting.



We notice that support vector machine recursive feature

elimination (SVM-RFE) can intelligently select discrimina-

tive features using the weight vector produced by support

vector machine [9], but it can only be applied on a single-view

data. In this paper, we use tensor product to organize multi-

view features and study the problem of multi-view feature

selection based on SVM-RFE and tensor techniques. Dif-

ferent from existing approaches, we leverage the correlations

between the original data and the reconstructed tensors and

develop a wrapper feature selection approach.

VI. CONCLUSION

In this paper, we studied the problem of multi-view fea-

ture selection. We explored tensor product to bring different

views together in a joint space, and presented a dual method

of tensor-based multi-view feature selection (DUAL-TMFS).

Empirical studies in brain disease demonstrate the features

selected by our proposed method yield better classification

performance and are relevant to disease diagnosis.

Our proposed method has broad applicability for biomedical

applications. Capabilities for simultaneous analysis of multiple

feature subsets has transformative potential for yielding new

insights concerning risk and protective relationships, for clar-

ifying disease mechanisms, for aiding diagnostics and clinical

monitoring, for biomarker discovery, for identification of new

treatment targets and for evaluating effects of intervention.
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[20] Marko Robnik-Šikonja and Igor Kononenko. Theoretical and empirical
analysis of relieff and rrelieff. Machine learning, 53(1-2):23–69, 2003.

[21] Aaron Smalter, Jun Huan, and Gerald Lushington. Feature selection in
the tensor product feature space. In ICDM, pages 1004–1009, 2009.

[22] Shiliang Sun. A survey of multi-view machine learning. Neural
Computing and Applications, 23(7-8):2031–2038, 2013.

[23] Jiliang Tang, Xia Hu, Huiji Gao, and Huan Liu. Unsupervised feature
selection for multi-view data in social media. In SDM, 2013.

[24] Dacheng Tao, Xuelong Li, Xindong Wu, Weiming Hu, and Stephen J
Maybank. Supervised tensor learning. Knowledge and Information
Systems, 13(1):1–42, 2007.

[25] Manik Varma and Bodla Rakesh Babu. More generality in efficient
multiple kernel learning. In ICML, pages 1065–1072, 2009.

[26] Hua Wang, Feiping Nie, and Heng Huang. Multi-view clustering and
feature learning via structured sparsity. In ICML, pages 352–360, 2013.

[27] Hua Wang, Feiping Nie, Heng Huang, and Chris Ding. Heterogeneous
visual features fusion via sparse multimodal machine. In CVPR, pages
3097–3102, 2013.

[28] S Weis, H Haug, and H Budka. Neuronal damage in the cerebral
cortex of AIDS brains: a morphometric study. Acta neuropathologica,
85(2):185–189, 1993.

[29] Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view learning.
arXiv, 2013.

[30] Jieping Ye, Kewei Chen, Teresa Wu, Jing Li, Zheng Zhao, Rinkal Patel,
Min Bae, Ravi Janardan, Huan Liu, Gene Alexander, and Eric Reiman.
Heterogeneous data fusion for Alzheimer’s disease study. In KDD, pages
1025–1033. ACM, 2008.


