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Abstract. Using sophisticated graph-theoretical analyses, modern mag-
netic resonance imaging techniques have allowed us to model the human
brain as a brain connectivity network or a graph. In a brain network,
the nodes of the network correspond to a set of brain regions and the
link or edges correspond to the functional or structural connectivity be-
tween these regions. The linkage structure in brain networks can encode
valuable information about the organizational properties of the human
brain as a whole. However, the complexity of such linkage information
raises major challenges in the era of big data in brain informatics. Con-
ventional approaches on brain networks primarily focus on local patterns
within select brain regions or pairwise connectivity between regions. By
contrast, in this study, we proposed a graph mining framework based on
state-of-the-art data mining techniques. Using a statistical test based on
the G-test, we validated this framework in a sample of euthymic bipo-
lar I subjects, and identified abnormal subgraph patterns in the rsfMRI
networks of these subjects relative to healthy controls.

Keywords: data mining, bipolar disorder, brain network, subgraph pat-
tern, feature selection.

1 Introduction

To correctly diagnose and properly treat neuropsychiatric disorders, many dif-
ferent diagnostic tools and techniques have been developed over the last decade,
often yielding a large amount of data measurements. Especially, recent advances
in neuroimaging technology have provided an efficient and noninvasive way of
studying the structural and functional connectivity of the human brain, either
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in a normal or a diseased state [16]. This can be attributed in part to advances
in magnetic resonance imaging (MRI) capabilities [13]. Functional MRI (fMRI)
is a functional neuroimaging procedure that identifies localized patterns of brain
activation by detecting associated changes in cerebral blood flow [3, 14, 15].

fMRI scans consist of activations of tens of thousands of voxels over time,
among which a complex interaction of signals and noise is embedded [7]. Us-
ing relevant spatio-temporal brain activity tensor data from these scans, the
underlying brain network, here also called a connectome [17], can be computed.
The functional connectome provides a graph-theoretical viewpoint to investigate
the collective pattern of functional activity across all brain regions, and has been
shown to be abnormal in neuropsychiatric disorders [10]. Indeed, brain networks,
both structural and functional, have been increasingly studied in recent years [1,
5, 17], with potential applications to the early detection of brain diseases [19].

To date, conventional network approaches primarily focus on local patterns at
the level of brain regions [24, 9] or pairwise connectivities [25]. Ye et al. presented
a kernel-based method for selecting biomarkers or brain regions from multiple
heterogeneous data sources that may play more important roles than others in
confirming an Alzheimer’s disease (AD) diagnosis [24]. Similarly, Huang et al. in-
troduced a sparse composite linear discriminant analysis model for identifying
disease-related brain regions in AD [9].

In contrast to detecting single brain regions as biomarkers, Zalesky et al. pro-
posed a network-based statistic approach to identify a collection of pairwise con-
nections, some forming subnetworks, that is abnormal in patients with schizophre-
nia [25]. Here, thresholding was applied to pairwise connections, thus requiring
each candidate link to be statistically significant under pre-defined criteria. How-
ever, links may not be discriminative by themselves until they form a compo-
nent. Moreover, only connected components present in the set of suprathreshold
links were examined in [25]. However, a component may lose its significance by
incorporating links that are uncorrelated with other links in the component.
Therefore, a full set of candidate components need to be investigated, including
those with separately insignificant links and those with a subset of significant
links. In this study, we focus on integrating statistical analysis and graph mining
algorithms to identify subgraph patterns that distinguish rsfMRI networks ob-
tained from two diagnostic groups (subjects with bipolar disorder versus healthy
controls).

2 Method

We use a subgraph mining algorithm to analyze discriminative patterns in fMRI
brain networks, which are also referred to as graphs hereafter.

Definition 1 (Binary graph). A binary graph is represented as G = (V,E),
where V = {v1, · · · , vnv

} is the set of vertices, E ⊆ V × V is the set of deter-
ministic edges.
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Let D = {(Gi, yi)}ni=1 denote a graph dataset. All graphs in the dataset
share a given set of nodes V , which corresponds to a specific brain parcellation
scheme. Each graph Gi is associated with a label yi based on the diagnosis of
this subject. Here, if a subject has bipolar disorder, the corresponding graph is
labeled positive. By contrast, if a subject is in the control group, the graph is
labeled negative.

