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ABSTRACT
With the effect of word-of-the-mouth, trends in social net-
works are now playing a significant role in shaping people’s
lives. Predicting dynamic trends is an important problem
with many useful applications. There are three dynamic
characteristics of a trend that should be captured by a trend
model: intensity, coverage and duration. However, exist-
ing approaches on the information diffusion are not capable
of capturing these three characteristics. In this paper, we
study the problem of predicting dynamic trends in social
networks. We first define related concepts to quantify the
dynamic characteristics of trends in social networks, and for-
malize the problem of trend prediction. We then propose a
Dynamic Activeness (DA) model based on the novel con-
cept of activeness, and design a trend prediction algorithm
using the DA model. We examine the prediction algorithm
on the DBLP network, and show that it is more accurate
than state-of-the-art approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
Data Mining

Keywords
Information Diffusion; Social Influence

1. INTRODUCTION
Online social networks have become increasingly impor-

tant for interpersonal communication and information shar-
ing. Trends in online social networks now have large impacts
on people’s lives. Trends are represented by sequences of ac-
tions that are taken by users in a social network. According
to the type of the social network, an action can be posting a
blog or sharing a webpage about a certain topic, or joining
an online activity.
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Predicting the dynamic behavior of trends is an interesting
problem with wide applications. Some examples of such
applications are as follows:

1. Online video providers may want to predict how many
times a video will be played by users in the next month, so
that they can decide the bandwidth needed for the server.

2. Disease control facilities may want to predict how many
people will suffer from a contagion in the following week,
so that they can be prepared for an outbreak.

3. Manufacturers may want to predict how long an existing
product will continue to be popular, so that they can decide
the most suitable time for the debut of a new model.

The three applications above require the prediction of
trends from three different perspectives. The first exam-
ple considers the intensity of a trend, which is the volume
of actions during a fixed length of time. The second one
focuses on the coverage of a trend, which is the number of
people taking the given action during a fixed length of time.
The third one considers the duration of a trend, which is
the time span that the intensity or coverage is above a given
threshold.

To better explain these three perspectives (intensity, cov-
erage and duration), we show in Figure 1 a toy example
of a trend on a social network which contains three users.
Table (b) shows the intensity, coverage and duration that
aggregated from actions listed in Table (a). For example, at
2008, v1 and v2 take 3 and 2 actions, respectively, while v3
taking no action, so the coverage (i.e. the number of people
taking actions) is 2, and the intensity (i.e., the total number
of actions taken) is 5. Though the coverage and intensity
are correlated with each other, they are not interchangeable
in the sense that the corresponding time series are neither
similar nor synchronized. In this example, the maximum
value of coverage is reached at year 2009, while the maxi-
mum value of intensity is reached at year 2008. Duration
reflects how long the trend lasts. If we set the threshold to
0, duration of the trend will be 4 years, from 2007 to 2010.

Based on our observation, each of the three perspectives
is useful for many real applications. A trend model should
be able to characterize trends from all of these three per-
spectives.

Though the actions of social network users have been stud-
ied in the context of information diffusion models (e.g. the
independent cascade (IC) model) [3], the existing informa-
tion diffusion models are not suitable for modeling dynamic
trends for three main reasons: First, most of these models
assume that the diffusion processes take place in discretized
time and the propagation of information between two nodes



2007 2008 2009 2010 2011
v1 1 3 2 1 0
v2 0 2 1 0 0
v3 0 0 1 1 0

(a) Number of actions of the trend

2007 2008 2009 2010 2011
Coverage 1 2 3 2 0
Intensity 1 5 4 2 0
Duration 2007 - 2010

