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Abstract. Multi-label learning aims at predicting potentially multiple
labels for a given instance. Conventional multi-label learning approaches
focus on exploiting the label correlations to improve the accuracy of
the learner by building an individual multi-label learner or a combined
learner based upon a group of single-label learners. However, the gener-
alization ability of such individual learner can be weak. It is well known
that ensemble learning can effectively improve the generalization abil-
ity of learning systems by constructing multiple base learners and the
performance of an ensemble is related to the both accuracy and diver-
sity of base learners. In this paper, we study the problem of multi-label
ensemble learning. Specifically, we aim at improving the generalization
ability of multi-label learning systems by constructing a group of multi-
label base learners which are both accurate and diverse. We propose
a novel solution, called EnML, to effectively augment the accuracy as
well as the diversity of multi-label base learners. In detail, we design
two objective functions to evaluate the accuracy and diversity of multi-
label base learners, respectively, and EnML simultaneously optimizes
these two objectives with an evolutionary multi-objective optimization
method. Experiments on real-world multi-label learning tasks validate
the effectiveness of our approach against other well-established methods.

Keywords: Multi-label learning, ensemble learning, multi-objective op-
timization, negative correlation learning

1 Introduction

Traditional supervised learning works on the single-label scenario, i.e. each in-
stance is associated with one single label within a finite set of labels. However, in
many real-world applications, one instance can be associated with multiple labels
simultaneously. For example, in text categorization, each document may belong
to several topics [20]; in bioinformatics, each gene may be associated with a num-
ber of functional classes [6]. This kind of problem is called multi-label learning,
which corresponds to the classification problem of classifying each instance with
a set of labels within the space of possible label sets. Multi-label learning has
been drawing increasing attentions from the machine learning and data mining
communities in the past decade [5, 13, 25].
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(a) Individual multi-label
learner

(b) Multiple single-label
learners

(c) Multi-label en-
semble learning

Fig. 1. Comparison of three strategies of constructing multi-label learning system.
SL and ML represent the single-label and multi-label learner, respectively. Y and Z
represent the single and atomic label, respectively.

The multi-label learning faces a major challenge that the number of possible
label combinations grows exponentially. Conventional multi-label learning ap-
proaches focus on exploiting the label correlations to improve the accuracy of
individual multi-label learner [5, 13, 15, 17, 25]. These approaches can be roughly
characterized into the following two categories based on the strategy of con-
structing the learning system: (1) Multi-label learning approaches based upon
individual multi-label learner (shown in Figure 1(a)). In this type of approaches,
a multi-label learner is constructed to make predictions on all labels. The label
correlations are exploited in the structure or learning process of the multi-label
learner, such as the neural network structure in ML-RBF [21] and the Bayesian
learning in LEAD [25]. (2) Multi-label learning approaches based upon a group
of single-label learners (shown in Figure 1(b)), such as EPS [14] and RAKEL
[17]. Ensemble learning is used to construct such a group of single-label base
learners. Each base learner in the ensemble is constructed to make a prediction
on a single label or atomic label (i.e. treating each label subset as a class label).
Then those base learners are combined as one multi-label learner to make pre-
dictions on all labels. The label correlations are usually exploited among these
single-label base learners.

Generally, conventional multi-label learning approaches focus on building one
individual multi-label learner. However, the generalization ability of one individ-
ual learner can be weak. It is well-known that ensemble learning can improve
the generalization ability of a learning system and reduce the overfitting risk
by constructing multiple base learners in the single-label setting. In the case of
multi-label learning, if we ensemble a group of multi-label base learners to make
predictions on all labels, the generalization ability of the multi-label learning
system can be significantly improved. This is called the multi-label ensemble
learning problem (shown in Figure 1(c)). Since the generalization error of an
ensemble is related to the average generalization error of the base learners as
well as diversity among the base learners [10], the aim of multi-label ensemble
learning is to build a group of multi-label base learners which are not only accu-
rate but also diverse. Note that, different from previous ensemble methods for
multi-label learning which combine a group of single-label base learners into one
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multi-label learner, the base learners in the multi-label ensemble learning are
the multi-label learners, instead of the single-label learners.

Despite its value and significance, the multi-label ensemble learning has rarely
been studied in this context so far. It is challenging to generate a set of accurate
and diverse multi-label base learners in the multi-label scenario. The major re-
search challenges are as follows: (1) Conventional ensemble learning approaches
usually focus on single-label learning problems. When it is applied to multi-label
learning problems, one of the difficulties is the accuracy evaluation of multi-label
base learners, which needs to consider the correlations among different labels. (2)
In multi-label scenario, it is also difficult to evaluate the diversity of multi-label
base learners, since the output of the base learners is a label set (vector), instead
of a single label (scale number). (3) It is far more complex when considering the
accuracy and diversity of multi-label base learners simultaneously. We need to
consider how to balance the trade-off between these two aspects.

In this paper, we first study the problem of multi-label ensemble learning and
propose a novel solution, named EnML. Different from conventional multi-label
learning approaches, EnML builds a group of accurate and diverse multi-label
base learners. First, we propose two novel evaluation objectives to effectively
depict the accuracy and diversity of multi-label base learners, respectively. In-
spired by the Hilbert-Schmidt Independence Criterion (HSIC) [8], ML-HSIC is
proposed to evaluate the accuracy of base learners while considering the label cor-
relations in full order. Enlightened by the Negative Correlation Learning (NCL)
[11, 12], ML-NCL is proposed to characterize the diversity of base learners. In or-
der to balance the trade-off between these two objectives for the generalization
ability of the ensemble, we then propose a novel evolutionary multi-objective
algorithm to search the optimal trade-off among the different objectives. Exten-
sive experiments on the different types of multi-label datasets show that EnML
significantly outperforms other popular multi-label learning approaches.

