
Aluminum: Principled Scenario Exploration
through Minimality

Tim Nelson1, Salman Saghafi1, Daniel J. Dougherty1, Kathi Fisler1, Shriram Krishnamurthi2
1Department of Computer Science

WPI
Worcester, MA 01609, USA

2Computer Science Department
Brown University

Providence, RI 02912, USA
tn@cs.wpi.edu

Abstract—Scenario-finding tools such as Alloy are widely used
to understand the consequences of specifications, with applica-
tions to software modeling, security analysis, and verification.
This paper focuses on the exploration of scenarios: which
scenarios are presented first, and how to traverse them in a
well-defined way.

We present Aluminum, a modification of Alloy that presents
only minimal scenarios: those that contain no more than is
necessary. Aluminum lets users explore the scenario space by
adding to scenarios and backtracking. It also provides the ability
to find what can consistently be used to extend each scenario.

We describe the semantic basis of Aluminum in terms of mini-
mal models of first-order logic formulas. We show how this theory
can be implemented atop existing SAT-solvers and quantify both
the benefits of minimality and its small computational overhead.
Finally, we offer some qualitative observations about scenario
exploration in Aluminum.

I. INTRODUCTION

A. The Uses and Benefits of Scenarios

In many software engineering situations, authors of spec-
ifications in a high-level, declarative language (such as first-
order logic) benefit from scenarios, which are instances of the
specification. For instance, a user might specify a filesystem,
against which a scenario-generating tool would generate di-
rectory structures populated with files (using invented names
and contents). When a size-bound on scenarios is given, or
can be computed [1], users can even obtain an exhaustive set
of scenarios: that is, the number of scenarios is finite and they
can all be generated. Tools such as Alloy [2] and Margrave [3],
[4] support scenario-finding as their primary activity.

The concreteness of scenarios makes scenario-finding a
popular technique in software engineering. Software model-
ing helps system designers understand the consequences of
their specifications, determine missing constraints, and explore
alternatives. Specification languages like UML benefit from
scenario-finding to help bridge concrete and abstract repre-
sentations. Scenarios are also useful for presenting counter-
examples to verification tasks. This is especially widely used
when studying security policies, where the concreteness helps
envision attack configurations [3], [4], [5], [6]. Network mod-
eling systems similarly use scenarios to visualize designs [7],

[8]. Indeed, tools like Alloy use scenarios for both exploration
and counter-examples, and also let users visualize scenarios in
a variety of ways, both textual and graphical.

In short, scenarios are useful for many reasons:

• They are concrete, making it easy for users to grasp the
output and map it to reality.

• They do not require logical expertise to grasp. Thus,
a logic-aware modeler working with a domain expert
innocent of the joys of logic can present the output
scenarios to the domain expert, who should be in a
position to understand them.

• Despite the above, they are rigorous, in that we can as-
cribe a precise semantics to them. This makes it possible
to employ them in formal settings.

Because of this unique combination of characteristics, scenar-
ios are attractive software engineering tools.

B. Scenarios, Formally

Because the term “scenario” has many informal meanings,
it helps to pin down our terminology. A specification is a first-
order logic description written by a user, e.g., in Alloy syntax.
This will include an (Alloy) command to be run: the result of
running a command is a set of models. Here “model” has
its traditional meaning from logic: an assignment of values
to variables that makes a formula true. A model can be
either propositional or relational, the latter being the structures
appropriate to first-order logic; we need to refer to both,
because our specifications are first-order but the underlying
SAT-solver produces propositional models. Which one we
mean will usually be clear from context, but where necessary
we will disambiguate. Finally, a scenario is a relational model
that is shown to the user. It may thus have embellishments for
compelling visual presentation, such as atom names drawn
from the specification. Nevertheless, because its semantic
content is just a relational model, we will feel free to use
“scenario” and “model” interchangeably whenever it is clear
that we are in a non-propositional context.

C. Principles of Scenario Exploration

Almost any interesting specification will have many sce-
narios; in fact, most first-order logic specifications will have
an infinite number of them. But even when scenarios are
constrained to be finite (for example by the imposition of
a size-bound), so that there are only finitely many distinct
scenarios, making scenario-finding effective requires focusing
on what scenarios to present, in what order, and how to help
users navigate them. There is some work on this: for instance,
Alloy tries to exclude isomorphic scenarios [9], on the grounds
that these present no additional information. Beyond that,
however, Alloy lets the underlying SAT-solver dictate the order
of presentation, which is effectively unordered, and lets users
go from one to the next, again with no semantics associated
with the order of presentation.

Alloy does, however, hope to present scenarios in a sensible
order. As Jackson’s book [2, page 7] explains (instance is
Alloy’s name for a relational model):

[T]he tool’s selection of instances is arbitrary, and
depending on the preferences you’ve set, may even
change from run to run. In practice, though, the
first instance generated does tend to be a small one.
This is useful, because the small instances are often
pathological, and thus more likely to expose subtle
problems.