(b) Coverage, intensity, and duration of the
trend

Figure 1: An example of trend in a social network

always takes one unit of time, which does not reflect the
real dynamic of trends as time unfolds. Therefore, they
cannot reflect the dynamic nature of intensity and coverage,
or the duration of trends. Second, information diffusion
models focus on the visible path of propagation, and they
usually assume that the propagation can only occur between
a pair of nodes that are directly linked to each other, while
the trend model should focus on predicting the aggregate
characteristics of trends, and the path of propagation is not
important for the prediction. Besides, because of the exis-
tence of homophily [1, 8], the propagation through direct
links may not be good enough to explain trends in social
networks. The model of trends should be more flexible with
regard to the propagation mechanism. Third, information
diffusion models focus on the prediction on the individual
user level, but not on the trend level. As a result, they al-
low the probability of influence to be different between each
pair of users, but assume that the probability remains the
same for all the trends. This makes them not suitable for
predicting trends based on different properties of trends.
In this paper, we formally define the three dynamic char-

acteristics of a trend (intensity, coverage and duration), and
the problem of trend prediction. We introduce a novel con-
cept of activeness, which reflects a user’s interest toward the
given trend at a given point of time. The dynamic nature
of activeness enables us to model the dynamic characteris-
tics of trends. Due to the introduction of activeness, a more
flexible propagation mechanism is made possible, so that the
correlation as well as influence through direct links can be
captured in our model. We propose a Dynamic Activeness
(DA) model based on the concept of activeness. Each com-
ponent of the model is built on observations on real trends,
and the model is capable of capturing all the three dynamic
characteristics of trends. We design a trend prediction algo-
rithm based on the DA model. For each trend, the param-
eters of the model are learned specifically from the history
data of that trend. The learned model can then be used
to predict the dynamic characteristics of the trend in the
future. We show the performance of the DA model on real
trends in the DBLP network. A full version of the paper is
available in [6].

2. PRELIMINARIES

2.1 Notations and Definitions
Let G = (V,E) be a social network, in which V = {v1, · · · ,

vn} is the set of nodes and E ⊆ V × V is the set of edges.
We consider the network to be static, since the evolution of
networks is much slower than that of the trends. During

the time span of a given trend, the change of the network is
negligible.

A trend on the social network G is defined as follows:

Definition 1. Trend A trend S = [(v1, t1), . . . , (vm, tm)]
on the social network G is a chronological sequence that con-
sists of a given type of actions in G, where ti ≤ tj(∀0 ≤ i <
j ≤ m) and vi ∈ V (∀i ∈ {1, · · ·m}). An element (vi, ti) in
S corresponds to an action of that type taken by the node vi
at time ti.

For simplicity of notation, we denote the time sequence
of actions in trend S as T (S) = [t1, . . . tm], and denote the
subsequence of S that consists of all the actions taken by
node v as Sv = [(v, tv,1), . . . , (v, tv,mv )], where (v, tv,i) ∈
S(∀1 ≤ i ≤ mv). We also use St to denote the prefix of S
which contains all the actions taken before the time point t,
i.e., St = [(vi, ti) : (vi, ti) ∈ S, ti ≤ t].

Based on the above definition of a trend, we define inten-
sity, coverage, and duration of a trend as follows:

Definition 2. Intensity The Intensity of a trend S on
a time interval I = [tmin, tmax) is the number of actions
in S that are taken during I. Formally, Intensity(S, I) =
|{(vi, ti) : ti ∈ I ∧ (vi, ti) ∈ S}|.

Definition 3. Coverage The Coverage of a trend S on
a time interval I = [tmin, tmax) is the number of nodes in V
that take at least one action during I. Formally, Coverage(S,
I) = |{vi : (vi, ti) ∈ S ∧ ti ∈ I}|.

Definition 4. Duration Let I = {I1, . . . Is} be a set
of intervals, where Ii = [timin, t

i
max). Given a threshold θ,

the duration of S on I is the number of consecutive in-
tervals in I that the intensity (coverage) is above θ. For-
mally, Durationcov(S, I, θ) = max(j − i + 1), 1 ≤ i ≤ j ≤
s, s.t. ∀k, i ≤ k ≤ j, Coverage(S, Ik) > θ and Durationint

(S, I, θ) = max(j − i + 1), 1 ≤ i ≤ j ≤ s, s.t. ∀k, i ≤ k ≤
j, Intensity(S, Ik) > θ.