2.1 Subgraph Patterns in Brain Networks

In brain network analysis, the ideal patterns we want to mine from the data
should balance local with global graph topological information. Subgraph pat-
terns are a desired option, which can simultaneously model the network connec-
tivity patterns among nodes and still capture changes on a local scale [13].

Definition 2 (Subgraph). Let G′ = (V ′, E′) and G = (V,E) be two binary
graphs. G′ is a subgraph of G (denoted as G′ ⊆ G) iff V ′ ⊆ V and E′ ⊆ E. If
G′ is a subgraph of G, then G is supergraph of G′.

A subgraph pattern, in a brain network, represents a collection of brain re-
gions and their connections. In other fields, mining subgraph patterns from graph
data has been extensively studied by many researchers [4, 11, 18, 23]. In general,
a variety of filtering criteria are proposed. A typical evaluation criterion is fre-
quency, which aims at searching for frequently appearing subgraph patterns in a
graph dataset satisfying a pre-specified value as minimum support. Most of the
frequent subgraph mining approaches are unsupervised such that the discrimi-
nation power of identified subgraph patterns can not be guaranteed.

In contrast to frequent subgraph patterns, we want to mine discriminative
patterns that can be used to distinguish subjects with bipolar disorder from
normal controls. For example, as shown in Fig. 1, three brain regions (red nodes)
may work collaboratively for normal people and abnormal connections between
them can result in a diseased state (e.g., bipolar disorder). Thus, it is valuable
to understand which connections collectively play a significant role subserving
the underlying disease mechanisms by finding discriminative subgraph patterns.

In this study, we use the G-test as the selection criterion for a subgraph pat-
tern. It tests the null hypothesis that the frequency of a pattern in the positively-
labeled (i.e., bipolar disorder) graph fits its distribution in the negatively-labeled
(i.e., normal controls) counterparts. Rejecting the null hypothesis indicates a
significant pattern with discrimination power. G-test score is defined as follows
[23]:

t(g,D) = 2m(p · lnp
q

+ (1− p) · ln1− p
1− q

)

where m is the number of positive graphs, and p and q are the frequency of
the subgraph pattern g in positive graphs and negative graphs, respectively,
in the dataset D. From the G-test score of a subgraph pattern, its statistical
significance (i.e., p-value) can be calculated using the chi-square distribution χ2

with 1 degree of freedom in our case.
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+ Bipolar disorder + Bipolar disorder + Bipolar disorder

- Normal control - Normal control - Normal control

Fig. 1. An example of discriminative subgraph patterns (connections between red
nodes) in brain networks.

However, given that edges in fMRI brain networks are inherently weighted
(correlations of time series), it is ambiguous to define whether a subgraph pattern
is contained in such network, thereby difficult to determine p and q. Hence, the
uncertainty information on weighted edges should be accounted for.

2.2 Mining fMRI Brain Networks

Conventional graph mining approaches are best suited for binary edges, where
the structure of graphs is deterministic, and the binary edges represent the pres-
ence or absence of linkages between the nodes [13]. In fMRI brain network data
however, there are inherently weighted edges in the graph linkage structure,
as shown in Fig. 2 (left). A straightforward solution is to threshold weighted
networks to yield binary networks. However, such simplification will result in
potentially a great loss of information. By regarding the positive correlation of
time series between two brain regions as a probability of existence for the cor-
responding edge, Kong et al. model fMRI brain networks as weighted graphs
[12].

Definition 3 (Weighted graph). A weighted graph is represented as G̃ =
(V,E, p), where V = {v1, · · · , vnv

} is the set of vertices, E ⊆ V ×V is the set of
nondeterministic edges, and p : E → (0, 1] is a function that assigns a probability
of existence to each edge in E.

For a weighted graph G̃(V,E, p), each edge e ∈ E is associated with a prob-
ability p(e) indicating the likelihood of whether this edge should exist or not. It
is assumed that p(e) of different edges in a weighted graph are independent from
each other. Therefore, by enumerating the possible existence of all the edges in
a weighted graph, we can obtain a set of binary graphs. Formally, we denote G
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Fig. 2. An example of fMRI brain networks (left) and all the possible instantiations of
linkage structures between red nodes (right).

implied from G̃ as G̃⇒ G with a probability, as follows [12]:

Pr(G̃⇒ G) =
∏

e∈E(G)

p(e)
∏

e∈E(G̃)−E(G)

(1− p(e)) (1)

For example, in Fig. 2 (right), consider the three red nodes and links between
them as a weighted graph. There are 23 = 8 binary graphs that can be implied
with different probabilities, computed using Eq. (1).