In other words, Alloy wishes to present the smallest scenarios
first. It is therefore natural to ask whether it is possible to force
it to do so. There are two difficulties we might encounter:
semantic (can this be computed?), and performance (can it be
done efficiently?), each of which can be an obstacle.

D. Contributions

In this paper, we present a theory for scenario exploration,
which has been implemented in a modified version of Alloy
called Aluminum. Aluminum has the following features:
• It presents minimal scenarios. Thus, when confronting a

scenario given by Aluminum, a user can be confident that
every tuple1 in the scenario is necessary for that scenario
to satisfy the specification’s constraints. When a user
chooses to view another scenario, Aluminum ensures this
too is minimal. By browsing the initial set of scenarios,
the user can quickly obtain a sense of the scope of
scenarios engendered by the specification.

• Aluminum allows the user to augment a scenario with
a tuple. Here again Aluminum computes a minimal
scenario, which includes any other tuples that may nec-
essarily follow from the augmentation.

• For a given scenario and specification, Aluminum com-
putes the set of tuples consistent with that scenario—that
is, consistent with the specification— but not currently
realized. These suggest natural ways to augment the
scenario, and hence continue the exploration.

1We use tuple to represent an atomic truth (or falsity) instead of the standard
logical fact in order to avoid potential confusion with Alloy’s fact keyword.

abstract sig Subject {}
sig Student extends Subject {}
sig Professor extends Subject {}
sig Class {

TAs: set Student,
instructor: one Professor

}
sig Assignment {

forClass: one Class,
submittedBy: some Student

}
pred PolicyAllowsGrading(s: Subject,

a: Assignment) {
s in a.forClass.TAs or
s in a.forClass.instructor

}
pred WhoCanGradeAssignments() {

some s : Subject | some a: Assignment |
PolicyAllowsGrading[s, a]

}
run WhoCanGradeAssignments for 3

Fig. 1. A simple gradebook specification

These features, respectively, comprise the core operations of
Aluminum: GenerateMin, Augment, and ConsistentTuples.
The precise specifications of these operations, comprising
the basic semantics of Aluminum as a tool, are given in
Theorem 1.

Exploration with minimal scenarios results in a different
form of traversal of the space of scenarios than what Alloy
currently provides. Putting the user in control of exploration is
perhaps the chief merit of Aluminum’s approach (Section II).
We present the theory (Section III), and explain how we imple-
ment it atop Alloy (Section IV), including a brief discussion
on the impact of symmetry-breaking on minimality. We show
that users incur minimal performance penalty (Section V), and
finally (Section VI) examine the user experience that ensues
from the minimality-driven approach.

II. A WORKED EXAMPLE

Figure 1 provides the Alloy specification for a simple grade-
book. There are two kinds of users (called Subjects in the
specification): Student and Professor. A class has one Professor
and a set of Students designated as TAs. An assignment
is submitted by a set of students for a specific class. The
gradebook specifies a policy on who may grade assignments:
specifically, professors and TAs may grade assignments in
their associated classes.

A. Scenario Selection in Alloy vs. Aluminum

The specification’s run command asks for scenarios of who
can grade assignments. Both Alloy and Aluminum present
one scenario at a time; users may request another scenario
by clicking the Next button. Aluminum produces a three
initial scenarios in response, shown in Figure 2. In contrast,
Figure 3 shows the first three scenarios that Alloy produces
(out of over 10,000). The order in which each of Alloy

Fig. 2. Gradebook scenarios from Aluminum

Fig. 3. Gradebook scenarios from Alloy

and Aluminum produces scenarios is non-deterministic; the
scenarios in Figure 3 are representative of what we got in
several independent runs. (Space limits restrict the size of these
images, but their general shape will tell the story.)

Aluminum’s scenarios illustrate three conditions under
which one can grade an assignment: (1) the subject is a TA
and also the submitter of the assignment, (2) the subject is a
TA for the class but not the submitter of the assignment, (3)
the subject is a Professor for the class. Each of Alloy’s first
three scenarios illustrate the first condition, but with additional
elements that are not necessary to satisfy the specification
(such as two additional classes). Some of Alloy’s scenarios
(not shown) include additional tuples, such as a second student
submitter of some assignment. While these extra elements
and tuples can exist in a satisfying scenario, they are not
necessary. Aluminum, in contrast, weeds out all unnecessary
tuples, focusing instead on the essence of the scenario.

For the particular scenarios that Alloy generated on this
example, one might posit that minimality is about the domain
bounds used in the analysis: had we run the gradebook specifi-
cation with tighter bounds (1 Class, 1 Professor, 1 Assignment,
and 2 Students), Alloy would produce fewer and “tighter”
scenarios. Minimality is, however, about more than just setting
good domain bounds, for two reasons. First, the bounds only
control the number of elements, not the number of tuples;
even with tight bounds, non-minimal scenarios can contain
unnecessary tuples. Second, by setting bounds too tight, a
user can fail to learn about potentially dangerous scenarios
and gain inappropriate confidence in their specification. Thus,
finding good bounds is often a process of trial-and-error;
minimal scenarios eliminate unnecessary elements and tuples
automatically, without placing that burden on the user.

