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Abstract— In the era of big data, a large amount of
noisy and incomplete data can be collected from multiple
sources for prediction tasks. Combining multiple models or
data sources helps to counteract the effects of low data quality
and the bias of any single model or data source, and thus
can improve the robustness and the performance of predictive
models. Out of privacy, storage and bandwidth considerations,
in certain circumstances one has to combine the predictions
from multiple models or data sources without accessing the
raw data. Consensus-based prediction combination algorithms
are effective for such situations. However, current research
on prediction combination focuses on the single label setting,
where an instance can have one and only one label. Nonetheless,
data nowadays are usually multilabeled, such that more than
one label have to be predicted at the same time. Direct
applications of existing prediction combination methods to
multilabel settings can lead to degenerated performance. In
this paper, we address the challenges of combining predictions
from multiple multilabel classifiers and propose two novel
algorithms, MLCM-r (MultiLabel Consensus Maximization
for ranking) and MLCM-a (MLCM for microAUC). These
algorithms can capture label correlations that are common
in multilabel classifications, and optimize corresponding per-
formance metrics. Experimental results on popular multilabel
classification tasks verify the theoretical analysis and effective-
ness of the proposed methods.

I. INTRODUCTION

Combining multiple models or data sources has been

attracting more and more attentions in data mining and

machine learning research communities. Real-world data

are usually massive, noisy and incomplete. To improve the

robustness and generalization ability of learning methods on

these real-world data, one has to combine multiple models

and exploit the knowledge of multiple data sources. Many

methods have been proposed for the purpose, such as [7, 1],

which focus on learning ensembles of models from the

training data and predictions on test data. Due to privacy,

bandwidth or storage issues, there are situations where we

cannot have access to either the training data nor the testing

data directly. Instead, only the predictions of base models are

available. For example, in finance, aggregating customers

information from multiple banks would benefit customer

segmentation analysis. However, it would be unsafe or in-

feasible to transfer the customer information across different

banks. One solution to this problem is that we can apply the

analysis at each bank individually, and then aggregate the
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predictions from multiple banks. Prediction combination is

a powerful paradigm for such situations with an abundance

of studies [4, 5, 6, 10]. These algorithms combine the predic-

tions of multiple supervised and/or unsupervised models, in

hope of improving accuracies by exploiting the strengths of

different models or data sources, without access to training

or test data.

Conventional research on prediction combination has been

focusing on single label classification and cannot handle

multilabel classification. Meanwhile, multilabel classifica-

tion has seen its wide application in text/image categoriza-

tion, bioinformatics and so on, and therefore is of practical

importance. Although certain ensemble methods [9, 15]

have been proposed to handle multilabel classification, they

focus on building the ensemble from training data, not

on prediction combination. Given the practical needs to

combine multilabel predictions from multiple models/data

sources without training and test data, we identify the

following challenges that need to be addressed in order

to bridge the gap. First, although state-of-the-art multilabel

classification methods show that label correlations can help

improving classification performances, how to exploit label

correlations solely using predictions of base models has not

been addressed before. Second, there are various evaluation

metrics for multilabel classification, such as microAUC,

ranking loss, one error, etc. [3], it is more desirable to design

algorithms that can be proved to be optimal for a specific

metric, as different applications require different quality

measures. It is non-trivial to align prediction combination

with the modeling of label correlation to optimize a specific

metric. There is no existing work that addresses the above

issues.

In this paper, we address the above challenges by propos-

ing two different algorithms that can model label correlations

given only the predictions of base models. The algorithms

are designed and proved to optimize two widely used but

fundamentally different evaluation metrics, respectively. The

first algorithm MLCM-r consolidates the predictions of

base models via maximizing model consensus and exploits

label correlations using random walk in the label space.