The intensity quantifies the overall activeness of a trend
within a social network. The coverage quantifies how broad
a trend has impacts in a social network, i.e., the number
of nodes involved within a time interval. The larger the
coverage value of a trend is, the more nodes of the network
are affected/involved in the trend. The duration quantifies
how long a trend lasts within the social network.

For the duration, we usually want I1, . . . , Is to be consec-
utively connected intervals with equal length, i.e., timax =
ti+1
min (∀i ∈ {1, . . . , s−1}) and timax−timin = tjmax−tjmin (∀i, j ∈
{1, . . . , s}). We like to point out that, given the intensity
and coverage, the duration of trend can be defined in many
different ways. We define it as the largest number of consec-
utive intervals above the threshold because this definition is
most straightforward. By carefully setting the threshold θ,
the definition will accord with the intuitive understanding
of the word “duration”.

The prediction problem of trends is defined as follows:

Definition 5. Trend Prediction Problem Given St∗ ,
the prefix of sequence S before time t∗, the problem of trend
prediction is to predict the intensity, coverage and duration
of trend S after time t∗.

Typically, we solve the prediction problem on a set of con-
secutively connected equal-length intervals I = {I1, . . . Is},



where Ii = [timin, t
i
max) and t1min = t∗. The problem is to

predict Coverage(S, Ii) and Intensity(S, Ii) for each Ii ∈
I, and Durationcov(S, I, θS) or Durationint(S, I, θS) for a
given θS .

2.2 Dataset
We take our observation and evaluation on the DBLP co-

author network. In the network, the nodes correspond to the
authors and the edges correspond to the co-authorship. The
dataset contained 934,672 nodes and 8,850,502 edges. The
trend data are extracted from the DBLP data by detecting
terms in the titles of publications. In each trend, an action
(vi, ti) corresponds to a publication of the author vi at time
ti that contains the given term in the title. For publications
with multiple authors, there is an action for each of the
authors.

3. DYNAMIC ACTIVENESS (DA) MODEL

3.1 Concept of Activeness
The DA model for trend in social network is based on the

novel concept of activeness. For each trend, each node in the
social network has an activeness function associated with it.
The two main aspects of the concept are:
• Activeness of a node is defined as its interest toward the
given trend. It is a function of time. As time goes by,
activeness may increase as a result of information diffusion
or social influence, or decrease as the node loses interest to
the given trend.
• Activeness decides the frequency of actions taken by the
node. The higher the activeness of a node is, the more
actions it is likely to make in a unit time. In this sense, we
can also define activeness as the “action rate” of a user.
Since activeness is dynamic in nature, we are able to de-

sign the DA model based on it, so that the model can cap-
ture the three dynamic characteristics of trends. Besides, by
using activeness in the model, we are also able to design a
more flexible information propagation mechanism.

3.2 Framework of DA Model
As shown in Figure 2, the DA model contains three ele-

ments: activeness propagation, decay of activeness and ac-
tion generating process. Each of them is based on observa-
tions on real trends. Actions and activeness are connected
to each other in the DA model. On the one hand, actions
trigger activeness propagations in the social network. Ac-
tiveness propagation, together with the decay of activeness,
decides the activeness of each user at each point of time. On
the other hand, actions are generated by the action gener-
ating process which takes the activeness as input.
As shown in Figure 2, the prediction algorithm contains

two phases. In the learning phase, parameters of the DA
model are learned from the observed part of trends. In the
prediction phase, the DA model predicts the actions in the
future. Intensity, coverage and duration of trends can be
predicted by aggregating the predicted future actions.

3.3 Activeness Modeling
For each trend S, let rv(t) be the activeness or action rate

of node v at time t. In this section, we discuss the modeling
of rv(t). As shown in the left most box in Figure 2, the model
of activeness contains two parts: activeness propagation and
activeness decay.