B. Partitioning the Scenario Space

Each of Aluminum and Alloy embodies a choice of which
scenarios to present. Since both tools build upon externally-
developed SAT-solvers, their choices are constrained to prin-
ciples that can be encoded in the propositional formulas on
which SAT-solvers operate. Within this constraint, Alloy at-
tempts to partition the scenario space into equivalence classes
based on isomorphism and presents one scenario per class (as
we discuss in more detail in Sections IV and V)—but chooses
the scenario indiscriminately. Aluminum instead organizes
scenarios into a partial order based on the tuples they contain
and presents the scenarios that are lowest in that ordering.

Figure 4 illustrates this fundamental difference between
Alloy and Aluminum. The black dots in (A) are scenarios
of a specification. The blobs group them into equivalence
classes. Part (B) shows how Alloy might present this space:
the red dots are representatives of each class; Alloy presents
one representative each, and the other members of the class
(hollow dots) are not presented. However, there is no ordering
to how these representatives are presented, as we have already
seen: a fairly complex scenario could precede a very simple
one. Part (C) shows what Aluminum does (we describe part
(D) in Section II-C.) It groups scenarios and picks minimal
representatives to show. The Next button shows only minimal
scenarios, but Aluminum’s augmentation command (described
in Section II-C) enables users to find scenarios (the gray dots)
with selected tuples added.

As part (C) suggests, augmentation might lead the user
to scenarios (the gray circles) that are isomorphic to ones
that have been seen previously. We believe showing these
scenarios is more sensible than refusing to show a user-

Fig. 4. How Aluminum and Alloy organize the space of scenarios. Each circle is a scenario, and blobs represent equivalence classes. Red circles are those
obtained using the Next button. Hollow circles are those never shown to the user. Arrows represent augmentation operations, and gray circles are scenarios
presented after exploration. (A) shows a set of scenarios grouped by isomorphism. (B) shows Alloy’s unordered presentation of representatives. (C) shows
Aluminum’s output, presenting minimal scenarios and augmentation. (D) shows a cone of scenarios.

constructed scenario just because symmetry-breaking in the
original generation procedure would have suppressed it. Nev-
ertheless, unreachable isomorphic scenarios are still excluded,
since the user cannot get to them through any operations; this
therefore shrinks the exploration space.

C. Exploration via Augmentation

Aluminum views minimal scenarios as a starting point for
understanding specifications, but not as sufficient. Alloy users
commonly sanity-check specifications with a simple query that
says “show me satisfying scenarios”. The following query does
this for the gradebook specification:

run {some Class} for 3

Aluminum produces only one minimal scenario for this query;
it contains a single Class and a single Professor who is the
instructor for that Class. This is a sufficient scenario because
the gradebook specification does not require Students, TAs,
or Assignments in a Class. Sanity-checking, however, requires
illustrating some of the optional components of a specification.
These optional components are not, however, independent: any
gradebook scenario that contains an Assignment, for example,
must also contain a Student who submitted the Assignment.
A systematic technique for exploring the space of scenarios
should help the user understand these dependencies.

Aluminum provides two operations that support systematic
exploration of the scenario space. Consistent Tuples suggests
avenues for exploration by producing a list of all additional
tuples that are consistent with the current scenario (and hence
can be added to the scenario). Augment adds a user-selected
tuple to the current scenario, producing a list of minimal
scenarios that include both everything in the current scenario
and the new tuple. Returning to our gradebook example, for the
scenario showing just a single Class and Professor, Aluminum
indicates that the following additions are consistent:

Student[NEW(Subject$0)]
Professor[NEW(Subject$0)]
Class[NEW(Class$0)]
Assignment[NEW(Assignment$0)]
Class.TAs[NEW(Class$0), NEW(Subject$0)]
Class.TAs[Class, NEW(Subject$0)]
Class.instructor[NEW(Class$0), NEW(Subject$0)]

Class.instructor[NEW(Class$0), Professor]
Assignment.forClass[NEW(Assignment$0), NEW(Class$0)]
Assignment.forClass[NEW(Assignment$0), Class]
Assignment.submittedBy[NEW(Assignment$0),

NEW(Subject$0)]

Each description string contains a relation name and, enclosed
in square brackets, a list of atoms. If an atom already exists
in the current scenario, it appears by the name given it in the
visualizer (e.g., Class or Professor). If the atom is not
present in the current scenario, its descriptor is NEW, along
with its internal name (Class$0, Subject$0, etc.).