The algorithm is proved to optimize ranking loss, which

measures the quality of the predictions on a per instance

basis (e.g. find relevant labels for a query in image search

engine). Another important multilabel performance metric

is microAUC, which is different from ranking loss (Sec-

tion IV). Since a model that optimizes ranking loss might

not be optimal on microAUC,we propose a second algorithm



Table I: Notations

Symbol Meaning

m Number of multilabel classifiers
n Number of instances
l Number of labels
x An instance
z Ground truth labels of x

Y k output of the kth model

Ȳ Average of Y k, k = 1, . . . ,m
y
k

i prediction of the kth model for the ith instance

Y Consolidated prediction of Y k, k = 1, . . . ,m
〈·, ·〉 inner product of two vectors
| · | Determinant of a matrix
‖ · ‖ Frobenius norm of a matrix
1[·] indicator of a predicate

card(A) cardinality of the set A

called MLCM-a (MultiLabel Consensus Maximization for

microAUC). MLCM-a is formulated as a optimization prob-

lem that regularizes prediction consolidation using partial

correlations between labels, and we show that the objective

of this formulation optimizes microAUC. The contributions

of this paper can be summarized as follows.

• We first study the problem of how to combine predic-

tions of multiple models in multilabel learning without

access to training and test data.

• We propose two novel algorithms that can jointly model

correlations among different labels and the consensus

among multiple models. We prove that the two algo-

rithms optimize two multilabel classification metrics,

respectively. As far as we know, this is the first work

that addresses the multilabel-label consensus learning

problem and optimize specific metrics.

• We compare the proposed models to 3 baselines on 6

multilabel classification tasks, with a maximum of 45%

percent of reduction in ranking loss and 20% percent

of increase in microAUC.

II. PRELIMINARY

In this section we recapitulate model combination and

multilabel classification algorithms, along with the chal-

lenges that we are addressing. Table I summarizes most of

the symbols and their definitions used in this paper. We use

boldface lower-case letters for vectors (e.g., x) and capital

letters for matrices (e.g., Y ).

A. Multilabel Classification

In multilabel-label classification problems, the data are

in the form of (x, z), where x is the feature vector of

an instance and z is the label vector. Suppose L is the

set of all ℓ possible labels, then z is a vector with length

|L| = l and zℓ ∈ {0, 1} denotes the value of the ℓ-th

label. Multilabel classification is different from multiclass

classification. In multiclass classification, an instance have

only one label, which can take more than two values (or

classes). However, in multilabel classification, an instance

can have more than one label, each of which can take one

and only one of the multiple values (classes). For example,

an account on a social network (LinkedIn, Facebook, etc.)

can have multiple labels such as “sex” and “is employed”,

while there can be only one specific value for the label

“is employed”. Multilabel classification introduces various

unique challenges, such as sparsity and imbalance of labels,

multiple performance metrics of a model, etc. Among these

challenges, how to model and exploit label relationships to

improve accuracy has been studied intensively in [12, 14].

There are various types of label relationships, the simplest

one is pair-wise correlation, which specifies how often two

labels co-occur. Recently, certain types of label relationship

is shown to be connected to certain corresponding evaluation

metrics. For example, it is shown in [3] that if one can

compute the relevance score of each individual label given

an instance, the ranking according to the scores would yield

the minimum ranking loss.

B. Prediction Combination Algorithms

Given the predictions of multiple models, one needs to

combine the predictions in order to obtain a single final pre-

diction. Suppose there are m base models, whose predictions

can be denoted by {Y 1, . . . , Y m}. For k = 1, . . . ,m, Y k is

an n× l matrix, the (i, ℓ) element Yiℓ gives the class value

of the i-th instance for the ℓ-th label, according to the k-th

model. Y k is a binary matrix specifying the presence of a

label in an instance.

