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Abstract—Link prediction has become an important and active
research topic in recent years, which is prevalent in many real-
world applications. Current research on link prediction focuses
on predicting one single type of links, such as friendship links
in social networks, or predicting multiple types of links indepen-
dently. However, many real-world networks involve more than
one type of links, and different types of links are not independent,
but related with complex dependencies among them. In such
networks, the prediction tasks for different types of links are also
correlated and the links of different types should be predicted
collectively. In this paper, we study the problem of collective
prediction of multiple types of links in heterogeneous information
networks. To address this problem, we introduce the linkage
homophily principle and design a relatedness measure, called
RM, between different types of objects to compute the existence
probability of a link. We also extend conventional proximity
measures to heterogeneous links. Furthermore, we propose an
iterative framework for heterogeneous collective link prediction,
called HCLP, to predict multiple types of links collectively by
exploiting diverse and complex linkage information in hetero-
geneous information networks. Empirical studies on real-world
tasks demonstrate that the proposed collective link prediction
approach can effectively boost link prediction performances in
heterogeneous information networks.

Index Terms—collective link prediction; heterogeneous infor-
mation networks; meta path.

I. INTRODUCTION

Network analysis, especially link prediction, is prevalent

in a wide range of application domains. Examples include

recommender systems, gene analysis, etc. In these applica-

tions, the potential existence of unknown links representing a

particular relationship need to be predicted. For example, in

gene-disease association prediction, different gene sequences

can lead to certain diseases. Researchers would like to predict

the association relationships between genes and diseases. In

drug-target binding prediction, different chemical compounds

can bind with certain gene targets. In order to discover new

drugs for diseases, researchers are interested in predicting the

binding relationships between genes and chemical compounds.

Link prediction has been extensively studied in the literature

[19], [8], [20]. Conventional research on link prediction mainly

focuses on homogeneous information networks which are

composed of one single type of objects and links. Recent

studies extend to study the link prediction problem in het-

erogeneous information networks [25], [6], [16], [7], where

multiple types of objects are interconnected through multiple

types of links. Most of existing studies either predict one single

type of links or independently predict multiple types of links.

However, in many real-world applications, we need to predict

multiple types of links within a heterogeneous information

network, and the prediction tasks for multiple types of links

are correlated.

For example, in drug discovery networks, we usually need to

predict multiple types of links within a heterogeneous informa-

tion network, such as gene-disease association links and drug-

target binding links. Moreover, different types of links are cor-

related, and should be predicted collectively instead of inde-

pendently. Gene-disease association relationship is correlated

with drug-target binding relationship, since there are diverse

and complex relationships connecting gene, disease, chemical

compounds, and related objects. The tasks of predicting drug-

target binding links and gene-disease association links are

closely related, because any discovery of a certain association

between gene sequences and a particular disease can provide

important clues about developing the corresponding drugs for

such disease, vice versa. Therefore, in order to capture such

inter-link dependencies, multiple types of links need to be

predicted collectively.

In this paper, we study the problem of heterogeneous

collective link prediction, which corresponds to collectively

predicting the potential existence of multiple types of links in

a heterogeneous information network. If we consider collective

link prediction and heterogeneous information networks as a

whole, the major research challenges of this paper can be

summarized as the following aspects.

First, how can we compute the existence possibility of a link

between different types of objects? Conventional approaches

for link prediction mainly consider one single type of re-

lationships in the data. However, heterogeneous information

networks can encode diverse and complex relationships among

objects, involving multiple types of source node correlations

and target node correlations. For example, two chemical

compounds can be considered similar due to (1) sharing

of common substructure, (2) treating the same disease, or

(3) binding to the same gene, etc. Each of these types of

similarities or correlations corresponds to a different linkage

or path relationship in Figure 2. That is to say, similar



Fig. 1. Collective link prediction in heterogeneous information networks. Different types of nodes are drawn as different shapes. The relationships from blue
circles (the source nodes) to red circles (the target nodes) are the links to be predicted. Each line in different colors represents a particular correlation among
the source nodes or the target nodes, extracted from the heterogeneous information network using meta-paths.

node sets representing such correlations can be discovered

through meta-path based connections [25]. In order to in-

vestigate the potential existence of a link, we introduce the

linkage homophily principle by referring to existing linkage

information between the similar nodes of the source node

and those of the target node. Different from previous work

where proximity measures for link prediction are defined on

one single type of nodes (e.g., common neighbors, Jaccard’s

coefficient, preferential attachment) [19], [25], we design a

relatedness measure between a pair of nodes which can be of

different types. We also extend some representative proximity

measures to heterogeneous links [26].