Visually, it helps to imagine the cone of scenarios that
extend, and are consistent with, a given scenario. This is
shown in part (D) of Figure 4. Aluminum’s consistent tuple
computation shows all the tuples that can inhabit this cone,
thereby mapping out the cone’s landscape. These tuples may
not all, however, necessarily co-habit: a tuple appears in this
list if it exists in some satisfying scenario that extends the
current one, but the presence of some can exclude others, due
to specification constraints or domain size bounds.

Suppose a user augments the scenario with the following:

Assignment.forClass[NEW(Assignment$0), Class]

There is only one extended scenario, and it includes a Stu-
dent as well as an Assignment. Since Aluminum produces
only minimal scenarios (even under augmentation), this tells
the user that every addition to this model which adds an
Assignment requires adding a Student—a form of deductive
reasoning that Alloy does not provide. Asking Aluminum
for the consistent tuples for this new scenario suggests some
potentially interesting situations:

Class.TAs[Class, Student]
Assignment.submittedBy[Assignment, NEW(Subject$0)]
...

Specifically, (1) the Student who authored the Assignment
could also be a TA in the class, and (2) more than one Student
is allowed to submit the same Assignment. Each of these
may suggest additional queries to a user. (Aluminum also
implements a Backtrack button so users can undo augmentation
and continue exploration from a previous scenario.)

Aluminum’s combination of minimal scenarios and ex-
ploration helps users understand the implications of their
specifications in a lightweight manner. Alloy, in contrast,
does not offer an exploration mode (much less one based on
minimality). If a user wants to see classes with assignments,
she must create a new run command that adds the assignment
constraint. The resulting scenarios may include unnecessary
truths; determining the status of each is left to the user to sort
out, typically by continuing to refine the query. Furthermore,
each change is followed by a new execution, which may start
the user out from a completely different initial scenario. By
supporting interactive exploration, we feel that Aluminum (a)
reduces context switching, (b) reduces “exploration clutter”
in the specification, and (c) helps users stay with the same
example, which can be lost when executing afresh.

D. Tuple Provenance

Because of the semantics of Aluminum, when confronted
with a particular scenario, a user can understand the prove-
nance of each tuple in it: it is present because it is either
(a) part of a minimal scenario, or (b) chosen by a user for
augmentation, or (c) the consequence of a user augmentation.
While we have not modified Alloy to present this information
explicitly, this could easily become part of the user interface.

III. FOUNDATIONS

Models for first-order languages: A (relational) model
for a language L is a map I binding each relational variable
R of L to an actual set-theoretic relation I(R). If F is sentence
of L and I is an model making F true, we sometimes say that
“I satisfies F ” or “I witnesses F ”, and write I |= F . If T is
a set of first-order sentences we say that I is a model for T ,
or I satisfies, or witnesses, T if I satisfies each sentence of
T , and we write I |= T .

As Jackson notes [2], one can view Alloy’s specification
language as first-order logic or relational algebra. A tuple over
a model I is given by a n-ary relation R and a sequence
[a1, . . . , an] of elements of I such that [a1, . . . , an] is in I(R).

If I1 and I2 are models, we define I1 ≤ I2 to mean that
for each relation R, I1(R) ⊆ I2(R); we write I1 < I2 if for
at least one R the inclusion is strict. The cone of a model I
is {I ′ | I ≤ I ′}: intuitively, this is the set of extensions of I;
such an extension can add elements and tuples, but never lose
information. This relation is a partial order on the set Mod(T)
of models for any T ; we say that a model I is minimal for T
if (i) I |= T and (ii) there is no I ′ |= T with I ′ < I. If T
has any finite models then it has at least one minimal model;
in general, of course, T may have several minimal models.

We will often consider models “up to isomorphism”: models
I and I ′ are isomorphic if they can be made identical by
renaming of elements. We write I1 � I2 to mean that, for
some I ′1 and I ′2 isomorphic to I1 and I2 respectively, I ′1 ≤ I ′2.

Models for propositional languages: A (propositional)
model for a given set of atoms for propositional logic is a
function M from atoms to {0, 1}, (qua {false, true}).

If M1 and M2 are propositional models, we define
M1 ≤ M2 to mean that, for each propositional atom p,
M1(p) ≤ M2(p); write M1 < M2 if for at least one p,
M1(p) < M2(p). Analogously with relational models, the
relation ≤ is a partial order on the set of models for any
set B of propositional formulas and determines the obvious
notion of “cone” over a propositional model. A propositional
model M is minimal for a set B of propositional formulas if
it satisfies B and B has no satisfying model M′ <M.

Finite relational models can be encoded as propositional
models using standard techniques. Indeed, Alloy’s engine,
Kodkod [9], translates users’ relational specifications to the
propositional world, and the results back again for output.

