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Synonyms

heterogeneous networks, graph classification, meta-path

Glossary

HIN: Heterogeneous information network.

Definition

Information networks have been intensively studied in recent years, ranging from com-

munity detection to graph classification. Typical applications of information networks

include web mining, social network analysis, bioinformatics, etc. Most previous research

on information networks focuses on homogeneous networks, which involve one type of

nodes and one type of links, e.g., social networks with friendship links, webpage net-

works with hyper-links. With the recent advance in data collection techniques, many

real-world applications are facing large scale heterogeneous information networks [12],

which involve multiple types of objects inter-connected through multiple types links.
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Fig. 1. An Example of Heterogeneous Information Network: bibliographic network

These networks are multi-mode and multi-relational networks, which involves large

amount of information. For example, a bibliographic network in Figure 1 involves five

types of nodes (papers, author, affiliations, conference and proceedings) and five types

of links. This heterogeneous information network is more complex and contain more

linkage information than its homogenous sub-network, i.e., a paper network with only

citation links.

Definition 1. Heterogeneous Information Network: A heterogeneous in-

formation network [14, 12] is a special kind of information network, which is represented

as a directed graph G = (V , E). V is the set of nodes, including t types of objects

T1 = {v11, · · · , v1n1} , · · · , Tt = {vt1, · · · , vtnt}. E ⊆ V × V is the set of links between

the nodes in V , which involves multiple types of links.

Example 1. ACM conference network: A heterogeneous information net-

work graph is provided in Figure 1. This network involves five types of objects, i.e.,

papers (P), authors (A), institutes (F), proceedings (V) and conferences (C), and five

types of links, i.e., citation, authoredBy, affiliation, publishedIn and collectedIn.
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Graph classification in information networks have been studied intensively in

the last decade. The task is to exploit the linkage information in networks to improve

classification accuracies on the nodes. Different from conventional supervised classifi-

cation approaches that assume data are independent and identically distributed, graph

classification methods aim at exploiting the label autocorrelation among a group of

inter-connected nodes and predict their class labels collectively, instead of indepen-

dently. In many network data [15, 2], the nodes are inter-related with complex depen-

dencies. For example, in bibliographic networks, if two papers both cite (or are cited

by) some other papers (i.e., bibliographic coupling or co-citation relationship) or one

paper cites the other (i.e., citation relationship), they are more likely to share similar

research topics than those papers without such relations. These dependencies among

the related nodes should be considered explicitly during classification process. Moti-

vated by these challenges, graph classification problem in network data has received

considerable attention in the literature [9, 15, 6].

The major research challenges for graph classification in heterogeneous networks

can be summarized as follows:

Multi-Mode and Multi-Relational Data: One fundamental problem in clas-

sifying heterogeneous information networks is the complex network structure that in-

volves multiple types of nodes and multiple types of links. For example, in Figure 1,

one paper node can be linked directly with different types of objects, such as authors,

conference proceedings and other papers, through different types of links, such as cita-

tion, authoredBy, etc. Different types of links have totally different semantic meanings.

Trivial application of conventional methods by ignoring the link types and node types

can not fully exploit the structural information within a heterogeneous information

network.



4

Heterogeneous Dependencies: Another problem is that objects in hetero-

geneous information networks can be linked indirectly through different types of rela-

tional paths. Each types of relational path corresponds to different types of indirect

relationships between objects. For example, in Figure 1, paper nodes can be linked with

each other indirectly through multiple indirect relationships, such as, 1) the “paper-

author-paper” relation indicates relationships of two papers sharing same authors; 2)

the “paper-author-institute-author-paper” relation denotes relationship between pa-

pers that are published from the same institute. Heterogenous information networks

can encode various complex relationships among different objects. Thus, ignoring or

treating all relations equally will loss information dependence information in a hetero-

geneous information network. Exploring such heterogeneous structure information has

been shown useful in many other data mining tasks, such as ranking [5, 4], clustering

[13, 14] and classification tasks [3].

Historical Background

Heterogeneous information networks are special kinds of information networks which

involve multiple types of nodes or multiple types of links. In a heterogeneous infor-

mation network, different types of nodes and edges have different semantic meanings.

The complex and semantically enriched network possesses great potential for knowl-

edge discovery. In the data mining domain, heterogeneous information networks are

ubiquitous in many applications, and have attracted much attention in the last few

years [14, 13, 3]. Sun et al. [14, 12] studied the clustering problem and top-k similar-

ity problem in heterogeneous information networks. Ming et al. studied a specialized

classification problem on heterogeneous networks, where different types of nodes share

a same set of label concepts [3].
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Graph classification in network data has been investigated by many researchers.

The task is to predict the classes for a group of related instances simultaneously, rather

than predicting a class label for each instance independently. In relational datasets, the

class label of one instance can be related to the class labels (sometimes attributes) of

the other related instances. Conventional graph classification approaches focus on ex-

ploiting the correlations among the class labels of related instances to improve the clas-

sification performances. Roughly speaking, existing graph classification approaches can

be categorized into two types based upon the different approximate inference strategies:

(1) Local methods: The first type of approaches employ a local classifier to iteratively

classify each unlabeled instance using both attributes of the instances and relational

features derived from the related instances. This type of approaches involves an iter-

ative process to update the labels and the relational features of the related instances,

e.g. iterative convergence based approaches [9, 6] and Gibbs sampling approaches [8].