Suppose we are given a weighted graph dataset D̃ = {(G̃i, yi)}ni=1. For each

weighted graph G̃i ∈ D̃, a binary graph Gi can be implied, i.e., G̃i ⇒ Gi.
Then a binary graph dataset D = {(Gi, yi)}ni=1 is said to be implied from the

weighted graph dataset D̃, i.e., D̃ ⇒ D, iff ∀i ∈ {1, · · · , n}, G̃i ⇒ Gi. All the

possible instantiations of a weighted graph dataset D̃ are referred to as worlds
of D̃, denoted as W(D̃) = {D|D̃ ⇒ D}, where each world corresponds to an

implied binary graph dataset D. Intuitively, |W(D̃)| =
∏n

i=1 2E(G̃i). By assuming
that different weighted graphs are independent from each other, we have the
probability of a binary graph dataset D ∈ W(D̃) being implied by D̃:

Pr(D̃ ⇒ D) =

n∏
i=1

Pr(G̃i ⇒ Gi) (2)

Thus, the expected G-test score of a subgraph pattern over the weighted
fMRI brain networks can be computed as follows:

Exp
(
t(g, D̃)

)
=

∑
D∈W(D̃)

Pr(D̃ ⇒ D) · t(g,D)

By leveraging the fact that t(g,D) can only take a limited number of values
(no more than n2) and the moderate-size of our brain network dataset (a small
n), we can use dynamic programming proposed in [12] to efficiently compute the
expected G-test score.
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3 Experiments

3.1 Image Data Acquisition

Our sample consists of 52 bipolar I subjects who are currently in euthymia (23
females; age = 40.8 ± 12.84) and 45 age and gender matched healthy controls
(18 females; age = 40.15 ± 10.77). The rsfMRI scan was acquired on a 3T
Siemens Trio scanner using a T2*-weighted echo planar imaging (EPI) gradient-
echo pulse sequence with integrated parallel acquisition technique (IPAT), with
TR = 2 sec, TE = 25 msec, flip angle = 78, matrix = 64x64, FOV = 192 mm,
in-plane voxel size = 3x3 mm, slice thickness = 3 mm, 0.75 mm gap, and 30 total
interleaved slices. To allow for scanner equilibration, two TRs at the beginning
of the scan were discarded. The total sequence time was 7 min and 2 sec, with
208 volumes acquired.

3.2 Brain Network Construction

Functional connectomes were generated using the rsfMRI toolbox, CONN1 [21].
In brief, raw EPI images were realigned, co-registered, normalized, and smoothed
before analyses. Confound effects from motion artifact, white matter, and CSF
were regressed out of the signal. Using the 82 labels Freesurfer-generated cor-
tical/subcortical gray matter regions, functional brain networks were derived
using pairwise BOLD signal correlations. The constructed connectivity maps
are shown in Fig. 3. Here, due to the sheer amount of pairwise connections,
visually it is hard to discern local differences between groups.
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(a) Bipolar disorder.
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(b) Normal control.

Fig. 3. Connectivity maps constructed from fMRI data. Here, the partitioning of the
network is based on neuroanatomy.

3.3 Discriminative Subgraph Patterns

The most significant 10 subgraph patterns identified from these fMRI brain
networks were visualized with the BrainNet Viewer2 [22], as shown in Fig. 4

1 http://www.nitrc.org/projects/conn
2 http://www.nitrc.org/projects/bnv
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where p-values are presented for each pattern. Considering our discriminative
subgraph patterns were selected from a large number of candidate frequent sub-
graph patterns (62, 776 in our dataset), multiple comparisons were accounted for
by following the Benjamini-Hochberg procedure [2] to control the false discovery
rate (FDR). Results indicated that these top-10 patterns would be significant
with a FDR of 17.10%. Note that in contrast to the more than 60, 000 sub-
graphs identified and tested here, conventional pairwise comparisons result in
only

(
82
2

)
= 3, 321 comparisons.