Propositional encoding of specifications: Alloy converts
a “specification” into a constraint represented as a relational
algebra expression encoding the axioms and declarations of an
Alloy module together with the predicate for which we seek
a (relational) model. Kodkod translates such a constraint into
(following the language of [9]) a Kodkod problem, which is a
triple consisting of a universe of elements, a set of lower- and
upper-bounds for each relation symbol in the language, and a
relational formula.

Any Kodkod problem P gives rise to a formula B(P)
of propositional logic. So given an Alloy specification S,
we eventually arrive at a propositional logic formula B(PS).
Moreover – if we remove the secondary variables that Kodkod
introduces when translating to conjunctive normal-form –
Kodkod also gives us a one-to-one correspondence between
relational models of PS and propositional models of B(PS).
The orderings defined above for relational and propositional
models are preserved under this mapping.

Theorem 1 states our correctness claims about Aluminum.
Space limitations prevent us from including proofs, but they
follow naturally from the algorithms in Section IV.

Theorem 1.

1) (Completeness of Generation) Let S be an Alloy specifi-
cation. Procedure GenerateMin generates a complete set
of minimal models for S up to isomorphism. That is, for
any model I witnessing S, GenerateMin will produce
some minimal I0 such that I0 � I.

2) (Correctness of Augmentation) Let I be an model wit-
nessing specification S and let F be a tuple over I.
Procedure Augment either returns a model I ′ such that
(i) I � I ′, (ii) I ′ satisfies S and F , and (iii) is minimal
with respect to these properties, or detects failure if there
is no such model.

3) (Completeness of Exploration) Let I and I+ each
witness specification S, with I < I+. There is a finite
sequence of Augment steps leading from I to I+.

4) (Completeness of Consistency-Checking) Let I be
an model witnessing specification S. Procedure
ConsistentTuples returns the set of those tuples F such
that there is at least one model I ′ with I � I ′ with I ′
witnessing S and F .

Algorithm 2 (Minimize).
Input: a model M and formula P with M |= P
Output: M ′, a minimal model for P

repeat
M ′ ←M
M ← Reduce(M)

until M = M ′ // Cannot minimize any more

Algorithm 3 (Reduce).
Input: model M and formula B, with M |= B
Output: M ′ < M with M ′ |= B, if one exists; otherwise M
C ←

∧
{¬p | p is false in M}

D ←
∨
{¬p | p is true in M}

if there is a model N with N |= B ∧D ∧ C then
return N

else
return M // M is minimal

IV. IMPLEMENTATION

Aluminum modifies both the Alloy Analyzer’s user interface
and underlying constraint solver, Kodkod [9]. Aluminum’s
user interface is based on that of Alloy: the user submits an
Alloy specification, Kodkod translates the associated constraint
to a propositional formula, the SAT-solver is iterated to pro-
duce propositional models, and these are eventually translated
to scenarios by Kodkod and rendered by Alloy.

The differences between Alloy and Aluminum lie in the
nature of the iterator to produce the initial suite of scenarios,
and the facility for user-controlled exploration of the space of
scenarios. This section outlines the algorithms underlying the
functionality specific to Aluminum.

A. GenerateMin

The sequence of models produced by Aluminum as a result
of the initial execution of the specification is produced by pro-
cedure GenerateMin. Given a Kodkod problem P , Aluminum
initializes an iterator by invoking a SAT-solver (SAT4J [10],
in our implementation) to return a model M of P ; M and P
are then passed to the minimizer.

Minimization consists of repeated calls to Algorithm Re-
duce (Algorithm 3), until there is no change: see Algorithm 2.
Minimization is not a deterministic process, because a given
model can lie in the cone of several different minimal models
(as Figure 4 (C) and (D) show). This non-determinism man-
ifests itself in practice in Aluminum, because the output of
Reduce depends on choices made by the SAT-solver.

After each (minimal) model M is generated, we of course
want to ensure thatM is excluded from future generation. It is
straightforward to filter the output to ensure this, as Alloy does.
In our setting the problem is somewhat more subtle, since
the process of minimization will of course return identical
results from quite different models. But in fact this is an
opportunity for a significant optimization. After each output
modelM is computed, Aluminum adds to the current problem

Algorithm 4 (Consistent Tuples).
Input: model M and formula B, with M |= B
Output: the atoms false in M consistent with M and B
C ←

∧
{p | p is true in M}

D ←
∨
{p | p is false in M}

R← ∅
repeat

if there is a model N with N |= B ∧D ∧ C then
F ← {p | N(p) = 1 and M(p) = 0}
R← R ∪ F
D ← D − F

until no change in R
return R

the disjunction of the negations of the atoms true in M. This
ensures that no subsequent model from the SAT-solver will be
in the cone ofM. This is a sound pruning of the model space,
since M represents each model in its cone.

Suppressing Isomorphic Models. We have seen how to
suppress the generation of identical models, but eliminating
isomorphic models is much harder. Kodkod tries to avoid
generating isomorphs by adding “symmetry-breaking” for-
mulas [11], [12] to the input. This is necessarily heuristic,
since no polynomial-time algorithm is known for detecting
isomorphisms of relational models.