2 Related Work

In order to improve the generalization ability of multi-label learner system, con-
ventional approaches focus on building an accurate multi-label learner by ex-
ploiting the label correlations. According to strategies of building learner, con-
ventional multi-label learning approaches can be roughly classified into following
two categories. (1) The first type of approaches build an individual multi-label
learner to make predictions on all labels. The multi-label learner uses different
methods to exploit the label correlations, such as learner structure, optimized
criterion, and learning algorithm. For example, the neural network structures
in ML-RBF [21] and BP-MLL [23] mix the label relations, the ranking loss cri-
terion [6, 25] considers the second order correlation of labels, and the Bayesian
learning in LEAD [25] learns the label dependency. EnML is different from this
type of approaches in building a group of multi-label learners. (2) The second
type of approaches build a set of single-label base learners. In these approaches,
each single-label base learner is built to make a prediction on a single label or
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atomic label, and then these base learners are combined as a multi-label learner.
The label correlations can be exploited among these base learners. Ensemble
learning is usually used to build such a set of single-label base learners [14–17].
For example, RAKEL [17] trains each single-label base learner for the prediction
of each element in the powerset of label set, and the single-label base learner
in EPS [14] is built for a pruning label subset. Different from these ensemble
methods for multi-label learning, the base learners in EnML are the multi-label
learners.

Ensemble of multiple learners has attracted a lot of research interest in the
machine learning community since it is considered as a good approach to im-
prove the generalization ability [2]. Most ensemble learning algorithms train the
individual learner independently or sequentially, so the advantages of interac-
tion and cooperation among the individual learners are not effectively exploited.
However, Liu and Yao [11, 12] have shown that the cooperation with ensemble
members is useful for obtaining better ensembles. Negative Correlation Learning
(NCL) [3, 11, 12] introduces a correlation penalty term into the error function of
each individual base learner in the ensemble so that the learners are as different
as possible on the training error. NCL emphasizes the interaction and coopera-
tion among individual base learners in the ensemble and has performed well on
a number of empirical applications. However, the conventional NCL focuses on
single-label learning, and has never been applied in multi-label learning so far.

3 The EnML Method

Let χ = Rd be the d-dimensional input space and L = {1, 2, · · · , L} be the finite
set of L possible labels. Given a multi-label training set D = {(xi, Yi)|1 ≤ i ≤
m}, where xi ∈ χ is the i-th instance and Yi ⊆ L is the label set associated with
xi. The task of multi-label learning is to learn a multi-label learner h : χ → 2L

from D which predicts a set of labels for each unseen instance.
As we all know, the ensemble can improve the generalization ability of learn-

ing systems by constructing multiple base learners, and the ensemble members
should be accurate and diverse [10]. In multi-label ensemble learning, we aim at
building such an ensemble, in which each multi-label base learner has good clas-
sification performances while these base learners are as diverse as possible. To
do so, we propose a multi-objective optimization based solution. Concretely, we
proposes two novel criteria, ML-HSIC and ML-NCL, to evaluate the accuracy
and diversity of multi-label base learners, respectively. An evolutionary multi-
objective optimization algorithm is then designed to train a set of multi-label
base learners which are diverse and all optimal in these two proposed criteria.

3.1 Measure Criteria

ML-HSIC . Many criteria have been proposed to evaluate performances of
multi-label learning, such as hamming loss [21] and ranking loss [23]. These
criteria can be used as the accuracy evaluation. However, they fail to directly
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address the correlations between different labels. An ideal criterion needs to be
able to evaluate the accuracy of learners while considering the label correlations.

The accuracy of a multi-label learner h can be considered as the similarity
of the true label set TL = {Y1, · · · , Ym} and the predicted label set by h on
the training data D, PL = {h(x1), · · · , h(xm)}. Furthermore, the similarity can
be evaluated with the dependence between PL and TL. That is, the higher
dependence between PL and TL, the more similar they are. Many methods can
be used to characterize the dependence. In this paper, we derive an evaluation
criterion for multi-label learning based upon a dependence evaluation method
named Hilbert-Schmidt Independence Criterion (HSIC) [8]. By deriving from
the definition of HSIC, we define the accuracy of a learner h as follows:

ML-HSIC(h) = tr(PHQH) (1)
where tr(·) is the trace of a matrix and H = [hij ]m×m, hij = δij−1/m, and δij is
the indicator function which takes 1 when i = j and 0 otherwise. P = [pij ]m×m

denotes the label kernel matrix based on the true label set TL with the kernel
function p(Yi, Yj) = 〈φ(Yi), φ(Yj)〉. Q = [qij ]m×m denotes the label kernel matrix
based on the predicted label set PL with the kernel function q(h(xi), h(xj)) =
〈ψ(h(xi)), ψ(h(xj))〉. The ML-HSIC has the following two advantages: (1) It can
effectively evaluate the dependence of TL and PL; (2) The appropriate kernel
function can be used to exploit the label correlations. Here, many kernel functions
can be applied in P and Q. For example, by using the polynomial kernel of the
second degree in the label kernel Q, the second order label correlations can be
considered. In this paper, we use RBF kernel in P and Q, since the RBF kernel
can potentially exploit the correlations among labels in full order. Therefore,
different from conventional accuracy criteria, ML-HSIC effectively evaluates the
accuracy of multi-label learners with fully considering the correlations among
labels.

ML-NCL. Evaluating the diversity of multi-label learners is much more chal-
lenging than single-label learning, because, in multi-label learning, the output
are a set of labels, instead of a single label. Inspired by the success of Negative
Correlation Learning (NCL) in single-label ensemble learning [3, 11, 12], we pro-
pose a criterion to evaluate the diversity of multi-label learners, called ML-NCL.