Figure 2: Block Diagram of the DA Model
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Figure 3: (a)Activeness by different distances to
nodes with previous actions. (b)Activeness by the
time elapsed since last action in proximity

Activeness Propagation Intuitively, as a result of social
influence or homophily [8, 2], the activeness of nodes are
correlated with each other. The closer two nodes are, the
larger the correlation is. Thus, when a node takes an action
in a trend, we can expect that nodes in proximity to it have
larger activeness for the trend than other nodes in the social
network.

Our observation on the real trends supports this intuition.
Figure 3(a) shows the curves of activeness for four trends in
DBLP network, i.e., trends about “boosting”, “privacy” etc.
Other trends have similar curves. For each trend, we plot
the average activeness (i.e. the average number of actions
per unit time) for nodes with different shortest path dis-
tances to nodes with previous actions. As we can see from
the figure, as the distance increases, the activeness of nodes
exponentially decreases. An important remark is that the
information diffusion along direct links is not enough for ex-
plaining trends. Because if we explain trends in that way,
all the nodes except for those that are directly linked to the
nodes with previous actions should have the same activeness.
It is also interesting to point out the exponential decreases
also fits for action rates of nodes with 0-hop distance (i.e.
nodes themselves have previous actions).

Based on this observation, we use the previous actions of
a trend to model the activeness of nodes. Let prox(u, v) be
the proximity measurement from u to v. When an action is
taken by node u, the increase of activeness of v is propor-
tional to prox(u, v), i.e., if u takes an action at time ta, for
every node v in the network we have:

lim
t→ta+

rv(t) = lim
t→ta−

rv(t) + α · prox(u, v) (1)

where limt→ta+ rv(t) and limt→ta− rv(t) are the activeness
of node v after and before the jump at time ta, and α is the
propagation ratio that depends on the trend.

We study two different measurements for proximity. The
first one uses the shortest path distance from the source node
to destination node. As we observed in the real trend data,
proximity is defined as an exponential decreasing function



of shortest distance, i.e., prox(u, v) = exp(−b · dist(u, v)),
where b ∈ R+ and dist(u, v) is the length of shortest path
from u to v. The second proximity measure is based on
random walk, which is described as rooted PageRank in [5].
To measure the proximity of nodes from a given node u, the
random walk is started at node u. At each step, it has a
probability of p to return to node u, and 1 − p probability
to move to neighbor nodes. The proximity of node v from
node u is defined as the stationary probability for v. In both
of the measurements, if v is not reachable from u, we have
prox(u, v) = 0.
While information diffusion models define the influence

between nodes along the edges, the “propagation” of active-
ness captures a more general sense of correlation between
activeness of nodes, rather than the process of information
diffusion. Besides, it is different from information diffusion
model in how it is parameterized. The parameter α of the
activeness propagation depends only on the trend, but not
on the node that takes the action. To the contrary, the infor-
mation diffusion models usually have diffusion probabilities
with individual edges as parameters, and the diffusion prob-
abilities are constant for all the trends. We parameterize the
activeness propagation in a different way for two reasons:
First, it is simply not practical to make the parameters de-
pend on trends and edges at the same time, since there will
be not enough actions to be used for the learning of each
parameter. Second, the main purpose of the proposed trend
model is to predict the aggregate characteristics of different
trends, so it is more meaningful to bind the parameter with
the trends instead of the edges.
Decay of activeness Intuitively, if a user is not exposed

to any new information or influence from a certain trend, nor
does he create any new content that belongs to that trend,
the user’s interest to that trend will gradually decay. In
other words, the activeness of a node spontaneously decays
if there is no new action taken by nodes in proximity to it.
This spontaneous decay is observed from real trends.
Figure 3(b) shows the average activeness for nodes as time