Simple averaging The simplest way to consolidate pre-

dictions from multiple models is to take the average of the

predictions [5]:

Y = Ȳ =
1

m

m∑

k=1

Y k =

m∑

k=1

Y k(mIl)
−1 (1)

where Il is the l dimensional identity matrix. The loss

function that simple averaging minimizes is the sum of

squared error between the consolidated prediction Y and

the base models’ predictions {Y 1, . . . , Y m}

m∑

k=1

‖Y k − Y ‖2 =

n∑

i=1

m∑

k=1

‖yk
i − yi‖

2 (2)

Simple averaging has been applied to multilabel classifica-

tion to combine multiple models, such as Rakel [12] and

BoosTexter [7]. These methods only model label depen-

dencies in the training phase, and in the combination step,

without access to the training and test data, they cannot

handle any label dependency.

BGCM BGCM [4] is proposed to solve model com-

bination problems for multi-class problem. Here we first

introduce BGCM, based on which we propose a model com-

bination method that also accounts for label relationships

in the next section. In general, given the predictions of m

classifiers for n instances, with c classes from a single label,



Figure 1: Applying BGCM to multilabel prediction combi-

nation

BGCM constructs a bipartite graph with n instances nodes

and v = m × c group nodes. An example of the bipartite

graph with 2 instances and 2 classes for a label is shown

in the left rectangle in Figure 1, where group nodes are

annotated with the letter g and instance nodes with the letter

x. Each node is associated with a probability distribution

over c classes. The distribution for the i-th instance node

is given by the row vector ui, i = 1, . . . , n, which are

collectively denoted by the n× c matrix U = [u′

1
, . . . ,u′

n]
′.

Similarly, let the v × c matrix Q = [q′

1
, . . . ,q′

v]
′ be the

distributions of v group nodes. The connections of these

nodes are determined by the predictions of the base models.

If xi is classified into the j-th class by k-th model, the i-th

instance node is connected to the (k−1)×c+j group nodes.

In the above bipartite graph, instance x1 is classified into

class 1 by model 1, so the first instance node is connected

to g1. A group node is connected to a class node to specify

the class distribution of the node. In general, if a group node

represents the j-th class, then it is connected to a class node

with class distribution bj , which has 1 at its j-th position

and 0 otherwise. Let the v × c matrix B = [b′

1
, . . . ,b′

v]
′.

For each label, BGCM solves the following optimization

problem to achieve maximal consensus among base models,

min
U,Q

n∑

i=1

v∑

j=1

aij‖ui − qj‖
2 + α

v∑

j=1

‖qj − bj‖
2 (3)

s.t. uiℓ ≥ 0,
∑c

ℓ=1
uiℓ = 1, i = 1, . . . , n (4)

qjℓ ≥ 0,
∑c

ℓ=1
qjℓ = 1, j = 1, . . . , v

In Eq.(3), aij = 1 indicates that the i-th instance node

and the j-th group node are connected, otherwise aij = 0.

After the optimization problem is solved, the consolidated

prediction of the i-th instance for a single label can be

obtained by taking the maximal value in ui. [6, 5, 10].

BGCM can only combine multilabel predictions by first

combine the predictions for each single label, and then

concatenate the predictions for individual labels to obtain

the final prediction for multiple labels, as shown in Figure 1.

This process treats labels independently without exploiting

label correlations, and is similar to the Binary Relevance

(BR) method in multilabel classification literature. Appar-

(a) MLCM-r (b) Graph of group nodes encoding
label relationships

Figure 2: Bipartite graph for MLCM-r and its collapse to

group nodes

ently, no label correlation is modeled in this paradigm. Next

we propose a novel method to incorporate label correlations

in multilabel predictions combination.