Similar to NCL, the basic idea of ML-NCL is to evaluate the negative correla-
tion of each base learner’s error with the error for the rest of ensemble. Formally,
ML-NCL is defined as follows:

ML-NCL(hj) = −
m∑

i=1

{(hj(xi)− hens(xi))T
∑

k 6=j

(hk(xi)− hens(xi))}

=
m∑

i=1

‖hj(xi)− hens(xi)‖2
(2)

where hj(xi) ∈ 2L means the output of leaner hj on data xi. hens is the output
of the ensemble of N base learners, which is defined as follows:

hens(xi) =
1
N

N∑

j=1

hj(xi) (3)
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The definition shows that ML-NCL(hj) characterizes the significance of differ-
ence between the multi-label base learner hj and the ensemble hens on training
error. Maximizing ML-NCL encourages the multi-label base learners to perform
differently on training error, so it increases the diversity of base learners. The
benefits of ML-NCL come from two aspects: (1) It evaluates the diversity of
vectors, instead of scale numbers, so ML-NCL can be considered as a multi-label
version of NCL. (2) It exploits the correlations among multi-label base learners,
which has never been done before.

3.2 Multi-objective Optimization Solution

After two criteria are proposed to evaluate the accuracy and diversity of multi-
label learners, the next problem is how to optimize them. Different from the
single-objective optimization in conventional machine learning, this is a multi-
objective optimization problem, i.e. simultaneously maximizing ML-HSIC and
ML-NCL. It can be solved through converting the multi-objective optimization
into a single objective optimization by weight sum method. However, this method
greatly suffers from the weights setting, because the generalization ability of
ensemble largely depends on the trade-off between these two objectives. In this
paper, we makes use of an Evolutionary Multi-objective Optimization technology
(EMO) [4] to balance the trade-off, since EMO can automatically find optimal
trade-off through population evolutionary. Without loss of generality, we focus
on solving the multi-objective minimization problem in the following section.
The maximization of ML-HSIC and ML-NCL can be easily converted into a
minimization problem.

A good EMO needs to generate a set of solutions that uniformly distributed
along the Pareto optimal front [18], which includes two key issues: (1) solutions
prone to converge to Pareto optimal front and maintain diversity in the evolu-
tionary process; (2) generating promising solutions in each generation. In order
to make EMO fit for multi-label learning, we design many novel mechanisms in
the following two sections.

Multi-objective Optimization Mechanism In this section, we apply the
non-dominated-sort and density-assignment process to make the solutions con-
verge to Pareto optimal front and maintain diversity, respectively.

Non-dominated-sort. The non-dominated-sort process sorts solutions accord-
ing to their raw fitness (i.e. ML-HSIC and ML-NCL). Instead of the raw fitness,
this paper employs the rank-based fitness assignment [7] to reassign the fitness
(i.e. a rank value) to the solutions, because the rank-based fitness assignment
behaves in a more robust manner. In the rank-based fitness assignment, the solu-
tion set is divided into different fronts according to their dominating relations of
raw fitness. An example is shown in Figure 2 (ML-HSIC and ML-NCL are min-
imized here). The solutions in the same front are non-dominated to each other
(e.g. solution A and B) and solutions in the higher front are always dominated
by some solutions in the lower front (e.g. C in F2 is dominated by B in F1).
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Fig. 2. Illustration of non-dominated-sorting and density-assignment process.

In this way, each solution (i.e. base learner) hi in a front Fa has a rank value
hrank

i = a, and solution hi is better than solution hj when hrank
i < hrank

j .
Density-assignment. Along with convergence to the Pareto optimal front, it

is also desired that an Evolutionary Algorithm (EA) maintains a good spread
of solutions. So the solution in the crowded region is more likely to be deleted.
To get a density estimate of solutions surrounding a particular solution in the
population, we design the density-assignment process that calculates the aver-
age distance of two solutions on either side of this solution along each of the
objectives. It is simple and effective to estimate the density of solutions. The
density estimation of solution hi, hdensity

i , serves as the perimeter of the cuboid
formed by using the nearest neighbors as the vertices. As shown in Figure 2, the
density of this i-th solution in its front is the average side length of the cuboid.
The small hdensity

i means solution hi is in a more crowded region. It implies the
solution hi should be more likely to be deleted.

Select-population. Every solution hi in the population has two feature values:
(1) non-domination rank hrank

i ; (2) density estimation hdensity
i , which are deter-

mined by the raw fitness ML-HSIC and ML-NCL. Comprehensively considering
both of the features, we define a partial order ≺ to compare two solutions. For
two solutions hi and hj , hi ≺ hj , if and only if

hrank
i < hrank

j ∨ (hrank
i = hrank

j ∧ hdensity
i > hdensity

j ) (4)
That is, between two solutions with different non-domination ranks, we prefer
the solution with the lower rank. Otherwise, if both solutions belong to the same
front, then we prefer the solution that is located in a less crowded region. After
sorting the population with ≺, select-population process selects top solutions,
and guarantees that good solutions will be kept.

Base Learner and Evolutionary Operators In the framework of EnML,
many multi-label base learners can be used, such as HMC tree [19], BP-MLL
[23] and ML-RBF [21]. Different types of base learners will lead to different
genetic representation and operation. Because the structure can be effectively
encoded and the weights can be efficiently calculated in close form, we select the
RBF neural network in ML-RBF [21] as the multi-label base learner in EnML,
however an additional regularization term is added to reduce overfitting risks.