progresses since last action in proximity. Let R(v, k) = {u ∈
V |sp(u, v) = k} represent the set of nodes that are k hops
away from v, where sp(u, v) is the shortest path distance
from u to v. The X-axis of the figure is the time elapsed
since last action taken by nodes in R(v, 1). The Y-axis of
the figure is the average activeness. As shown in the figure,
activeness decreases when the node is not exposed to a new
action. Decrease of activeness can roughly be regarded as
exponential. (We only show the case of k = 1 and the curves
for four trends in this figure. But actually we have done the
same test for different k values and for different trends, and
the other curves are similar.)
According to the observation, we introduce an exponential

decrease to the activeness model. For each interval [t0, t1)
when rv(t) is not increased by the activeness propagation,

rv(t) = rv(t0)e
−(t−t0)/τ for any t ∈ [t0, t1). τ is a rate of the

activeness decay, For similar reasons as to the parameter α,
τ depends on the trend, but not depends on the node or the
edge.
Summary of Activeness Model Combining the two

parts above together, rv(t), the activeness of node v at time

t, is given by:

rv(t) = α
∑

(vi,ti)∈St

(prox(vi, v) e
−(t−ti)/τ ) + rv(t0)e

−(t−t0)/τ

(2)
where t0 is the start time of the trend. We set rv(t0) to
a small value ε. rv(t) is discontinuous at time points when
there is a new action taken by nodes in R(v). In each interval
between those discontinuous points, rv(t) is subject to an
exponential decay.

3.4 Action Generating Process
As we mentioned in Section 3.1, the activeness of a node

serves as the action rate in the generating process. Thus, we
model the action generating process as a non-homogeneous
Poisson process with the activeness as the rate parameter.

For a non-homogeneous Poisson process, the number of
actions taken by this node in any time interval [t′, t) follows
a Poisson distribution:

P [(|Sv
t | − |Sv

t′ |) = k] =
e−

∫ t
t′ rv(t) dt(

∫ t

t′ rv(t) dt)
k

k!

where |Sv
t | is the number of actions taken by node v before

time point t.
Suppose we are now at the time point t′ and want to

generate the next time point after t′. By taking derivative
with respect to t, we can get the probability density function
for the waiting time until next action:

fv,t′(t) = rv(t) · exp(
∫ t

t′
rv(t)dt) (3)

We then can generate the next time point in the sequence
by drawing from the distribution of the waiting time.

4. PREDICTION ALGORITHM
The prediction algorithm contains two phases: the param-

eter learning phase and the prediction phase. In the first
phase, parameters for each trend are learned from the part
of the trend before t∗ by maximum likelihood estimation. In
the second phase, we use the learned model to predict the
future trend sequence after t∗. Efficiency implementation of
the algorithm is available in the full version of this paper [6].

Parameter Learning Phase For each trend, two param-
eters in the DA model need to be learned: the proportion-
ality factor α in activeness propagation and mean lifetime τ
of activeness decay. We use maximum likelihood estimation
for the parameter learning.

The likelihood function is given by:

L(α, τ) =
∏
v∈V

f(T (Sv
t∗), |Sv

t∗ |;α, τ) (4)

where T (Sv
t∗) is the time sequence for node v’s actions before

time t∗, and |Sv
t∗ | is the number of actions taken by v before

time t∗. f(·) is the joint probability density function of the
time sequence T (Sv

t∗) and |Sv
t∗ |.

By taking the partial derivative of log L(α, τ) with respect
to α (derivation is available in [6]), we get the estimate values
for α:

α̂ =
|St∗ |∑

v∈V Hv(t∗, τ)
(5)



Fixing α to α̂, we get

τ̂ = argmax[|St∗ |log(
|St∗ |∑

v∈V Hv(t∗, τ)
)− |St∗ |

+
∑

(vi,ti)∈St∗

log(hvi(ti, τ))]
(6)

where hv(t, τ) and Hv(t, τ) are introduced for simplicity’s
sake:

hv(t, τ) =
∑

(vi,ti)∈St

(prox(vi, v) e
−(t−ti)/τ ) (7)

and

Hv(t, τ) = τ
∑

(vi,ti)∈St

(prox(vi, v)(1− e−(t−ti)/τ )) (8)