Many local classifiers have been used for local methods, e.g. logistic regression [6],

Naive Bayes [9], relational dependency network [10], etc. (2) Global methods: The sec-

ond type of approaches optimizes global objective functions on the entire relational

dataset, which also uses both attributes and relational features for inference [15]. For

a detailed review of graph classification please refer to [11].

Graph Classification in Heterogeneous Networks

Different from conventional networks, heterogeneous information networks involve dif-

ferent types of objects (e.g., papers and conference) that are connected with each other

through multiple types of links. Each type of links represents an unique binary relation

R from node type i to node type j, where R(vip, vjq) holds iff object vip and vjq are

related by relation R. R−1 denotes the inverted relation of R, which holds naturally for

R−1(vjq, vip). Let dom(R) = Ti denote the domain of relation R, rang(R) = Tj denotes
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Table 1. Important Notations.

Symbol Definition

V =
⋃t

i=1 Ti the set of nodes, involving t types of nodes

E = {ei ∈ V × V} the set of edges or links

X = {x1, · · · ,xn1
} the given attribute values for each node in target type T1

Y = {Y1, · · · , Yn1
} the set of variables for labels of the nodes in T1, and Yi ∈ C

L and U the sets for training nodes and testing nodes, and L ∪ U = T1

yi the given label for node v1i ∈ L, and Yi = yi

S = {P1, · · · ,Pm} the set of meta paths

Pj(i) = {k|Pj(v1i, v1k)} the index set of all related instances to xi through meta path Pj

(a) ACM data (b) DBLP data

Fig. 2. Examples of bibliographic network schema.

its range. R(a) = {b : R(a, b)}. For example, in Figure 1, the link type “authorBy” can

be written as a relation R between paper nodes and author nodes. R(vip, vjq) holds iff

author vjq is one of the authors for paper vip. For convenience, we can write this link

type as “paper
authoredBy−−−−−−→ author” or “Ti

R−→ Tj”.

Different from homogeneous networks, two objects in a heterogeneous network

can be connected via different paths and these paths have different meanings. For

example, in Fig. 2(a), conferences and authors can be connected via ”Author-Paper-

Venue-Conference” (APVC ) path, ”Author-Paper-Subject-Paper-Venue-Conference”

(APSPVC ) path, and so on. It is clear that semantics underneath these paths are

different. The APVC path means that papers written by authors are published in con-



7

Table 2. Semantics of Meta Paths among Paper Nodes

Notation Meta Path Semantics of the Dependency

1 P→P Paper
cite−−−→ Paper Citation

2 P←P→P Paper
cite−1

−−−−−→ Paper
cite−−−→ Paper Co-citation

3 P→P←P Paper
cite−−−→ Paper

cite−1

−−−−−→ Paper Bibliographic coupling

4 PVP Paper
publishIn−−−−−−−→ Proceeding

publishIn−1

−−−−−−−−−→ Paper Papers in the same proceeding

5 PVCVP Paper
publishIn−−−−−−−→ Proceeding

collectIn−−−−−−→ Conference

collectIn−1

−−−−−−−−→ Proceeding
publishIn−1

−−−−−−−−−→ Paper Papers in the same conference

6 PAP Paper
write−1

−−−−−−→ Author
write−−−−→ Paper Papers sharing authors

7 PAFAP Paper
write−1

−−−−−−→ Author
affiliation−−−−−−−−→ Institute

affiliation−1

−−−−−−−−−−→ Author
write−−−−→ Paper Papers from the same institute

ferences, while the APSPVC path means that papers having the same subjects as the

authors’ papers are published in conferences. In order to categorize these paths, we

extend the definition of link types to “path types”, which are named as meta path,

similar to [12, 5].

Definition 2. Meta Path: A meta path P represents a sequence of relations

R1, · · · , R` with constrains that ∀i ∈ {1, · · · , `− 1}, rang(Ri) = dom(Ri+1). The meta

path P can also be written as P : T1
R1−→ T2

R2−→ · · · R`−→ T`+1, i.e., P corresponds to a

composite relation R1×R2×· · ·×R` between node type T1 and T`+1. dom(P ) = dom(R1)

and rang(P ) = rang(R`). The length of P is `, i.e., the number of relations in P .

Different meta paths usually represent different semantic relationships among

linked objects. In Table 2, we show some examples of meta paths with their correspond-

ing semantics. Most conventional relationships studied in network data can naturally

be captured by different meta paths. For example, the paper co-citation relation [1]

can naturally be represented by meta path “paper
cite−1

−−−→ paper
cite−−→ paper”, and the

co-citation frequencies can be written as the number of path instances for the meta

path. Here a path instance of P , denoted as p ∈ P , is an unique sequence of nodes and

links in the network that follows the meta path constrains. For convenience, we use the

node type sequence to represent a meta path, i.e., P = T1T2 · · · Tl+1. For example, we

use PAP to represent the meta path “paper
authoredBy−−−−−−→ author

authoredBy−1

−−−−−−−−→ paper”.
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Fig. 3. An example of dependence tree for meta path-based dependencies. Each paper node corre-

sponds to a unique type of path-based dependencies in the network.