The architecture of RBF is shown in Figure 3(a). It is described as follows: (1)
The input of a RBF corresponds to a d-dimension feature vector. (2) The hidden
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(a) Genetic representation (b) Crossover operation

Fig. 3. (a) Architecture of RBF and its corresponding genetic representation. (b) The
crossover operation. The crossover point i is selected between two prototype vectors.

layer of RBF is composed of L sets of prototype vectors, i.e.
⋃L

l=1 Cl. Here, Cl

consists of kl prototype vectors {cl
1, c

l
2, · · · , cl

kl
}. For each class l ∈ L, the k-

means clustering is performed on the set of instances Ul with label l. Thereafter,
kl clustered groups are formed for class l and the j-th centroid (1 ≤ j ≤ kl) is
regarded as a prototype vector cl

j of basis function φl
j(·). (3) Each output neuron

is related to a possible class. In the hidden layer of RBF, the number of clusters
kl is a fraction α of the number of instances in Ul:

kl = α× |Ul| (5)
The scale coefficient α controls the structure and complexity of RBF base learner.

Different from the error function in original RBF, we add a regularization
term into the error function. The regularization term greatly reduces the overfit-
ting risk and improves the stability of solutions as observed in the experiments.

E =
1
2

m∑

i=1

L∑

l=1

(yl(xi)− til)
2 + γ

K∑

j=0

L∑

l=1

w2
jl (6)

where yl(xi) represents the predicted value of instance xi on label l, til is the real
value of instance i on label l, K =

∑L
l=1 kl, and γ is the regularization coefficient.

Similar to the derivation of minimizing the error function by scaled-conjugate-
gradient descent in [3], the optimal output weights W can be computed in closed
form by

W = (Φ′Φ + γI)−1Φ′T (7)
Here Φ = [φij ]m×(K+1) with elements φij = φj(xi), W = [wjl](K+1)×L with
elements wjl, and T = [til]m×L with elements til = til. Through extensive exper-
iments, the regularization coefficient γ is fixed at 0.1 in this paper.

Genetic representation. According to the structure of RBF, we propose a
novel genetic representation that is the sequence of prototypes {bias, c1

1, c
2
1, · · · cL

kL
}.

An example is shown in Figure 3(a). The genetic representation has the following
advantages. (1) When the prototypes (c) are determined, the basis functions (φ)
and the weights (W ) can be efficiently computed. It means the performance of
RBF mostly depends on the selection of the prototypes. (2) It is easy to design
the crossover and mutation operators by tuning these prototypes.
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Algorithm 1 EnML
Input:
D: training data U : testing data h: base learner
N : # of base learners G: # of generations
output:
Y (x): predicted labels for instance x ∈ U
procedure Training

generate P0 = {h1, h2, · · · , hN} on D at random
P1=(F1,F2, · · · )=non-dominated-sort(P0)
for t = 1 : G do

Qt=generate-offspring(Pt)
Rt = Pt

⋃
Qt

F = (F1,F2, · · · )=non-dominated-sort(Rt)
density-assignment(F )
Pt+1=select-population(F )
t = t + 1

end for
end procedure

procedure Testing
For x ∈ U , label set Y (x) = {l| 1

N

∑N
i=1 hi(x, l) > 0; hi ∈ Pt, l ∈ L}

end procedure

Initialization. When the base learner is RBF, the initialization operation of
EnML generates a set of RBF learners with different scale coefficient α (see
Equation 5). As suggested in [21], α is randomly selected from [0.01, 0.02] in the
experiments, which generates a set of RBF base learners with different structures.

Generate-offspring. Generating new solutions is realized by the generate-
offspring process. The basic idea is to randomly select parent solutions from the
current population based on the roulette wheel selection [1, 3] and do crossover
and mutation operation to generate new solutions with the ratio of cro Rat and
1 − cro Rat respectively. Following the general rule in EA, cro Rat is fixed at
0.8 in this paper.

The roulette wheel selection [1, 3] assigns each solution with the appropriate
selection pressure, and guarantees the better solution with a high and appropri-
ate selected probability. This paper adapts the cut and splice crossover [9] which
randomly chooses a crossover point for two RBFs and swaps their prototypes be-
yond this point. Different from traditional cut and splice crossover, the crossover
point in EnML is randomly selected between two prototype vectors, rather than
in a arbitrary position. It guarantees that each prototype vector in the newly
generated RBF is unabridged cluster centroids. Figure 3(b) shows an example
of crossover operation. The mutation operator randomly selects some prototype
vectors in a RBF, and does the following two structural mutation operations
with the same probability. (1) Randomly delete a prototype. (2) Add one pro-
totype whose center is determined by a random combination of all centroids in
this prototype vector. The width of the centroid of the new RBF is recalculated
as in [21]. The weights are calculated following Equation 7.

3.3 Algorithm Framework

EnML is described in Algorithm 1. In the model training phase, EnML trans-
forms the optimized objectives (i.e. ML-HSIC and ML-NCL) to a fitness measure



10 Chuan Shi, Xiangnan Kong, Philip S. Yu, and Bai Wang

Table 1. Summary of experimental datasets.

Dataset

Characteristic Image Yeast Arts Health Science Recreation Entertain.

# of instances 2000 2417 5000 5000 5000 5000 5000
# of features 294 103 462 612 743 606 640
# of labels 5 14 26 32 40 22 21
domain biology media text text text text text

by the creation of a number of fronts, sorted according to non-dominated-sort.
After the fronts have been created, density-assignment assigns its members with
a density value later to be used for diversity maintenance. In each generation,
N new solutions are generated with generate-offspring. Of the 2N solutions,
select-population selects the N best solutions for the next generation. In this
way, a huge elite can be kept and optimized from generation to generation. In
the testing phase, all solutions predict labels of unseen data and combine their
results with a simple vote. Note that EnML can not only optimize ML-HSIC
and ML-NCL but also directly optimize either of these two objectives.