III. MULTILABEL CONSENSUS MAXIMIZATION FOR

RANKING LOSS

We propose MLCM-r, which adopts the architecture of

BGCM to achieve this goal. For simplicity, we assume that

each label consists of two classes. We abuse the notations

introduced in Section II-B. In particular, we let the n by

v (v = m × l) connection matrix A encode the multilabel

predictions, where the (i, (k − 1) × l + j)-th entry is 1 if

the k-th model predicts that the i-th instance takes class 1

on the j-th label, otherwise the entry is 0. Viewing A as a

connection matrix between instances and labels, a bipartite

graph can be constructed for MLCM-r. An example of the

bipartite graph of MLCM-r for 2 instances, 3 classes and two

base multilabel classifiers is shown in Figure 2(a). Similar

to the bipartite graph, the bipartite graph for MLCM-r has

both group nodes and instance nodes, annotated by the letters

g and x. However, there are some differences between two

bipartite graphs. Surrounded by a rectangle with dashed line

are the group nodes from a classifier (e.g. the rectangle M1

includes the group nodes from the first classifier). A group

node in Figure 2(a) represents a label instead of a class in

Figure 1. An instance node in Figure 2(a) can be connected

to more than one group nodes from a classifier, naturally

representing the multilabel predictions. These differences

between Figure 2(a) and Figure 1 bring more expressive

power to MLCM-r, as summarized below:

• The connections between an instance and all labels are

given by a single graph in MLCM-r, instead of being

broken down into multiple bipartite graphs in BGCM.

• most importantly, the relationship between labels can

be derived in MLCM-r using Figure 2(a), as shown in

the graph of group nodes in Figure 2(b). We give more

details of this property of MLCM-r in [13].

According to the newly defined A, we re-define the

distributions associated with the nodes. uiℓ (the ℓ-th entry of

ui) is now defined to be the probability of the i-th instance



taking class 1 on the ℓ-th label. Similarly qjℓ is defined as the

probability of seeing the ℓ-th label given the j-th label (the

reason of this definition is explained in the next section). If

the j-th group node represents the ℓ-th label, it is connected

to a label node with distribution bj , which has 1 on its ℓ-

th entry and 0 for the other entries, let B = [b′

1
, . . . ,b′

v]
′

similarly as in BGCM. With the re-defined variables and

constants, MLCM-r maximizes model consensus by solving

a similar optimization problem in Eq.(3). For the closed

form solutions for the problem and the analysis of why

the solution minimizes ranking loss, please refer to the full

version [13] for details.

IV. MULTILABEL CONSENSUS MAXIMIZATION FOR

MICROAUC

A. microAUC and its properties

AUC (Area Under the Curve) is a binary classification

metric for classification problems with skew class distri-

butions. In multilabel classification, an instance usually

has only a small number of relevant labels out of many

labels. In other words, relevant labels are dominated by

irrelevant labels. Thus AUC can be adopted as a metric

(called “microAUC”) for multilabel classification. Formally,

the label matrix Z = [z′
1
, . . . , z′n]

′ for n instances has

a total of n × l entries. Let P be the set of positive

(relevant) entries and N the set of negative (irrelevant)

entries, card(P ) ≪ card(N). Given a list of relevance

scores f(·) of all entries, microAUC [2] is defined as

microAUC =
∑

i∈P

∑

j∈N

1[f(i) > f(j)]

card(P )× card(N)
(5)

where f(i) is the relevance score of entry i. A fundamental

difference between two metrics is that, ranking loss does not

compare the ranks between labels of two different instances,

while microAUC compares the ranks of all possible pairs of

labels, no matter they are from the same instance or not. This

difference is demonstrated in Figure 3, where the ground

truth labels of 3 instances {x1, . . . ,x3} with 3 labels are

given in rectangles. The entries are grouped in rectangles

according to the labels, while each row represents the labels

of an instance. We use arrows in Figure 3(a) and 3(b) to

indicate pairs of labels that are accounted for by ranking loss

and microAUC, respectively. In Figure 3(b), arrow a is a pair

of entries considered by ranking loss, arrow b indicates pairs

of entries within a label for different instances, and arrow c

points from a label of an instance to a different label of a

different instance.