Second, how can we simultaneously predict multiple types

of links in heterogeneous information networks to capture

the inter-link dependencies? It is usually assumed that the

prediction tasks for multiple types of links are independent

which may not hold in some real-world applications. To tackle

this problem, inspired by co-training [2], we try to combine

labeled and unlabeled data in heterogeneous information net-

works, where the label concepts are different types of links.

Instead of directly exchanging their most confident predictions

on unlabeled data, we consider adding the most confidently

predicted links of each type into the network schema. There-

fore, an iterative framework is proposed to effectively address

the problem of collective prediction of multiple types of links

by leveraging the complementary prediction information from

different types of links.

In this paper, we define the problem of collective link

prediction in heterogeneous information networks. We observe

that meta-path is defined as a type of path containing a

certain sequence of link types [27], which can be a good tool

to extract diverse and complex relationships among objects

in heterogeneous information networks, since different meta-

paths usually represent different correlations among connected

objects with different semantic meanings, as shown in Fig-

ure 1. Moreover, we introduce the linkage homophily principle,

based on which we design a relatedness measure, called

RM, that can characterize the existence probability of a link

between different types of nodes. We also extend conventional

proximity measures to heterogeneous links. Furthermore, we

propose a general iterative framework for heterogeneous col-

lective link prediction, called HCLP, to predict multiple types

of links collectively by capturing the diverse and complex

relationships among different types of links and leveraging

the complementary prediction information. It is demonstrated

through experiments on real-world tasks that our proposed

method can significantly improve the performance of collec-

tive link prediction in heterogeneous information networks.

For the rest of the paper, we first state the problem of

heterogeneous collective link prediction and introduce data

collections and related notations in section II. Then we intro-

duce the relatedness measure in section III-B and an iterative

framework in section III-C. Experimental results are discussed

in section IV. In section VI, we conclude the paper.

II. PROBLEM DEFINITION

In this section, we first introduce related concepts and

notations, then define the problem, and introduce the dataset

used in this paper.

A. Heterogeneous Information Network

A heterogeneous information network is a type of informa-

tion network with multiple types of nodes and multiple types

of links [28], [26]. It can be represented as a directed graph

G = (V, E). V denotes the set of nodes, which involves t types

of nodes: V1 = {v11 , · · · , v1n1
}, · · · ,Vt = {vt1, · · · , vtnt

},

where vij represents the j-th node of type i. E ⊆ V×V denotes

the set of links between the nodes in V , which involves m
types of links.

Each type of links starting from a source node of type i
and ending at a target node of type j corresponds to a binary

relation Rij , where Rij
pq holds if vip and vjq are linked by



a link of type Rij . For example, in Figure 2, the link type

“hasTissue” is a relation between genes and tissues, where

Rij
pq holds if the p-th gene node has a link of type “hasTissue”

to the q-th tissue node in the network. We can write this link

type as “gene
hasTissue−−−−−−−→tissue” or “Vi Rij

−−→ Vj”.

In addition, a relation Rij is mathematically described by a

|Vi|×|Vj | weighted adjacency matrix Wij , where Wij
pq ∈ [0, 1]

is the possibility that there exists a link of type Rij between

vip and vjq . Particularly, Wij
pq = 1, if there is an existing link

between vip and vjq . Otherwise, Wij
pq is set to 0 in initialization

for all the unknown links.

B. Collective Link Prediction over Multiple Link Types

The task of collective link prediction is to predict the poten-

tial existence of multiple types of links, which are correlated.

In this paper, we propose to utilize heterogeneous information

networks to facilitate the process of collective link prediction.

Given a heterogeneous information network G = (V, E),
E is the set of existing links involving m types of links,

then all the remaining unknown links are denoted as U =
V × V − E , from which a set of test links are randomly

sampled, T ⊆ U . The task of collective link prediction is

to find a predictive function f : (V, E , T ) → Y , where

Y = {y1, y2, · · · , y|T |}, yi ∈ {0, 1} is a set of inferred results

for whether the test links can exist.

To build a classifier, for each link, a feature vector xi should

be derived from the network schema or linkage structures.

Then, our task reduces to build a model to estimate the

probability P (yi|xi). xi can be normally designed as to reflect

the degree of similarity or closeness of two adjacent nodes

of the i-th link. However, computing xi is a challenging

task in the context of heterogeneous information networks,

since conventional proximity measures [19] can not be directly

applied here. In section III-B, a novel relatedness measure is

proposed to capture diverse and complex relationships between

multiple types of nodes, in different semantics.