4 Experiments

4.1 Experimental Setup

Data Collections: We tested our algorithm on seven real-world multi-label
classification datasets from three different domains as summarized in Table 1.
The first dataset is Yeast [15, 21, 23, 25] in biology, where the task is to predict
the gene functional classes of the Yeast Saccharomyces cerevisiae. The second
dataset Image [15, 21, 23, 25] involves the task of automatic image annotation
for scene images. The other five dataset are from Yahoo [21, 24], where the task
is to predict topic categories of each text document.

Evaluation Metrics: Here we adopt five state-of-the-art multi-label eval-
uation metrics which are most popular in the literature. Assume we have a
multi-label dataset U containing n multi-label instances (xi, Yi). Let h(xi) de-
note the predicted label set of a multi-label learner h for xi, and the real-valued
function f(xi, yl) ∈ R represents the ranking quality score of learner h on label
yl for input xi. We have the following evaluation criteria:

• hamming loss [5, 22]: evaluates the number of labels whose relevance is
incorrectly predicted.

hammingloss(h,U) =
1
n

n∑

i=1

1
L
‖h(xi)⊕ Yi‖1 (8)

where
⊕

stands for the symmetric difference of two sets (XOR operation), and
‖.‖1 denotes the l1-norm. The smaller the value, the better the performance.

• ranking loss [6, 25]: evaluates the average fraction of label pairs that are
misordered for the instance.
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rankingloss(h,U) =
1
n

n∑

i=1

1
|Yi||Yi|

|Ri| (9)

where Ri = {(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2) ∈ Yi×Yi}. Here Yi denotes the
complementary set of Yi in Y . The smaller the value, the better the performance.

• one-error [6, 25]: evaluates how many times the top-ranked label is not in
the set of proper labels of the instance.

one-error(h,U) =
1
n

n∑

i=1

[[argmaxy∈Lf(xi, y)] /∈ Yi] (10)

Here for predicate π, [π] equals 1 if π holds and 0 otherwise. The smaller the
value, the better the performance.

• coverage [6, 25]: evaluates how many steps are needed, on average, to move
down the ranked label list in order to cover all the proper labels of the instance.

coverage(h,U) =
1
n

n∑

i=1

maxy∈Yi
rankf (xi, y)− 1 (11)

rankf (·, ·) is derived from the real-valued function f(·, ·). If f(xi, y1) > f(xi, y2),
then rankf (xi, y1) < rankf (xi, y2). The smaller the value, the better the per-
formance.

• average precision [6, 25]: evaluates the average fraction of proper labels
ranked above a particular label y ∈ Yi.

avgprec(h,U) =
1
n

n∑

i=1

1
|Yi|

∑

y∈Yi

|Pi|
rankf (xi, y)

(12)

where Pi = {y′|rankf (xi, y
′) ≤ rankf (xi, y), y′ ∈ Yi}. The larger the value, the

better the performance.
Compared Methods: In order to test performance of our proposed EnML,

we do comprehensive comparison with the most representative multi-label learn-
ing approaches, including ML-RBF [21], the base learner of our approach, and
two ensemble based approaches: ECC [15] and RAKEL [17]. In addition, in order
to validate the effectiveness of two objective functions, we include two special
cases of EnML that only optimize one single objective (i.e. ML-HISC or ML-
NCL). These approaches are briefly summarized as follows.

• EnML: the proposed approach in this paper. It simultaneously optimizes
two objectives: ML-HSIC and ML-NCL.

• EnMLHSIC : a special case of EnML, which only optimizes ML-HSIC.
• EnMLNCL: a special case of EnML, which only optimizes ML-NCL.
• ML-RBF [21]: the multi-label learning algorithm based on RBF neural

network, which is also the base learner we use in EnML.
• ECC [15]: an ensemble method for multi-label learning based on the bagging

of classifier chains.
• RAKEL [17]: another ensemble method for multi-label learning, where the

single-label base learner is trained for a small random subset of labels.
In order to fit for EnML as a minimization problem, we convert the original

objectives into an equivalent minimization problem as follows:
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ML-HSIC′ = 1/log(ML-HSIC)
ML-NCL′ = 1−ML-NCL/(m× L)

(13)

Note that the two new objectives both need to be minimized and fall in [0,1], such
that it is convenient to perform non-dominated-sort and density-estimate process
in our evolutionary multi-objective optimization algorithm. As in [21], ML-RBF
is implemented with fixed default parameters (α = 0.01 and µ = 1.0). For ECC,
the ensemble size is set to 10 and sampling ratio is set to 67% as suggested
in the literature [15]. For RAKEL [17], we always set the parameter k as |L|

2
to provide the highest accuracy. The population size and running generation of
EnML based approaches are set as 30 and 10 respectively in all experiments.

4.2 Performance Comparison

We perform ten-fold cross-validation on each experimental dataset. On each
dataset, we report the mean values performance and standard deviations for
each algorithm with the rank based on its results indicated in the parentheses.
All experiments are conducted on machines with Intel Xeon Quad-Core CPUs
of 2.26 GHz and 24 GB RAM.

The performances of six algorithms are shown in Table 2 to Table 6. It is
clearly shown that EnML significantly outperforms the other baseline methods,
including the non-ensemble method ML-RBF and two ensemble methods ECC
and RAKEL, on all criteria and datasets. The small standard deviations of the
rank values of EnML (ranging from 0 to 0.49) also indicate the superior of EnML
is consistent on all datasets and evaluated criteria. The results illustrate that the
ensemble in our EnML can effectively improve the generalization performance
in multi-label learning, compared to non-ensemble methods (e.g. ML-RBF). In
addition, the superior of EnML over those ensemble methods for multi-label
learning (e.g. ECC and RAKEL) also confirms our assumption: the ensemble of
multi-label base learners is more effective to improve the generalization ability
of multi-label learning system than the ensemble of single-label base learners.
We think one of the important reasons behind the performance improvement of
EnML lies in our EnML emphasizes the diversity of multi-label base learners by
explicitly optimizing a diversity-related objective, which has never been done in
multi-label learning so far.