(a) p=0.0014 (b) p=0.0251 (c) p=0.0274 (d) p=0.0339 (e) p=0.0340

(f) p=0.0348 (g) p=0.0350 (h) p=0.0351 (i) p=0.0390 (j) p=0.0392

Fig. 4. Discriminative subgraph patterns in the rsfMRI networks of euthymic bipolar
subjects versus healthy controls. Patterns with higher frequency in bipolar subjects are
shown in red (all except for b and e), while patterns with higher frequency in controls
are shown in blue. See Table 1 for node abbreviations.

We observed that the patterns in Fig. 4(b) and Fig. 4(e) are shown to be
more frequent in the control group while usually absent in the subjects with
bipolar disorder; other patterns in Fig. 4 are present more frequently in subjects
with bipolar disorder while less so in the control group. Particularly, we identified
patterns in Fig. 4(d), Fig. 4(e) and Fig. 4(i) which are composed of 3 nodes, while
pairwise (i.e., 2 nodes) patterns have been studied before in [25]. By contrast, we
investigated a full set of candidate components, including those with separately
insignificant links and those with a subset of significant links.

Table 1 lists the names of the nodes contributing to the top-10 discrimina-
tive subgraph patterns in Fig. 4. To better visualize the different connectivity
patterns, the 18-by-18 subnetwork formed by these significant brain regions are
additionally shown in Fig. 5.

4 Discussion

Thanks to recent advent of connectomics, global topological information can now
be probed using state-of-the-art graph-theoretical analyses by modeling compre-
hensive patterns of brain connectivity as a network. In contrast to conventional
connectome approaches that focus on local connectivity patterns among select
regions-of-interest, in this study we proposed to employ sophisticated graph min-
ing techniques to identify and quantify subgraph patterns in brain networks, and
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Table 1. Node abbreviations.

Abbreviations Nodes

BSTS.L(R) left(right)-Banks of the superior temporal sulcus
PCUN.L(R) left(right)-Precuneus
SMG.L(R) left(right)-Supra-marginal
IPL.L(R) left(right)-Inferior parietal
POP.L(R) left(right)-Pars opercularis
CUN.L(R) left(right)-Cuneus
PCAL.L(R) left(right)-Peri-calcarine
SFG.L(R) left(right)-Superior frontal
FFG.L(R) left(right)-Fusiform
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(a) Bipolar disorder.
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Fig. 5. 18-by-18 rsfMRI subnetwork showing the connectivity between the 18 brain
regions listed in Table 1 (nodes 1-9 are regions in the left hemisphere, while nodes
10-18 in the right hemisphere; nodes are listed following the same order as in Table 1).

applied them to rsfMRI data acquired from a sample of subjects with bipolar
disorder.

While we used the G-test to detect between-group differences in subgraph
patterns, an alternative approach to determine statistical significance is boot-
strapping by randomizing assignment of subjects into different diagnostic groups.
However, such an approach would now render the two groups significantly dif-
ferent in gender and age, which would then need to be taken into account when
interpreting subsequent results.
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While the results presented here require further validation in the future,
many of the identified regions that distinguished bipolar subjects from healthy
controls are known regions important for mood regulation and self-referential
operations in the temporal and parietal lobes. For example, as integral part
of the default mode network, the inferior parietal lobule and the precuneus are
known to be instrumental for the self-referential operations (thinking about self)
human brains engage in at rest (but disengage during tasks) [8]. The default
mode network thus is considered a task-negative network, whose function has
been shown to be abnormal in both unipolar depression and bipolar disorder [6].

In the future, the technique proposed here can be easily adapted and applied
to multi-modal imaging data thanks to the existence of a variety of neuroimaging
techniques that characterize the brain structure and/or function from different
yet complementary perspectives: diffusion tensor imaging (DTI) yields local mi-
crostructural characteristics of water diffusion; structural MRI can be used to
delineate brain atrophy; fMRI records BOLD response related to neural activity;
PET measures metabolic patterns [20]. Based on such a multi-modality repre-
sentation, it is thus desirable to find useful patterns with rich semantics (e.g., it
is important to know which connectivity between brain regions is significantly
altered in the context of both structure and function). Moreover, by leveraging
the complementary information embedded in a multi-modality representation,
better performance (i.e., higher sensitivity and specificity) on disease diagnosis
can be expected.

Acknowledgments. This work is supported in part by NSF through grants
CNS-1115234.
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