C. Data Collections

In this paper, we study a heterogeneous information network

from bioinformatics. SLAP dataset1 is a heterogeneous infor-

mation network composed of over 290K nodes and 720K
edges. It integrates data involving 10 types of nodes, such

as genes, diseases, chemical compounds, etc., which are con-

nected through 11 types of links, such as “gene
PPI−−−→ gene”,

“gene
hasTissue−−−−−−−→ tissue”, etc. Its network schema is shown

in Figure 2. There are extensive applications of predicting

these types of links in bioinformatics, and several examples

are listed in Table I.

1SLAP dataset [4]: this dataset is an information network that integrates
many datasets into a single framework using Semantic Web technologies for
drug discovery. It includes public datasets related to systems chemical biology:
such as PubChem, DrugBank, PPI, SIDER, CTD diseases, KEGG Pathways,
etc.
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Fig. 2. An example of heterogeneous information network schema (the
data schema of SLAP dataset). Each box represents one type of nodes in the
network, and each dashed line represents one type of links. The numbers in
the figure represent the numbers of nodes/links of different types. [14]

III. PROPOSED METHOD

To address the first challenge of how to compute the exis-

tence possibility of a link between different types of objects,

we first introduce the notion of meta-path in section III-A,

based on which we design a novel relatedness measure be-

tween a pair of nodes in section III-B. The second challenge

of how to simultaneously predict multiple types of links is

tackled by our proposed iterative framework for heterogeneous

collective link prediction in section III-C.

A. Meta-path

Before exploiting the correlations among multiple types of

links, we first consider potential relationships among multiple

types of nodes derived from a heterogeneous information

network. We briefly review the notion of meta-path following

the previous work [26], [17], [15], [27].

In general, a meta-path P corresponds to a type of path

within the network schema, containing a certain sequence

of link types. For example, in Figure 2, a meta-path “dis-

ease
causeDisease−1

−−−−−−−−−−→ gene
causeDisease−−−−−−−−−→ disease” denotes a

composite relationship between diseases, and the semantic

meaning of this meta-path is that two diseases are caused by a

common gene. The link type “causeDisease−1” represents the

inverted relation of “causeDisease”. We consider that diseases
connected through the meta-path can be regarded as more

similar than those without such correlations.

Different meta-paths usually represent different relation-

ships among linked nodes with different semantic meanings.

For example, the meta-path “gene
PPI−−−→ gene” denotes two

genes are connected through “PPI” links, while the meta-path

“gene
hasTissue−−−−−−−→ tissue

hasTissue−1

−−−−−−−−→ gene” corresponds to

the semantic meaning that two genes share common tissues
[14]. In this way, similarity between a type of nodes can be

described by different meta-paths with different semantics.

Pij is defined as a type of meta-paths starting from source

nodes of type i and ending at target nodes of type j. Partic-

ularly, Pii (or Pjj) is a type of meta-paths starting from and



TABLE I
VARIOUS APPLICATIONS OF LINK PREDICTION IN BIOINFORMATICS.

Predicted Link Type Application Reference

Gene
PPI−−−→Gene Protein-protein Interaction Prediction [12]

Gene
causeDisease−−−−−−−−−−→Disease Prioritization of Candidate Disease Genes [22]

Gene
hasGeneOntology−−−−−−−−−−−−−→Gene Ontology Automated Gene Ontology Annotation [29]

Chemical Compound
bind−−−→Gene Drug-Target Interaction Prediction or Drug Repositioning [5]

Chemical Compound
treatDisease−−−−−−−−−→Disease Drug Discovery [9]

Chemical Compound
causeSideEffect−−−−−−−−−−−−→Side Effect Drug Side Effect Profiling [23]

Chemical Compound
hasChemicalOntology−−−−−−−−−−−−−−−−→Chemical Ontology Automatic Annotation of Chemical Ontology [11]

ending at nodes of the same type i (or j). The s-th (or the t-th)

meta-path of Pii (or Pjj) is denoted as Piis (or Pjjt). For

example, Piis can be the green line in Figure 1, representing

a meta-path connecting the source nodes. Similarly, Pjjt can

be the yellow line representing a meta-path connecting the

target nodes. In Figure 1, Rij is indicated as the arrows linking

from the source nodes to the target nodes. Concatenating Piis,

Rij and Pjjt in sequence can compose a meta-path of Pij

going from the source nodes to the target nodes, denoted as

Pijst. It can be written as a certain sequence of relations:

Rk0k1 , Rk1k2 , · · · , Rkn−1kn , where k0 = i, kn = j and n is

the length of Pijst.