Then we further study the effect of objective functions in our EnML method
on the performances by comparing EnML with EnMLHSIC and EnMLNCL.
From Table 2 to Table 6, we can also observe that the three versions of EnML
rank top three on most criteria and they always have the best performance on
each dataset. By optimizing the diversity-related objective ML-NCL, EnMLNCL

generates a set of diverse base learners, so EnMLNCL outperforms the base
learner ML-RBF on most criteria. However, without optimizing the accuracy of
individual base learner, EnMLNCL performs worse than EnML on all criteria.
Although EnMLHSIC can achieve a little better performances than EnML in
hamming loss, one-error, and average precision on some datasets, however, on
the other two criteria, ranking loss and coverage, EnMLHSIC is not only worse
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Fig. 4. The evolutionary performances of EnML with different parameter settings.

than EnML and EnMLNCL, but also worse than the base learner ML-RBF. It
can be explained that EnMLHSIC optimizes the accuracy-related objective ML-
HSIC, which makes it perform well on the ML-HSIC related criteria, such as
hamming loss, one-error, and average precision. However, without emphasizing
the diversity of base learners, the optimal base learners obtained by EnMLHSIC

can be very similar with each other, thus the generalization ability of the en-
semble can be weak. By considering the accuracy and diversity objectives simul-
taneously, EnML can obtain a group of accurate and diverse multi-label base
learners and the population evolutionary strategy in EnML automatically finds
the optimal trade-off between these two objectives. As a consequence, EnML
consistently improves the generalization ability of multi-label ensemble, thus it
comprehensively boosts the multi-label classification performances.

4.3 Parameter Settings

In this section, we study the effects of the parameters in our EnML method.
There are two genetic operation related parameters in EnML, i.e. the popula-
tion size N and the running generation G. We perform the experiment on 2000
instances of the Arts dataset in Yahoo dataset collection [21, 24] with ten-fold
cross-validation under different parameter configurations. Specifically, when the
population size N is set as 10, 30, and 50, we report the average of objective
values, running time and weights (sum of absolute values in W ). The results are
shown in Figure 4.
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From Figure 4(a) and (b), we can clearly observe that ML-NCL goes up
but ML-HSIC goes down when the running generation increases. The different
trend of these two objectives indicate that they have the intrinsic conflict. It is
not surprising. The maximization of the ML-HSIC guides the predicted labels
of base learners to converge to the real labels. So it makes these base learners
identical. However, the maximization of the ML-NCL encourages base learners
to be as diverse as possible on the training error. Therefore, these two objectives
are naturally conflicting. The conflict makes EnML seek to find a good balance
between the two objectives by population optimization. Note that here ML-
HSIC and ML-NCL just evaluate the accuracy and diversity of base learners,
not the performance of the ensemble. The decrease of ML-HSIC does not mean
the degradation of the ensemble. In fact, the increase of ML-NCL shows that
base learners become more diverse, which helps to improve the performance of
the ensemble. Figure 4(c) shows that the weight goes down and then goes up
when the running generation increases. We think the reason is that ML-NCL
helps to control the model complexity. However, when the running generation
becomes too large, these learners become more complex, and thus their weights
increase. If we do not add the regularization term in the error function of RBF
(see Equation 6), the weights will increase sharply, which means these learners
are overfitting. Figure 4(d) illustrates that the running time of EnML increases
linearly with the population size N and running generation G.

5 Conclusion

In this paper, we first study the multi-label ensemble learning problem which
aims at building a set of accurate and diverse multi-label base learners to im-
proves the generalization ability of multi-label learning system. In order to solve
this problem, we propose a novel solution EnML. With an evolutionary multi-
objective optimization method, EnML simultaneously optimizes two objective
functions that evaluate the accuracy and diversity of multi-label learners, re-
spectively, and constructs a set of accurate and diverse multi-label base learners
to make predictions. Extensive experiments show that EnML can effectively im-
prove the generalization ability of multi-label learning system and thus boosts
the predictive performance for multi-label classification.
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No.2009AA04Z136.

References

1. Baker, J.: Adaptive Selection Methods for Genetic Algorithms. In ICGA, pp. 100-
111 (1985)

2. Breiman, L.: Bagging Predictors. Machine Learning, 24(2): 123-140 (1996)



Multi-Label Ensemble Learning 15

3. Chen, H., Yao, X.: Multiobjective Neural Network Ensembles Based on Regularized
Negative Correlation Learning. Transactions on Knowledge and Data Engineering,
22(12): 1738-1751 (2010)

4. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. UK: Wiley
(2001)

5. Dembczynski, K., Cheng, W., Hullermeier, E.: Bayes Optimal Multilabel Classifi-
cation via Probabilistic Classifier Chains. In: ICML, pp. 279-286 (2010)

6. Elisseeff, A., Weston, J.: A Kernel Method for Multilabelled Classification. In: NIPS,
pp. 681-687 (2002)

7. Goldberg, D. E.: Generic Algorithms in Search Optimization and Machine Learning.
USA: Boston (1989)

8. Gretton, A., Bousquet, O., Smola, A., Scholkopf, B.: Measuring Statistical Depen-
dence with Hilbert-Schmidt Norms. In: ALT, pp. 63-77, (2005)

9. Goldberg, D., Deb, K., Kargupta, H., Harik, G.: Rapid, Accurate Optimization of
Difficult Problems using Fast Messy Genetic Algorithms. In: ICGA, pp. 56-64 (1993)