Unfortunately, symmetry-breaking does not interact well
with minimization. For intuition, consider part (C) of Figure 4,
in which two non-isomorphic models each lie in the cone of
the rightmost minimal model in the equivalence class with
three entries. When these models are minimized they may
return the same minimal representative, depending on choices
made by the SAT-solver.

It is even the case that if Aluminum were to use the same
mechanism as Kodkod for symmetry-breaking it could incor-
rectly conclude that a non-minimal model is minimal. Alu-
minum thus uses a slightly different heuristic for symmetry-
breaking. Space considerations preclude a detailed discussion
of the issue here, but one consequence is that Alloy sometimes
eliminates more isomorphic models than Aluminum.

B. Augment

A key observation is that augmenting a model of a speci-
fication by a tuple is merely an instance of the core problem
of minimal-model generation: the result of augmentation is
precisely an iterator over minimal models of the specification
given by the original specification, along with the tuples of
the given model plus the new tuple.

One detail is important for performance. Letting B be the
conjunctive normal form of the original specification and Ap

the Boolean variable representing the augmenting tuple A, the
input for model-generation is B ∪ {p | M(p) = 1} ∪ {Ap}.
The point here is that since the augmentation is performed
entirely at the propositional level, Aluminum avoids the cost
of re-translating from relational to propositional logic.

C. ConsistentTuples

To aid the user in deciding how to explore the space
of scenarios by augmentation, Aluminum can determine in
advance which new tuples can be consistently added to a given
scenario in the context of a given specification. If M is a model
of B, we say that atom d is consistent with M and B if there is
a model of B and d extending M . Aluminum’s procedure for
computing consistent tuples (modulo translation to and from
the propositional level) is given in Algorithm 4.

If two unused atoms occur in the same position in otherwise
identical consistent tuples, Aluminum presents only one such.
For instance, suppose that following two augmentations are
consistent:

Student[NEW(Subject$0)]
Student[NEW(Subject$1)]

That is, there are two unused Subject atoms, and either of
them may be instantiated into Student. In this case, Aluminum
will only present the first. Since minimal models often have
many unused atoms, this filtering can substantially reduce the
number of consistent tuples shown.

V. NUMERIC EVALUATION

We now compare Aluminum to Alloy numerically. We first
study how the resulting scenarios compare mathematically to
those produced by Alloy, and then explore how long it takes
to compute these minimal scenarios.

We conduct our experiments over the following specifica-
tions, with a short name that we use to refer to them in the
rest of the paper. (In the tables, where a file contains more
than one command, we list in parentheses the ordinal of the
command used in our experiments.) The following specifica-
tions are taken from the Alloy distribution: Addressbook 3a
(Addr), Birthday (Bday), Filesystem (File), Genealogy (Gene),
Grandpa (Gpa), Hanoi (Hanoi), Iolus (Iolus), Javatypes (Java),
and Stable Mutex Ring (Mutex). In addition, we use three
independent specifications: (1) Gradebook (Grade), which is
defined in Figure 1, and enhanced with two more commands:

run WhoCanGradeAssignments for 3 but
1 Assignment, 1 Class, 1 Professor, 3 Student

and

run {some Class} for 3

(2) Continue (Cont), the specification of a conference paper
manager, from our prior work. (3) The authentication protocol
of Akhawe, et al.’s work [6] (Auth), a large effort that tries to
faithfully model a significant portion of the Web stack.

A. Scenario Comparison

We consider a set of satisfiable specifications for which we
can tractably enumerate all scenarios. This lets us perform
an exhaustive comparison of the scenarios generated by Alloy
and Aluminum. The results are shown in Figure 5.

The first (data) column shows how many scenarios Alloy
generates in all. This number represents one more than the
number of times the user can press the Next button. Because

the Alloy user interface suppresses some duplicate scenarios,
this is a smaller number than the number of scenarios produced
by Kodkod; we present this smaller number. The second
column shows the corresponding number of minimal scenarios
presented by Aluminum (the red dots in Figure 4 (C)).

The third column shows how many scenarios it takes before
Alloy has presented at least one scenario in the cone of every
minimal model from Aluminum. Because a given scenario
can be in the cone of more than one minimal scenario, the
number of scenarios needed for cone coverage may in fact
be fewer than the number of minimal models. An important
subtlety is that an Alloy scenario may not fall in a new cone,
but may be isomorphic to one that does (i.e., Alloy may
have produced a hollow circle in Figure 4). We use Kodkod’s
symmetry-breaking algorithm to try to identify such situations
and “credit” Alloy accordingly.

The fourth column shifts focus to minimal scenarios. If
a user is interested in only minimal scenarios, how many
scenarios must they examine before they have encountered all
the minimal ones (up to isomorphism-detection)? This column
lists the earliest scenario (as an ordinal in Alloy’s output,
starting at 1) when Alloy achieves this.