B. Relatedness Measure

Similarity measures for analyzing the proximity of nodes in

a network are introduced in previous work [19], [25], which

however are defined on one single type of nodes. In real-world

applications of heterogeneous information networks, there are

multiple types of nodes. Thus, we design a novel relatedness

measure between a pair of nodes, which can be of different

types.

Let’s consider a link type “Vi Rij

−−→ Vj”. An effective

measure function should be designed to reflect the possibility

that a link can exist between the source node vip and the

target node vjq . An intuition is to find a set of nodes of type i
similar to vip, and a set of nodes of type j similar to vjq , then

investigate the existing linkage information across the two sets

of nodes. We consider that the more existing links across the

similar node set of vip and the similar node set of vjq , the more

likely that there exists a link between vip and vjq , which can

be referred to as the following principle.

PRINCIPLE 1. (Linkage Homophily Principle) Two nodes
are more likely to be directly linked if most of their respective
similar nodes are linked.

Normally, similar nodes are defined within neighbors. In

heterogeneous information networks, however, similar nodes

of the same type may be connected through composite paths

instead of direct links. Thus, meta-path based connections can

be used to capture such generalized neighbor dependencies,

upon which similarity can be defined. Following this idea,

we need to select the meta-paths that define the similarity of

source nodes and that of target nodes. Assume the source node

is vip (i.e., the p-th node of type i) and the selected meta-path is

Piis (i.e., the s-th meta-path of Pii). The set of nodes of type i
that are connected to vip via the meta-path Piis are regarded as

its generalized neighbors and denoted as N i
p. Similarly, assume

the target node is vjq (i.e., the q-th node of type j) and the

selected meta-path is Pjjt (i.e., the t-th meta-path of Pjj).

The set of nodes of type j that are connected to vjq via the

meta-path Pjjq are regarded as its generalized neighbors and

denoted as N j
q . The idea is to use the connectivity between

the two generalized neighbor sets, N i
p and N j

q , to predict the

likelihood of linkage between nodes vip and vjq .

This concept can be further refined by taking into con-

sideration the similarity of generalized neighbor nodes as a

weight. Weighted by the similarity between N i
p and vip and that

between N j
q and vjq , the relatedness measure can be defined

as the expected number of links between similar source nodes

and similar target nodes, divided by the maximum number of

potential links between them.

Let EPCiis denote the similarity matrix of i-th node

type along the meta-path Piis, then EPCiis
pp′ is the sim-

ilarity between nodes vip and vip′ . As in [26], the simi-

larity can be measured based on path counts. In general,

expected path count, EPCijst, can be computed by the prod-

uct of weighted adjacency matrices Wkp−1kp corresponding

to each link type Rkp−1kp along the meta-path Pijst =
{Rk0k1 , Rk1k2 , · · · , Rkn−1kn} as follows:

EPCijst =
n∏

p=1

Wkp−1kp = EPCiis ×Wij × EPCjjt

where Pijst is a composition of Piis, Rij and Pjjt. Here,

EPCijst is a |Vi| × |Vj | matrix and EPCijst
pq is the expected

number of path instances between vip and vjq . EPCiis (or

EPCjjt) can be similarly computed and regarded as the

similarity measures between nodes of type i (or j).

Now we can formulate our relatedness measure between

source nodes of type i and target nodes of type j upon the

meta-path Pijst as follows:

RM ijst =
EPCijst

EPCiis × 1× EPCjjt
=

EPCiis ×Wij × EPCjjt

EPCiis × 1× EPCjjt
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Fig. 3. A simplified example of computing the relatedness measure. The
arrows represent existing links between source nodes of type i and target
nodes of type j, and the numbers on the dashed lines represent similarity
between the same types of nodes (i.e., expected path count derived from
meta-paths Piis and Pjjt).

where 1 is a |Vi| × |Vj | matrix in which all the elements

are 1, and the division means respectively dividing elements in

the numerator matrix by elements in the denominator matrix

in the corresponding positions. This way, RM ijst is also a

|Vi| × |Vj | matrix and RM ijst
pq is the relatedness we measure

between vip and vjq following Pijst.

We give an intuitive interpretation of the formulation that

the numerator represents the expected number of links between

generalized neighbor sets of a node pair, and the denominator

represents the maximum number of potential links between

them. Both of them are weighted by the product of similarity

between generalized neighbors and the node pair. Here, the

maximum number of potential links between two node sets

corresponds to the extreme case where all nodes in the two

sets are linked in pairs. We can see that the higher RM, the

more likely that there can exist a link between the pair of

source node and target node.