10. Krogh, A., Vedelsby, J.: Neural Network Ensembles, Cross Validation, and Active
Learning. In: NIPS, pp. 231-238 (1995)

11. Liu, Y., Yao, X.: Ensemble Learning via Negative Correlation. Neural Networks,
12(10): 1399-1404 (1999)

12. Liu, Y., Yao, X.: Simultaneous Training of Negatively Correlated Neural Networks
in an Ensemble. Transaction on Systems, Man, and Cybernetics, Part B: Cybernet-
ics, 29(6): 716-725 (1999)

13. Petterson, J., Caetano, T.: Reverse Multi-label Learning. In: NIPS, (2010)
14. Read, J., Pfahringer, B., Holmes, G.: Multi-label Classification using Ensembles of

Pruned Sets. In: ICDM, pp. 995-1000 (2008)
15. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label

Classification. In: ECML, pp. 254-269 (2009)
16. Tsoumakas, G., Katakis, I., Vlahavas, I. P.: Effective and Efficient Multilabel Clas-

sification in Domains with Large Number of Labels. In: ECML/PKDD Workshop
(2008)

17. Tsoumakas, G., Vlahavas, I. P.: Random k-Labelsets: an Ensemble Method for
Multilabel Classification. In: ECML, pp. 406-417 (2007)

18. Veldhuizen, D. A. V., Lamont, G. B.: Multiobjective Evolutionary Algorithms:
Analyzing the state-of-the-art. Evolutionary Computation, 18(2): 125-147 (2000)

19. Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., Blockeel, H.: Decision Tree for
Hierarchical Multi-label Classification. Machine Learning, 2(73): 185-214 (2008)

20. Yang, B. S., Sun, J. T., Wang, T. J., Chen Z.: Effective Multi-label Active Learning
for Text Classification. In: KDD, pp. 917-925 (2009)

21. Zhang M. L.: ML-RBF: RBF Neural Networks for Multi-label Learning. Neural
Process Letters, 29(2): 61-74 (2009)

22. Zhang, X., Yuan, Q., Zhao, S., Fan, W., Zheng, W., Wang, Z.: Multi-label Classi-
fication without the Multilabel Cost. In: SDM, pp. 778-789 (2010)

23. Zhang, M. L., Zhou, Z. H.: Multilabel Neural Networks with Applications to Func-
tional Genomics and Text Categorization. Transactions on Knowledge and Data
Engineering, 18(10): 1338-1351, (2006)

24. Zhang, M. L., Zhou, Z. H.: Ml-knn: a Lazy Learning Approach to Multi-label
Learning. Pattern Recognition, 40(7): 2038-2048 (2007)

25. Zhang, M. L., Zhang, K.: Multi-label Learning by Exploiting Label Dependency.
In: KDD, pp. 999-1007 (2010)



16 Chuan Shi, Xiangnan Kong, Philip S. Yu, and Bai Wang

Table 2. Performance (mean±std.(rank)) of each algorithm in terms of hamming loss.
Ave. Rank represents the mean and standard deviation of the rank values of each
algorithm in all datasets.

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.1603±0.0058(2) 0.1653±0.0067(3) 0.1786±0.0108(6) 0.1724±0.0117(5) 0.1586±0.0065(1) 0.1665±0.0051(4)
Yeast 0.1889±0.0052(2) 0.1935±0.0058(4) 0.2056±0.0082(5) 0.2287±0.0105(6) 0.1887±0.0064(1) 0.1894±0.0059(3)
Arts 0.0531±0.0014(2) 0.0542±0.0016(4) 0.0754±0.0045(6) 0.0612±0.0013(5) 0.0528±0.0014(1) 0.0538±0.0015(3)
Health 0.0316±0.0016(2) 0.0331±0.0016(4) 0.0361±0.0021(5) 0.0373±0.0016(6) 0.0314±0.0017(1) 0.0322±0.0017(3)
Science 0.0317±0.0008(2) 0.0324±0.0009(4) 0.0424±0.0054(6) 0.0360±0.0016(5) 0.0313±0.0010(1) 0.0320±0.0008(3)
Recreation 0.0543±0.0023(2) 0.0555±0.0022(4) 0.0688±0.0055(6) 0.0589±0.0028(5) 0.0539±0.0021(1) 0.0553±0.0025(3)
Entertain. 0.0502±0.0016(2) 0.0512±0.0016(3) 0.0654±0.0053(6) 0.0587±0.0030(5) 0.0496±0.0013(1) 0.0514±0.0012(4)
Ave. Rank 2.00±0.00 3.71±0.49 5.71±0.49 5.29±0.49 1.00±0.00 3.29±0.49

Table 3. Performance (mean±std.(rank)) of each algorithm in terms of ranking loss.

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.1478±0.0112(1) 0.1558±0.0121(4) 0.2411±0.0153(6) 0.1765±0.0200(5) 0.1485±0.0112(2) 0.1536±0.0106(3)
Yeast 0.1597±0.0083(1) 0.1621±0.0073(4) 0.2776±0.0223(6) 0.2179±0.0156(5) 0.1603±0.0087(2) 0.1619±0.0073(3)
Arts 0.1119±0.0099(1) 0.1131±0.0098(3) 0.3814±0.0251(6) 0.2589±0.0106(5) 0.1150±0.0104(4) 0.1124±0.0093(2)
Health 0.0482±0.0057(1) 0.0496±0.0051(3) 0.2401±0.0130(6) 0.1822±0.0125(5) 0.0505±0.0056(4) 0.0490±0.0054(2)
Science 0.0957±0.0072(1) 0.1002±0.0071(3) 0.3840±0.0238(6) 0.2854±0.0138(5) 0.1017±0.0079(4) 0.0992±0.0072(2)
Recreation 0.1216±0.0101(1) 0.1253±0.0099(3) 0.3434±0.0203(6) 0.2874±0.0227(5) 0.1257±0.0118(4) 0.1229±0.0095(2)
Entertain. 0.0913±0.0070(1) 0.0946±0.0073(3) 0.2926±0.0193(6) 0.2874±0.0221(5) 0.0949±0.0073(4) 0.0933±0.0062(2)
Ave. Rank 1.00±0.00 3.29±0.49 6.00±0.00 5.00±0.00 3.43±0.98 2.29±0.49

Table 4. Performance (mean±std.(rank)) of each algorithm in terms of one error.