This number does not, however, give a sense of the dis-
tribution of the minimal scenarios. Perhaps almost all are
bunched near the beginning, with only one extreme outlier.
To address this, we sum the ordinals of the scenarios that are
minimal. That is, suppose Aluminum produces two minimal
models. If the second and fifth of Alloy’s models are their
equivalents, then we would report a result of 2 + 5 = 7.
The fifth and sixth columns present this information for Alloy
and Aluminum, respectively. The sixth column is technically
redundant, because its value must necessarily be 1 + . . . + n
where n is the number of Aluminum models; we present it
only to ease comparison.

To ensure understanding, let us examine two rows in detail:
Addr: Aluminum finds two minimal models. The very first

Alloy model is in both their cones, so the cone coverage value
is lower than the number of minimal models. Such a model
clearly cannot itself be minimal; indeed, since the minimal
scenario coverage requires 5 models and the Alloy ordinal sum
is 8, the 3rd and 5th Alloy models must have been (equivalent
to) Aluminum’s minimal ones.

Grade (3): Aluminum finds just one minimal model. Thus,
any model found by Alloy (including the first one) must be
in its cone, so the cone coverage value is 1. However, it takes
Alloy another 104 models before the minimal one is found.

We can now see Aluminum’s impact on covering the space
of scenarios. Even on small examples such as Grade (2), there
is a noticeable benefit from Aluminum’s more refined strategy.
This impact grows enormously on larger models such as Java
and Grade (1). We repeatedly see a pattern where Alloy gets
“stuck” exploring a strict subset of cones, producing numerous
models that fail to push the user to a truly distinct space of
scenarios. Even on not very large specifications (recall that
Grade is presented in this paper in its entirety), it often takes
hundreds of Nexts before Alloy will present a scenario from

Spec. Models Models Cone Min. Scenario Ordinal Sum Ordinal Sum
(Alloy) (Aluminum) Coverage Coverage (Alloy) (Aluminum)

Addr 2,647 2 1 5 8 3
Bday (2) 27 1 1 3 3 1
Bday (3) 11 1 1 1 1 1
Gene 64 64 64 64 2,080 2,080
Gpa 2 2 2 2 3 3
Grade (1) 10,837 3 289 10,801 11,304 6
Grade (2) 49 3 2 12 33 6
Grade (3) 3,964 1 1 105 105 1
Hanoi (1) 1 1 1 1 1 1
Hanoi (2) 1 1 1 1 1 1
Java 1,566 3 374 1,558 4,573 6

Fig. 5. Alloy’s coverage of minimal models and their cones.

Spec. Aluminum Alloy d
Avg σ Avg σ

Bday (1) 9 8 5 3 1.57
Cont (6) 1 <1 1 <1 -0.37
Cont (8) 5 6 3 <1 5.88
File (2) 5 5 6 4 -0.28
Iolus 5,795 239 5,000 177 4.49
Mutex (3) 18,767 52 8,781 60 165.91

Fig. 6. Relative times (ms) to render an unsatisfiable result.

a cone it has not shown earlier. The real danger here is that
the user will have stopped exploring long before then, and
will therefore fail to observe an important and potentially
dangerous configuration. In contrast, Aluminum presents these
at the very beginning, helping the user quickly get to the
essence of the scenario space.

The Gene specification presents an interesting outlier. The
specification is so tightly constrained that Alloy can produce
nothing but minimal models! Indeed (and equivalently), it is
impossible to augment any of these models with additional
tuples, as we will see in Figure 8.

One important caveat is that these experiments were con-
ducted with one particular SAT-solver, using Alloy’s default
parameters. Different SAT-solvers and parameters will likely
have different outcomes, and studying this variation is a
worthwhile task. Nevertheless, the above numbers accurately
represent the experience of a user employing Alloy (version
4.2) in a state of nature.

B. Scenario Generation

Having examined the effectiveness of Aluminum, we now
evaluate its running time (the space difference is negligible).
All experiments were run on an OS X 10.7.4 / 2.26GHz
Core 2 Duo / 4Gb RAM machine, using SAT4J version
2.3.2.v20120709. We handled outliers using one-sided
Winsorization [13] at the 90% level. The times we report are
obtained from Kodkod, which provides wall-clock times in
milliseconds (ms). All experiments were run with symmetry-
breaking turned on. Numbers are presented with rounding, but
statistical computations use actual data, so that values in those
columns do not follow precisely from the other data shown.