To be specific, let’s have a look at an example shown in

Figure 3. We can derive the value of EPCiis, EPCjjt from

the figure and compute RM ijst as follows:

EPCiis =

⎛
⎜⎝

0 2 3 0
2 0 8 6
3 8 0 5
0 6 5 0

⎞
⎟⎠ , EPCjjt =

⎛
⎜⎝

0 6 0 2
6 0 3 0
0 3 0 5
2 0 5 0

⎞
⎟⎠

RM ijst =

⎛
⎜⎝

0.70 0.40 0.85 0.40
0.69 0.17 0.78 0.36
0.34 0.67 0.58 0.86
0.59 0.55 0.80 0.55

⎞
⎟⎠

Considering the existence possibility of the link between vi2
and vj2, we first find vi1, vi3 and vi4 as the generalized neighbors

of vi2, and find vj1 and vj3 as the generalized neighbors of

vj2. In this case, there are only two existing links across the

sets N i
2 = {vi1, vi3, vi4} and N j

2 = {vj1, vj3}. Therefore, the

numerator is 2× 3+ 6× 3 = 24, the denominator is 144, and

RM ijst
2,2 = 24/144 = 0.17. It indicates that vi2 and vj2 are not

likely to be linked.

{xp} = ComputingFeatures(i,j,I)

1) Construct the meta-path set Pii and Pjj through

breadth-first-search

2) Combine meta-paths in Pii and Pjj in pairs and

compute the relatedness measure as the feature

vector xp, p ∈ I
3) Return {xp}

Fig. 5. The function of computing features using the relatedness measure,
parameterized by the type of source node i, the type of target node j, and
the index set of instances I.

However, in the case of vi3 and vj4, four links exist across

N i
3 = {vi1, vi2, vi4} and N i

4 = {vj1, vj3}, the generalized

neighbor sets of vi3 and vj4 respectively. Especially, vi2 is

the most similar node of vi3, and it links to both similar

nodes of vj4 in N i
4. It is important because vi2 counts more

in the computation of the relatedness measure, for its largest

similarity with vi3, EPCiis
2,3 = 8. RM ijst

3,4 = 0.86 indicates a

high chance that there can exist a direct link between vi3 and

vj4, according to the meta-path Pijst.

To address the problem of collective link prediction, we

propose an iterative framework below, using the relatedness

measure to construct the feature vectors of links. Therefore,

we can build a learning model for each type of links.

C. Iterative Framework

There are multiple types of links in heterogeneous informa-

tion networks. For each link type, the links are partially known.

Sparsity can be a problem for some link types, where there are

far more unknown linkage relationship than existing links [18].

Since the potential existence of multiple types of links can

interact with each other, the process of link prediction should

be conducted in a collective way. In other words, apart from

the existing linkage information, we can leverage predicted

existence of other link types to facilitate the prediction of a

particular sparse link type, which can also share its enriched

linkage information in return with other link types. Thus, it is

a collective and complementary process.

Inspired by co-training [2], we try to combine labeled and

unlabeled data in heterogeneous information networks where

existing links can be regarded as limited labeled data while

unknown links are unlabeled data in large size. Different from

conventional co-training that each example can be partitioned

into two distinct views and shares a same set of label concepts,

in the setting of heterogeneous information networks, there

are different labels for each learning algorithm representing

whether the corresponding type of links can exist. However,

these different types of links co-exist in a network, which

could be leveraged to exploit their correlations. Instead of

directly exchanging their most confident predictions on unla-

beled data, we consider adding the most confidently predicted

links of each type into the network schema. Then meta-

paths, computed from the network schema, will be updated

for each type of links. In such way, complementary prediction

information from different types of links can be exchanged

and enriched in an indirect manner.



Input:
G : a heterogeneous information network, A: a base learner (default: SVM),

YL : label set of training instances, θ : threshold to update W (default: 0.9),

maxlen : maximum meta-path length (default: 3), maxiter : maximum # of iteration (default: 5)

Training Initialization:
For k = 1 to m, learn the local model fk for the k-th link type, Rij :

1. {xk
p} = ComputingFeatures(i,j,Ek) and construct training sets Dk =

{
(xk

p, y
k
p)
}

, p ∈ Ek

2. Let fk = A(Dk) be the local model trained on Dk

Iterative Inference:
Repeat until convergence or #iteration > maxiter:

For k = 1 to m:

1. Sample a set of unknown links Sk

2. {xk
p} = ComputingFeatures(i,j,Sk) and obtain the probabilistic output of fk(xk

p), p ∈ Sk

3. Update the weighted adjacency matrix Wij where fk(xk
p) is above θ

Output:
For k = 1 to m:

1. {xk
p} = ComputingFeatures(i,j,T k), p ∈ T k

2. Return the deterministic output of fk(xk
p) as ŶT k

Fig. 4. The HCLP algorithm.