B. MLCM-a

In this section, we motivate and propose a novel algorithm

to model label relationships when combining predictions to

optimize microAUC. Continuing the above example. Pairs of

entries indicated by arrow b or d must have been handled by

any reasonable base models, which predict the relevance of

(a) Ranking loss (b) microAUC

Figure 3: Comparison of ranking loss and microAUC

a label to the instances. Pairs of entries indicated by arrow a

consist only a small portion of all pairs if n is large, due to

the sparsity of relevant labels. Therefore, the major challenge

in optimizing microAUC is how to enforce preference of

one label over other labels across different instances, such

as the pairs indicated by arrow c. For the two instances x2

and x3, we need to estimate the posteriors p(yj = 1|xi)
for i ∈ {2, 3}, j ∈ {1, 3}, in order to derive the relevance

to account for the pair by arrow c. We show that we can

exploit the label correlations to guarantee that there is no

error incurred due to the pair of labels connected by arrow

c, with high probability. Assume that we have known, with

high probability, that p(y1 = 1|x3) > p(y1 = 1|x2) (arrow

d). Also assume that with high probability, label 1 and 3 are

correlated. Then to avoid incurring an error due to p(y1 =
1|x2) > p(y3 = 1|x3) (arrow c), we simply enforce the

estimation of p(y3 = 1|x2) and p(y3 = 1|x3) to match those

of p(y1 = 1|x2) and p(y1 = 1|x3), namely, p(y3 = 1|x2) <
p(y3 = 1|x3) (arrow b). Then we have p(y3 = 1|x3) >

p(y1 = 1|x2) (arrow c) with certain high probability.

In summary, we can tackle the challenge in two steps:

• estimate the correlations between labels accurately

• estimating the consolidated label relevance to optimize

microAUC using the estimated label correlations.

Regarding the second step, we model correlation between a

pairs of label using partial correlation matrix. Specifically,

partial correlation between labels ℓ and ℓ′ is the correlation

between the two labels given the other labels, and the partial

correlation matrix of labels is given by the inverse of the

label correlation matrix Ω, which is assumed to be known.

Given Y1, . . . , Yk, we set up an optimization objective with

two goals to obtain the consolidated labels Y that is close

to Ω−1. The first goal is to minimize certain consensus

loss function employed by model combination algorithms,

here we choose the loss function used by simple averaging

(Eq.(2)). The second goal is to maximize the correlation

between the label partial correlation and the empirical la-

bel correlation, namely, tr(Y ′Y Ω−1) = tr(Y Ω−1Y ′). The

optimization problem is then given by

min
Y

J = ‖Ȳ − Y ‖2 + tr(Y Ω−1Y ′) (6)



Table II: Datasets

datasets # of instances # of features # of labels

enron 1702 1054 53
medical 978 1449 45

rcv1 subset 1 2997 47337 101
rcv1 subset 2 2951 47337 101

slashdot 3782 1101 22
bibtex 3701 1995 159

where Y is the consolidated labels. The optimal solution is

yi =

m∑

k=1

yk
i (Ω

−1 +mIl)
−1 = mȳi(Ω

−1 +mIl)
−1 (7)

Note that we assume Ω is given in the above optimization

problem. In reality, Ω is usually unknown and has to be

estimated from data. If we assume Y = {y1, . . . ,yn} are

the data independently generated from the normal density

yi ∼ N (0,Ω), then Ω is estimated as Ω̂MLE = 1

n
Y ′Y

Now we can put the above two steps together to build the

MLCM-a algorithm, as described in Algorithm 1.

Algorithm 1 MLCM-a

1: Input: Predictions from base models {Y 1, . . . , Y m}
2: Output: Consolidated predictions Y .
3: Estimate Y = Ȳ
4: for t = 1 → T do
5: Estimate covariance Ω = 1

n
Y ′Y

6: Estimate Y using Eq.(7)
7: end for

V. EXPERIMENTS

A. Experimental Settings

Datasets With 6 datasets widely used in multilabel

classification community (see Table II), we demonstrate the

effectiveness of the proposed methods.

Evaluation Metrics Besides ranking loss and mi-

croAUC, we further include “one error” and “average pre-

cision” to give some empirical observations of the proposed

methods, please refer to [14] for the details of these metrics.