Note that for meta paths involving citation links, we explicitly add arrows to represent

the link directions, e.g., the paper co-citation path can be written as P ←P →P .

Meta Path-based Graph Classification

For classifying target nodes in a heterogeneous information network, the most näıve

approach is to assume that all instances (e.g., the paper nodes) are independent from

each other. However, this approach can be detrimental to their performance for many

reasons. This is particularly troublesome when nodes in heterogeneous networks have

very complex dependencies with each other through different meta paths.

In this section, we discuss a simple and effective algorithm for meta path-based

graph classification in heterogeneous information networks.

Step 1. We first consider how to extract all meta paths in a heterogeneous

information network of bounded length `max. When `max is small, we can easily generate

all possible meta paths as follows: We can organize all the type-correct relations into
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a prefix tree, called dependence tree. In Figure 3, we show an example of dependence

tree in ACM conference networks. The target nodes for classification are the paper

nodes, and each paper node in the dependence tree corresponds to an unique meta

path, indicating one type of dependencies among paper instances. However, in general

the number of meta paths grows exponentially with the maximum path length `max.

As it has been showed in [12], long meta paths may not be quite useful in capturing the

linkage structure of heterogeneous information networks. In this paper, we only exploit

the instance dependences with short meta paths (`max = 4).

In many really world network data, exhaustively extracting all meta paths may

result in large amount of redundant meta paths, e.g., PV PV P . Including redundant

meta paths in a classification model can result in overfitting risks, because of additional

noisy features. Many of the redundant meta paths are constructed by combining two or

more meta paths, e.g., meta path PV PV P can be constructed by two PV P paths. In

order to reduce the model’s overfitting risk, we extract all meta paths that cannot be

decomposed into shorter meta paths (with at least one non-trivial meta paths). Here

non-trivial meta paths refer to the paths with lengths greater than 1. For example, in

ACM conference network, meta paths like P→PAP can be decomposed into P→P

and PAP , thus will be excluded from our meta path set. We refer the meta path set

extract process as the “Initialization” step of our method. By breadth-first search on

the dependence tree, our model first select shortest meta paths from the network. Then

longer meta paths are incrementally selected into path set S until we reach a meta path

that can be decomposed into shorter meta paths in S.

Step 2. After the meta path set S is extracted from the heterogeneous informa-

tion network, we then show how to use these meta paths to perform classification effec-

tively. Conventional graph classification based on iterative inference process, e.g. ICA

(Iterative Classification Algorithm) [9, 6], provide a simple yet very effective method
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for graph classification in homogeneous networks. Inspired by the success of these it-

erative inference methods, we discuss a similar framework for meta path-based graph

classification method.

The general idea is as follows: we model the joint probability based on the fol-

lowing assumption: if instance v1i and v1j are not connected via any meta path in

S, the variable Yi is conditional independent from Yj given the labels of all v1i’s re-

lated instances, i.e., {v1j|j ∈
⋃m

k=1Pk(i)}. Hence the local conditional probability each

instance’s label can be modeled by a base learner with extended relational features

built upon the predicted Yj’s (j ∈
⋃m

k=1Pk(i)). And the joint probability can be mod-

eled based on these local conditional probabilities by treating the instances as being

independent.

In graph classification, each instance may be linked with different number of

instances through one meta path. In order to build a fixed number of relational features

for each instance, we employs aggregation functions to combine the predictions on

the labels of related instances. Many aggregation functions can be used here, such as

COUNT and MODE aggregators [6]. In this paper, we use the weighted label fraction

of the related instances as the relational feature for each meta path. We calculate the

average fraction of each label appearing in the related instances. Each related instance

in re-weighted by the number of path instances between from the current node, e.g., for

meta path PAP , the papers that share more authors in their author lists are more likely

to share similar topics than those only share one author. In detail, given an aggregation

function, we can get one set of relational features from the labels of related instances

for each meta path.

Step 3. Inspired by the success of ICA framework [6, 7, 8] in network classi-

fication, we designed a similar inference procedure. (1) For inference steps, the labels

of all the unlabeled instances are unknown. We first bootstrap an initial set of label
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estimation for each instance using content attributes of each node. In our current im-

plementation, we simply set the relational features of unlabeled instances with zero

vectors. Other strategies for bootstrap can also be used in this framework. (2) Iterative

Inference: we iteratively update the relational features based on the latest predictions

and then these new features are used to update the prediction of local models on each

instance. The iterative process terminates when convergence criteria are met. In our

current implementation, we update the variable Yi in the (r + 1)-th iteration ( say

Ŷ
(r+1)
i ) using the predicted values in the r-th iteration (Ŷ

(r)
j ) only.
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