In this paper, we propose an effective algorithm to perform

the heterogeneous collective link prediction, called HCLP. We

summarize it in Figure 4. The algorithm is essentially a general

iterative framework and it calls the function defined in Figure 5

to compute features for each link, where the relatedness mea-

sure can be replaced with other possible measure functions. It

contains the following key steps:

Training Initialization: Basically, for the k-th link type,

say “Vi Rij

−−→ Vj”, we use breadth-first-search to exploit

all the meta-paths of Pii and Pjj within a maximum path

length maxlen. It has been shown in [26] that long meta-

paths are not quite useful in capturing the linkage structures

of heterogeneous information networks. To avoid redundancy,

a meta-path is removed if it contains another meta-path that

has already been exploited. Then, meta-paths of Pii and

Pjj can be combined in pairs to compute the relatedness

measure as the feature vectors for predicting the link type

“Vi Rij

−−→ Vj”. Using such feature vectors, we can train a

classifier fk corresponding to the k-th link type (i.e., Rij).

Iterative Inference: Overall, it is an iterative classification

algorithm [21] for the inference step. During each round of

iterations, a set of unknown links Sk is randomly sampled

for the k-th link type, and the probability P (ykp |xk
p), p ∈ Sk

can be obtained from the corresponding trained classifier fk.

The weighted adjacency matrix Wij is then updated where

the probabilistic output of fk(xk
p) is above a threshold θ.

Based on our proposed HCLP algorithm, especially the

step of iterative inference, multiple types of links can be

collectively predicted in heterogeneous information networks.

In each round of iterations, multiple types of links are pre-

dicted in turn, and their weighted adjacency matrices would be

updated at the positions where the corresponding predictions

are confident enough, thereby enriched network schema can

be leveraged as complementary information for prediction of

other link types.

IV. EXPERIMENTS

We first introduce the procedure of data processing in

section IV-A and compared approaches in section IV-B. Exper-

imental results are summarized in section IV-C. Furthermore,

we analyze the robustness of HCLP in section IV-D and

conduct parameter sensitivity analysis in section IV-E.

A. Data Processing

We test our algorithm on SLAP dataset [4] to evaluate

the performances of collective prediction of multiple types of

links in heterogeneous information networks. To balance the

numbers of different types of nodes, we extract the top-5000

chemical compounds and genes respectively, sorted by their

degrees to each other. All the other nodes and links remain

the same as in the original dataset. The task is to infer the

potential existence of 11 types of links collectively. As an

evaluation metric, we respectively investigate the prediction

accuracy of each link type.

B. Compared Methods

In order to demonstrate the effectiveness of our approach

in heterogeneous collective prediction of multiple types of

links, we extend the measure functions introduced in [26], so

that they can be applied to a pair of nodes of different types

like the relatedness measure, since their original definitions as

proximity measures are based on one single type of nodes.

• NPC (normalized path count) is to discount the number

of paths between a pair of nodes in the network schema by

the connectivity of the source node and the target node.

NPCijst
pq =

2× EPCijst
pq

EPCijst
p,· + EPCijst

·,q

where EPCijst
p,· denotes the total number of path instances

along Pijst starting from vip and EPCijst
·,q denotes the total

number of path instances along Pijst ending at vjq .



TABLE II
LINK PREDICTION PERFORMANCES “AVERAGE ACCURACY (RANK)”.

Methods

Type of Links ILP(NPC) ILP(RW) ILP(SRW) ILP(RM) HCLP(NPC) HCLP(RW) HCLP(SRW) HCLP(RM)

Gene
PPI−−−→Gene 0.889 (5) 0.878 (8) 0.893 (3) 0.888 (6) 0.892 (4) 0.884 (7) 0.898 (2) 0.899 (1)

Gene
cause−−−−→Disease 0.690 (8) 0.696 (6) 0.701 (3) 0.697 (5) 0.696 (6) 0.701 (3) 0.708 (1) 0.704 (2)

Gene
has−−→Pathway 0.888 (7) 0.899 (5) 0.909 (2) 0.909 (2) 0.881 (8) 0.894 (6) 0.906 (4) 0.913 (1)