Baselines A base model is obtained by first randomly

shuffling the dataset, followed by 10-fold CV to obtain

predictions for all instances. We repeat this process 10

times to obtain 10 base models. The averaged performance

of these base models (denoted by BM in the sequel) are

treated as one of the baselines. The predictions of these

base models are used as input to majority voting (MV

in the sequel), MLCM-r and MLCM-a, each of which

produces consolidated predictions, based on which we can

evaluate the performance of MV, MLCM-r and MLCM-a.

This experiment is repeated for 10 times for each dataset

and the averaged performance is reported.

Table III: Results on enron dataset

Methods
Metrics

microAUC one error ranking loss avg precision

BM 0.7342 0.5024 0.2967 0.4592
MV 0.8289 0.3398 0.1848 0.6020

MLCM-r 0.8759 0.6233 0.1003 0.5252
MLCM-a 0.8931 0.2675 0.1070 0.6556

Table IV: Results on medical dataset

Methods
Metrics

microAUC one error ranking loss avg precision

BM 0.8887 0.2041 0.0989 0.7953
MV 0.9321 0.1410 0.0582 0.8639

MLCM-r 0.9536 0.1327 0.0494 0.8750
MLCM-a 0.9556 0.1322 0.0530 0.8649

B. Results

We show the performance of the proposed algorithms

and baselines in Table III-VIII. We have a couple of ob-

servations. First, by comparing results in the rows for BM

and MV, one can see that combining model can boost the

performance of multilabel classification, even only using

the simplest way of combination (simple averaging here).

The maximum improvements of MV over BM are 41% and

12.8% for ranking loss and microAUC, respectively. This is

not surprising, as this method is widely used in ensemble

multilabel classification methods like [12, 9, 15]. Second, by

comparing the results of the proposed methods and simple

averaging, we observe that simple averaging is not sufficient

to fully exploit label correlations, especially when the base

models do not take the correlations into account. The max-

imum improvement of either the proposed algorithms over

MV is 45% in ranking loss and 20% in microAUC. Third,

out of 6 tasks, MLCM-r wins MLCM-a 5 times in ranking

loss, with a maximum of 12% improvement, and MLCM-

a wins MLCM-r 4 times in microAUC, with a maximum

of 5.8% improvement. The above comparisons show the

superiority of the proposed methods over the baselines for

multilabel predictions combination tasks, and also how to

choose from the proposed methods when different metrics

are considered. Lastly, besides ranking loss and microAUC,

the proposed methods also outperform the baselines with the

other two metrics, and this shows the wide applicability of

the proposed methods.

VI. RELATED WORK

Multilabel classification methods can be roughly catego-

rized as following. (1) Binary Relevance. Labels are treated

Table V: Results on rcv1 subset 1 dataset

Methods
Metrics

microAUC one error ranking loss avg precision

BM 0.6194 0.6036 0.3373 0.3218
MV 0.6787 0.4792 0.2838 0.4164

MLCM-r 0.7867 0.3554 0.2316 0.5017
MLCM-a 0.8069 0.3120 0.2605 0.4967



Table VI: Results on rcv1 subset 2 dataset

Methods
Metrics

microAUC one error ranking loss avg precision

BM 0.6220 0.5652 0.5652 0.3659
MV 0.6678 0.4730 0.4730 0.4389

MLCM-r 0.7581 0.2955 0.2955 0.5146
MLCM-a 0.8020 0.2830 0.2830 0.5073

Table VII: Results on slashdot dataset

Methods
Metrics

microAUC one error ranking loss avg precision

BM 0.7377 0.4875 0.2062 0.5856
MV 0.8210 0.4085 0.1482 0.6689

MLCM-r 0.8782 0.4123 0.1203 0.6736
MLCM-a 0.8702 0.3887 0.1289 0.6800

as independent and prediction of each label is handled by

individual binary/multiclass model. The binary relevance

paradigm does not consider label dependency and thus might

be inferior to methods that consider label dependency. (2)

Pairwise relationship. This category of methods model the

relationships between two labels. In [14], they propose a

method to learn label relationships using Bayesian network,

which is later utilized to learn a binary classifiers for

each label given that label’s parent labels. (3) Powerset

Methods [12].. This set of methods try to fully consider

all possible co-occurrence of labels.