Due to the complexity of H(t, τ) and h(t, τ) with regards
to τ , it is not possible to obtain a closed-form solution for
the maximum-likelihood estimate of τ . However, since τ is
the only variable here, we can use any line search algorithm
to find the τ̂ , and techniques such as simulated annealing
can be adopted to avoid falling into local optimal value.
Prediction Phase After we learn the parameters τ and

α, we can generate the prediction of the action sequence
after t∗. To do this, we keep track of the next action of
each user in a list in the time order. Every time we pull the
earliest action from the list and add it to prediction, then
we update the list to capture the future actions that will be
triggered by this action. The procedure is as follows:

1. Calculate rv(t∗), the activeness at time t∗ for each
node v in the network, using Equation 2.

2. Generate a next action for each node in the network
from the pdf in Equation 3. Sort the actions in the
ascending order of time, store them in a list L.

3. While L is not empty, pull the first action (vi, ti) from
it.

i if ti > tend, jump to step 4.
ii Add (vi, ti) to S′, the predicted sequence.
iii For all the nodes that are reachable from vi, up-

date their activeness rv(ti) by Equation 2.
iv Update the next action time using the pdf in

Equation 3, and sort the list L again.
4. Calculate intensity, coverage, duration using the

predicted sequence S′.
tend in Step 3-i is the end point of the last time interval on

which we want to predict the trend. Notice that the sequence
generating process is a random process. We may repeat Step
3 several times to get the average value of aggregates.

5. EXPERIMENT

5.1 Experiment settings
Algorithms As we mentioned in Section 3.3, for the DA

model, we use two different measurements for the proximity.
For the shortest path measurement (DA-sp), we set the de-
cay factor b to 10 in the experiment. For the random walk
measurement (DA-rw), the restart probability p is set to 0.4.
We compare the DA model with three variants of the

widely used IC model. All of the three variants assume that
each action comes with a delay, so that they can be used to
model dynamic trends:

Concept drift Boosting Active learning
Kernel methods Privacy Streams
SQL Face recognition Decision tree
Heterogeneous network

Table 1: Trends in the DBLP dataset

1. eExp (Edge-dependent exponential delay model [7]) as-
sumes that all the actions propagate through a certain edge
are drawn independently from an exponential distribution.

2. tExp (Trend-dependent exponential delay model [7]) as-
sumes that delays for all the actions of a certain trend are
drawn independently from an exponential distribution.

3. tEqu (Trend-dependent equal-length delay model [4]) as-
sumes that there is a fixed-length delay for all the actions
of a certain trend.

Parameters of the three baselines model are learned by the
algorithm proposed in [7]. For the intensity prediction, we
extend the IC variants with a “multiple actions factor” to
allow a node to perform actions more than once. These
extended IC variants will be explained later in Section 5.3.

Performance Measures To evaluate coverage and in-
tensity, we use two measures: the error ratio and the coeffi-
cient of variation. Error ratio is used to evaluate the good-
ness of the prediction compared with the true value. The
formula of error ratio is given by error ratio = |truth −
prediction|/truth. Since all of the tested algorithms are
stochastic algorithms, we also evaluate the variance of the
outputs. For every test, we run each algorithm for multiple
times and estimate the coefficient of variation. The coeffi-
cient of variation is estimated by: Ĉv = s/x̄ where s is the
sample standard deviation, and x̄ is the sample mean.

Trend Data for Evaluation We test 10 trends of hot
keywords in the areas of data mining and machine learning
for the evaluation. Trends are as listed in Table 1. For each
trend, we use the trend sequence before year 2005 (2005 ex-
cluded) as the training sequence, and the sequence from year
2005 to 2009 (2009 included) as the test sequence. We take
each year as a time interval, on which we consider intensity
and coverage.