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.2735±0.0236(2) 0.2860±0.0299(4) 0.2935±0.0249(5) 0.3065±0.0335(6) 0.2695±0.0247(1) 0.2815±0.0208(3)
Yeast 0.2156±0.0235(1) 0.2189±0.0175(3) 0.2742±0.0218(5) 0.2751±0.0300(6) 0.2193±0.0286(4) 0.2160±0.0210(2)
Arts 0.4400±0.0134(2) 0.4512±0.0124(4) 0.4734±0.0291(5) 0.5470±0.0137(6) 0.4314±0.0177(1) 0.4450±0.0130(3)
Health 0.2416±0.0204(2) 0.2482±0.0250(4) 0.2430±0.0183(3) 0.2946±0.0184(6) 0.2398±0.0230(1) 0.2494±0.0219(5)
Science 0.4862±0.0185(2) 0.5016±0.0181(5) 0.5008±0.0432(4) 0.5784±0.0199(6) 0.4794±0.0174(1) 0.4916±0.0187(3)
Recreation 0.4492±0.0159(2) 0.4542±0.0220(3) 0.4618±0.0196(5) 0.5304±0.0281(6) 0.4398±0.0187(1) 0.4548±0.0132(4)
Entertain. 0.3824±0.0241(2) 0.3916±0.0251(5) 0.3836±0.0309(3) 0.4746±0.0278(6) 0.3816±0.0222(1) 0.3914±0.0234(4)
Ave. Rank 1.86±0.38 4.00±0.82 4.29±0.95 6.00±0.00 1.47±1.13 3.43±0.98

Table 5. Performance (mean±std.(rank)) of each algorithm in terms of coverage.

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.8740±0.0548(2) 0.8955±0.0562(4) 0.9715±0.0776(5) 0.9795±0.0831(6) 0.8570±0.0487(1) 0.8900±0.0468(3)
Yeast 6.1845±0.1465(1) 6.2465±0.1433(4) 7.1431±0.2688(5) 7.5347±0.2521(6) 6.2138±0.1353(2) 6.2453±0.1384(3)
Arts 4.5738±0.4115(1) 4.6116±0.3783(3) 7.8582±0.4686(5) 8.8862±0.3652(6) 4.7192±0.4110(4) 4.5808±0.3720(2)
Health 3.1998±0.3144(1) 3.2280±0.2797(3) 8.2418±0.3797(5) 8.7686±0.4684(6) 3.2930±0.2942(4) 3.2122±0.3042(2)
Science 5.5188±0.4325(1) 5.6016±0.4341(3) 11.403±0.4453(5) 13.744±0.6340(6) 5.7114±0.4432(4) 5.5476±0.4108(2)
Recreation 3.6858±0.2916(1) 3.7452±0.2983(3) 6.2390±0.4696(5) 7.6552±0.6209(6) 3.7790±0.3304(4) 3.6872±0.2831(2)
Entertain. 2.7686±0.1832(1) 2.8102±0.1739(3) 5.7008±0.2569(5) 7.1750±0.4761(6) 2.8478±0.1885(4) 2.7796±0.1434(2)
Ave. Rank 1.14±0.38 3.29±0.49 5.00±0.00 6.00±0.00 3.29±1.25 2.29±0.49

Table 6. Performance (mean±std.(rank)) of each algorithm in terms of average preci-
sion.

Algorithm

Dataset EnML ML-RBF ECC RAKEL EnMLHSIC EnMLNCL

Image 0.8288±0.0144(1) 0.8118±0.0145(4) 0.7977±0.0148(5) 0.7952±0.0215(6) 0.8226±0.0141(2) 0.8139±0.0122(3)
Yeast 0.7754±0.0146(1) 0.7720±0.0133(4) 0.7313±0.0236(5) 0.7170±0.0165(6) 0.7747±0.0152(2) 0.7734±0.0127(3)
Arts 0.6433±0.0113(2) 0.6366±0.0116(4) 0.5613±0.0149(5) 0.5122±0.0138(6) 0.6473±0.0123(1) 0.6406±0.0112(3)
Health 0.7988±0.0135(2) 0.7941±0.0151(4) 0.7247±0.0115(5) 0.6986±0.0142(6) 0.7994±0.0142(1) 0.7957±0.0132(3)
Science 0.6128±0.0152(2) 0.6026±0.0155(4) 0.5328±0.0227(5) 0.4712±0.0213(6) 0.6178±0.0172(1) 0.6090±0.0167(3)
Recreation 0.6501±0.0159(2) 0.6435±0.0170(4) 0.5770±0.0145(5) 0.5355±0.0242(6) 0.6520±0.0164(1) 0.6448±0.0134(3)
Entertain. 0.7028±0.0146(2) 0.6971±0.0169(4) 0.6338±0.0151(5) 0.5763±0.0232(6) 0.7029±0.0142(1) 0.6976±0.0143(3)
Ave. Rank 1.71±0.49 4.00±0.00 5.00±0.00 6.00±0.00 1.29±0.49 3.00±0.00