There have been an extensive study of ensemble meth-

ods, which combines the knowledge of multiple models

to improve performance. The simplest ensemble method is

majority voting. In [1], bootstrap sampling is used to create

multiple copies of training data to derive an ensemble of

models. It is shown that bagging improves performance via

reduction in variance. Another famous ensemble method

is boosting [7], which builds the ensemble via sequential

training of base models to exploit model correlation.

Predictions combination has been researched for at least

a decade. In [10], they present three methods, CSPA, HGPA

and MCLA for cluster ensemble. In [4], they propose

BGCM, which maximizes the consensus among models.

None of these methods can directly address to the multilabel

prediction combination problem.

In [11], they treat the learning of a model for a label

as a stand-along task. Then their algorithm learns a linear

combination of multiple kernels for each task. Their method

and that proposed in [15, 9] assume that training and test

data are available and therefore cannot address the challenge

of this paper.

Table VIII: Results on bibtex dataset

Methods
Metrics

microAUC one error ranking loss avg precision

BM 0.6620 0.5469 0.3095 0.3575
MV 0.7266 0.4329 0.2508 0.4567

MLCM-r 0.8668 0.4713 0.1599 0.4828
MLCM-a 0.8645 0.3790 0.1755 0.4937

VII. CONCLUSION

In this paper, we aim at combining multilabel predictions

from multiple models. The challenge is how to exploit label

correlations to optimize a certain performance metric when

consolidating predictions. Existing multilabel ensemble al-

gorithms fail to do so. We address the challenge via two

methods: MLCM-r and MLCM-a. The former uses random

walk in the label space to explicitly infer label correlation,

which in turn results in consolidated multilabel predictions

optimized for ranking loss. The latter uses an optimization

framework to estimate the partial label correlations, which

regularizes predictions consolidation to optimize microAUC.

We analyze both algorithms to establish these optimal prop-

erties. Experimental results affirmatively demonstrate the

superiority of the proposed algorithms.
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and Eyke Hüllermeier. On label dependence and loss mini-
mization in multi-label classification. 2012.

[4] Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei
Han. Graph-based consensus maximization among multiple
supervised and unsupervised models. In NIPS, 2009.

[5] Tao Li and Chris Ding. Weighted Consensus Clustering.
SDM, 2008.

[6] Tao Li, Chris Ding, and Michael I. Jordan. Solving consensus
and semi-supervised clustering problems using nonnegative
matrix factorization. ICDM, 2007.

[7] Robert E. Schapire. The boosting approach to machine
learning: An overview. 2002.

[8] Robert E. Schapire and Yoram Singer. Boostexter: A
boosting-based systemfor text categorization. 2000.

[9] Chuan Shi, Xiangnan Kong, Philip S Yu, and Bai Wang.
Multi-label ensemble learning. ECML/PKDD, 2011.

[10] Alexander Strehl and Joydeep Ghosh. Cluster ensembles -
a knowledge reuse framework for combining multiple parti-
tions. JMLR, 2003.

[11] Lei Tang, Jianhui Chen, and Jieping Ye. On multiple kernel
learning with multiple labels. IJCAI, 2009.

[12] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis P. Vla-
havas. Random k-labelsets for multilabel classification. IEEE
Trans. Knowl. Data Eng., 2011.

[13] Sihong Xie, Xiangnan Kong, Jing Gao, Wei Fan, and
Yu Philip.S. Multilabel consensus classification. http://arxiv.
org/abs/1310.4252.

[14] Min-Ling Zhang and Kun Zhang. Multi-label learning by
exploiting label dependency. KDD, 2010.

[15] Xiatian Zhang, Quan Yuan, Shiwan Zhao, Wei Fan, Wentao
Zheng, and Zhong Wang. Multi-label Classification without
the Multi-label cost. In SDM, 2010.