5.2 Coverage
In Figure 4(a), we plot the average error ratio for 5 consec-

utive time intervals after the end point of training sequence.
As shown in the figures, error ratios for all the algorithms
tend to increase as time progresses. DA-rw and DA-sp have
lower error ratios than the baselines. The error ratio of
tEqu deteriorates very quickly, while eExp and tExp are in
the middle. The difference between the error ratio of DA-rw
and the error ratio of DA-sp is not large, which shows that
the DA model is not sensitive to the different measurements
of proximity, as long as the measurements are reasonable. In
Figure 4(b), we show the coefficient of variation for the cov-
erage prediction. As shown in the figure, DA-rw and DA-sp
have a lower coefficient of variation than the baselines, which
means that the predictions got by the DA model are more
stable. DA-sp has a slightly lower coefficient of variation
than DA-rw, which mean that the shortest path distance
measurement makes the result more stable than the random
walk measurement.

5.3 Intensity
For the evaluation of intensity prediction, we use tEqu-

mult, tExp-mult and eExp-mult instead of tEqu, tExp, and



1 2 3 4 5
0

1

2

3

4

5

Time (in year)

A
ve

ra
ge

 e
rr

or
 r

at
e

 

 
DA−rw
DA−sp
tEqu
tExp
eExp

(a) Error Ratio

1 2 3 4 5
0

0.5

1

1.5

Time (in year)

C
oe

ff
ic

ie
nt

 o
f 

va
ri

at
io

n

 

 
DA−rw
DA−sp
tEqu
tExp
eExp

(b) Coefficient of Variation

Figure 4: Results for Coverage Prediction
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eExp as baselines. It is because the tEqu, tExp and eExp,
like the standard IC model, do not allow multiple actions
being performed by the same node. To construct better
baselines, we try to capture the relationship between cover-
age and intensity.
Figure 5 shows our observation on the relationship. We

calculate coverage and intensity for all the intervals in the
training time, and plot each pair of coverage and intensity
in the figure. The values of coverage are illustrated on the
X-axes, and the values of intensity are illustrated on the Y-
axes. As shown in Figure 5, for this dataset, the proportional
function y = 1.1215x fits the relationship of intensity and
coverage quite well, Based on this observation, we add a
multiple action factor to the three baselines and get three
new baselines.
Figure 6(a) shows the error ratios for intensity prediction.

As shown in the figures, for all the algorithms, error ratios
tend to increase as time progresses. DA-rw and DA-sp have
lower error ratios than other algorithms. DA-rw performs
slightly better than DA-sp. In Figure 6(b), we show the coef-
ficient of variation for the intensity prediction. As shown in
the figure, our algorithms have lower coefficient of variation
than the baselines.

5.4 Duration
We test both coverage-based duration and intensity-based

duration. To calculate the duration, we use the coverage and
intensity at the last observed interval (year 2004) as thresh-
olds. Since the length of the test time is limited, coverage
or intensity for about half of the trends never drops below
the thresholds. We make each algorithm predict whether
the duration covers all the 5 prediction intervals, and report
the accuracy of this prediction.
Table 2 shows the accuracy of the duration prediction.

As shown in the table, DA-rw makes the best accuracy of
prediction. The accuracy of DA-sp and tExp is similar. tEqu
has the lowest accuracy.
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Figure 6: Results for Intensity Prediction

Coverage-based duration Intensity-based duration
DA-rw 0.9 0.9
DA-sp 0.8 0.9
tEqu(-mult) 0.6 0.5
tExp(-mult) 0.8 0.9
eExp(-mult) 0.7 0.7

Table 2: Accuracy of Duration Prediction

6. CONCLUSIONS
In this paper, we identify coverage, intensity and dura-

tion as the three characteristics of a trend. We proposed
a Dynamic Activeness model for trends based on the novel
concept of node activeness. The model can capture all the
three important aspects of trends. The experimental result
shows that the proposed DA model can predict trends more
accurately than information diffusion models.
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