Gene
has−−→GO term 0.862 (5) 0.851 (8) 0.867 (4) 0.862 (6) 0.870 (3) 0.857 (7) 0.875 (1) 0.874 (2)

Gene
has−−→Gene family 0.669 (7) 0.674 (3) 0.673 (5) 0.678 (1) 0.669 (7) 0.673 (4) 0.677 (2) 0.672 (6)

Gene
has−−→Tissue 0.813 (8) 0.828 (6) 0.846 (3) 0.841 (4) 0.818 (7) 0.830 (5) 0.849 (2) 0.851 (1)

Chemical
bind−−−→Gene 0.984 (4) 0.978 (7) 0.984 (4) 0.984 (4) 0.985 (2) 0.978 (7) 0.985 (2) 0.986 (1)

Chemical
treat−−−−→Disease 0.887 (4) 0.867 (8) 0.886 (5) 0.873 (7) 0.893 (3) 0.876 (6) 0.894 (2) 0.901 (1)

Chemical
cause−−−−→Side effect 0.901 (6) 0.886 (8) 0.913 (4) 0.931 (2) 0.913 (4) 0.890 (7) 0.927 (3) 0.939 (1)

Chemical
has−−→Substructure 0.934 (7) 0.938 (5) 0.943 (3) 0.939 (4) 0.935 (6) 0.932 (8) 0.951 (1) 0.947 (2)

Chemical
has−−→CO term 0.917 (6) 0.907 (8) 0.919 (5) 0.922 (3) 0.921 (4) 0.909 (7) 0.925 (2) 0.928 (1)

Average Rank (6.1) (6.5) (3.7) (4) (4.9) (6.1) (2) (1.7)
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Fig. 6. Link prediction accuracies with different label rates.

• RW (random walk) is to discount the number of paths

between a pair of nodes by the connectivity of the source

node.

RW ijst
pq =

EPCijst
pq

EPCijst
p,·

• SRW (symmetric random walk) incorporates random

walks from both directions following a meta-path.

SRW ijst
pq =

EPCijst
pq

EPCijst
p,·

+
EPCijst

pq

EPCijst
·,q

• RM (relatedness measure) is our designed measure func-

tion described in section III-B.

RM ijst
pq =

EPCijst
pq

|Vi|∑
p′=1

|Vj |∑
q′=1

EPCiis
pp′ × EPCjjt

qq′

=

∑|Vi|
p′=1

∑|Vj |
q′=1

EPCiis
pp′ ×Wij(vi

p′ , v
j
q′ )× EPCjjt

qq′

|Vi|∑
p′=1

|Vj |∑
q′=1

EPCiis
pp′ × EPCjjt

qq′

We denote the HCLP algorithm implementing RM as

HCLP(RM). By replacing RM in Figure 5 with other mea-

sure functions introduced above, we can have HCLP(NPC),
HCLP(RW), and HCLP(SRW).

In comparison with our proposed HCLP algorithm, we also

employ these measure functions in a conventional supervised

setting ILP where the prediction tasks for multiple types of

links are assumed to be independent. Such methods complete

training and prediction in one round, and they are denoted as

ILP(NPC), ILP(RW), ILP(SRW), and ILP(RM), respectively.

For a fair comparison, we use LibSVM [3] with linear kernel

as the base classifier for all the compared methods. In the

experiments, 10-fold cross validations are performed on each

type of links.

C. Performances of Heterogeneous Collective Link Prediction

It can be observed from Table II that, in comparison

with ILP, performances can be improved by implementing

link prediction collectively in heterogeneous information net-

works, no matter what measure functions are employed. For

example, HCLP(RM) generally outperforms ILP(RM), while

HCLP(SRW) does better than ILP(SRW). It demonstrates that

our proposed HCLP iterative framework can effectively work

on different measure functions to improve the performances of

predicting multiple types of links. Therefore, in heterogeneous

information networks, different types of links should be taken

care of simultaneously.

Then we study the effectiveness of different measure func-

tions on prediction of multiple types of links in heterogeneous

information networks. In the collective setting HCLP, RM
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Fig. 7. Link prediction accuracies with different number of iterations.

outperforms NPC and RW and displays a slight advantage over

SRW. However, no one rules all. We can safely conclude that

different measure functions can be best fitted into different

types of links by capturing its underlying complex physical

meanings. In most cases, RM and SRW can be good alterna-

tives.

We also notice that the proposed HCLP iterative framework

can be perfectly applied to relatedness measure RM. As can

be seen from Table II, HCLP(RM) outperforms all the other

compared methods on predicting a majority of link types.

Basically, HCLP(RM) effectively boosts the performances of

ILP(RM) through an iterative and collective process. For

prediction of the link type “chemical compound
treatDisease−−−−−−−−→

disease”, HCLP(RM) improves ILP(RM) in accuracy by nearly

three percent.

D. Robustness

In many real-world applications, sparsity can always be

a problem. To investigate the practical applicability of the

HCLP algorithm, we conduct experiments where a proportion

of training data of a particular link type is removed and

only the remaining training data can be used in the network

schema, without any changes in other types of links. Figure 6

shows the experimental results of the methods ILP and HCLP,

employing RM, for predicting three important types of links

“gene
PPI−−−→ gene”, “chemical compound

bind−−−→ gene”, and

“chemical compound
treatDisease−−−−−−−−→ disease”. It demonstrates

that HCLP outperforms ILP at different rates of labeled links.

Generally, HCLP does a lot better at lower rate of labeled data.

Therefore, the HCLP algorithm can effectively leverage com-

plementary information from other link types, and improve the

performances of predicting a particular link type even with

its limited training data through a process of heterogeneous

collective link prediction.

E. Parameter Sensitivity Analysis

There are two issues in the sensitivity analysis experiments

of the HCLP algorithm. Figure 7 illustrates the sensitivity of

the methods HCLP(RM) and HCLP(SRW) to the parameter

maxiter denoting the maximum number of iterations. As

can be seen, the first few rounds of iterations can effectively

boost the performances of predicting multiple types of links,

and prediction accuracies stabilize as the number of iterations

continues to increase. It means our proposed HCLP algorithm

can quickly converge within a few rounds of iterations.

Sensitivity of the HCLP algorithm to the threshold θ is

shown in Figure 8 where it plots the experimental results of

HCLP implementing different measure functions as θ changes.

The parameter θ is a minimum value that the probabilistic

prediction of a sampled link should reach when we update

its corresponding weighted adjacency matrix in the step of

iterative inference. Generally, the performances of HCLP, em-

ploying different measure functions, are quite stable regardless

of the value of θ for predicting some types of links. In other

cases, the performances are improved as θ increases, which

implies that a low value of θ can bring in noise into the

network schema and mislead the final predictions. Thus, a

slightly high value of θ, as 0.90, is preferred in the HCLP

algorithm.
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Fig. 8. Link prediction accuracies with different threshold θ.

V. RELATED WORK

Link prediction, mainly in homogeneous information net-

works [20], has been extensively studied in recent years.

Previous work can be generally categorized as follows: (1)

unsupervised approaches which focus on proposing different

similarity measures, either based upon graph topology or node

attributes [1], [19]; (2) supervised approaches which exploit

different features from the training set and use supervised

learning models to predict the potential existence of links [10],

[30], [20]. For a detailed survey on link prediction, please refer

to [8].

Heterogeneous information networks have attracted much

attention in recent years. Sun et al. studied the clustering

problem and the top-k similarity problem in heterogeneous

information networks [28], [26]. Ming et al. studied a spe-

cialized classification problem in heterogeneous information

networks where different types of nodes share a same set of

label concepts [13].

Besides, there are related work on link prediction in hetero-

geneous information networks. The notion of meta-path was

applied to redefine the graph proximity measures in heteroge-

neous information networks [25]. However, it was confined to

predicting links between one single type of nodes. Instead of

meta-path, the notion of triad census was used to determine

the weights of different combinations of edge types [6]. Shi

et al. studied the relevance search problem in heterogeneous

networks to measure the relatedness of heterogeneous objects

[24]. Moreover, the heterogeneous link prediction problem was

studied in the unsupervised setting and one single type of

edges were predicted independently [16], [7].



VI. CONCLUSION

In this paper, we studied the problem of collective link

prediction in heterogeneous information networks. Conven-

tional approaches for link prediction mainly focus on homo-

geneous information networks. However, in many real-world

applications, there are multiple types of links in heterogeneous

information networks and the potential existence of different

types of links can interact with each other. Therefore, we

introduce the linkage homophily principle and design a relat-

edness measure, called RM, between different types of objects

to compute the existence probability of a link. We also extend

conventional proximity measures to heterogeneous links. Fur-

thermore, we propose an iterative framework, called HCLP,

to predict multiple types of links collectively by exploiting

diverse and complex linkage information in heterogeneous

information networks. Empirical studies on real-world tasks

demonstrate that our proposed method for heterogeneous col-

lective link prediction can effectively facilitate the process of

collectively predicting multiple types of links in heterogeneous

information networks.
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