Spec. Aluminum Alloy d
Avg σ N Avg σ N

Addr 13 12 2 8 6 0.89
Auth 800 32 110 36 19.35
Bday (2) 9 9 1 5 6 0.59
Bday (3) 8 6 1 7 6 0.17
Cont (3) 4 2 3 1 <1 9 4.86
File (1) 16 13 7 4 2.39
Gene 10 5 6 5 0.85
Gpa 9 4 2 6 5 2 0.62
Grade (1) 6 6 3 3 3 1.10
Grade (2) 3 4 3 3 4 0.01
Grade (3) 8 6 1 4 4 0.96
Java 5 4 3 2 2 1.11
Hanoi (1) 2,509 11 1 1,274 1,239 1 1.00
Hanoi (2) 14 3 1 10 2 1 2.14

Fig. 7. Relative times (ms) per scenario (minimal, in Aluminum).

Every process described below was run thirty (30) times to
obtain stable measurements.

To measure effect strength, we use Cohen’s d [13]. Con-
cretely, we subtract Alloy’s mean from that of Aluminum, and
divide by the standard deviation for Alloy. We use Alloy’s in
the denominator because that system is our baseline.

Because Aluminum slightly modifies Kodkod to better sup-
port symmetry-breaking, we begin by measuring the time to
translate specifications into SAT problems. Across all these
specifications, Aluminum’s translation time falls between 81%
and 113% that of Alloy, i.e., our modification has no effective
impact. The absolute translation times range from 5ms (for
Gradebook) to 55,945ms (for Auth). (We use commas as
separators and our decimal mark is a point. Thus 55,945ms =
55.945s = almost 56 seconds.)

Though our focus is on the overhead of minimization, in
the interests of thoroughness we also examine unsatisfiable
queries. Figure 6 shows how long each tool spends in SAT-
solving (ignoring translation into SAT, and then presentation)
to report that there are no scenarios. The d values show
that in some cases, the time to determine unsatisfiability is
much worse in Aluminum. (It is very important for the reader
to remember that the d value is measuring the effect size,
not the ratio of average times! Thus, a d of almost 166

still results in only a 2.1x increase in time.) The effect is
because of the way Aluminum and Alloy handle symmetry-
breaking: Aluminum splits the formula produced by Kodkod
into two parts, one representing the specification and query and
the other capturing symmetry-breaking, whereas Alloy keeps
the formulas conjoined. The conjoined formula offers greater
opportunities for optimization, which the SAT-solver exploits.
Nevertheless, we note that even in some of the large effects,
the absolute time difference is relatively small.

For satisfiable queries, we calculate the time to compute
the first ten scenarios (equivalent to clicking Next nine times),
which we feel is a representative upper-bound on user behav-
ior. When the tool could not find ten scenarios, the N column
shows how many were found (and the average is computed
against this N instead).

When queries are satisfiable, Aluminum’s performs well
compared to Alloy. First, the overall running time is small
for both tools, so even large effect sizes have small wall-
clock impact. Indeed, in the most extreme case, Aluminum
takes only about 1.2 seconds longer, for a total time of 2.5
seconds—surely no user can read and understand a scenario in
less time than that, so Aluminum could easily pre-compute the
next scenario. Second, in many cases Aluminum offers many
fewer scenarios than Alloy, helping users much more quickly
understand the space of models. Finally, the time taken by
Kodkod to create the SAT problem can be vastly greater than
that to actually solve it, which suggests that a more expensive
SAT-solving step will have virtually no perceptible negative
impact on the user experience.

We observe two outliers in the data. First, the time for mini-
mization for Auth is very significant. For this specification, we
found that the number of extraneous tuples eliminated during
minimization is 78 on average. This shows a direct trade-off:
0.7 seconds in computing time for a possibly great impact on
user comprehension. Second, the standard deviation for Alloy
on Hanoi (1) looks enormous relative to the mean. This is
because Kodkod is producing a second duplicate model (which
in fact is discarded by the Alloy user interface) very quickly.
This results in datapoints that take a long time for the first
solution but close to zero for the second.

We also examine the time taken by Aluminum’s exploration
features: how long it takes to compute the consistent tuples,
and how long it takes to augment a scenario. Since the
complete space of models is enormous, we restrict attention
to the first set of scenarios produced by Aluminum (i.e., the
red circles in the bottom row of Figure 4 (C)).

Figure 8 shows the consistent tuples times. We compute up
to ten scenarios (five, in the case of Auth) and for each of these
we determine the number of consistent tuples. The first column
indicates the number of consistent tuples found, averaged over
the number of minimal scenarios (i.e., consistent tuples per
model). The zero-values are not errors: they arise because the
specifications are sufficiently constrained that there is no room
for augmentation beyond the initial scenarios. The next two
columns show how long it took to compute the number of
consistent tuples. These numbers are clearly very modest. Auth

Spec. # Cons. Cons. Tup. Time Aug.
Tupls Avg σ Time

Addr 57 45 25 4
Auth 1,335 106,456 17,268 194
Bday (2) 20 19 24 6
Bday (3) 8 9 10 2
Cont (3) 2 5 <1 3
File (1) 24 29 16 3
Gene 0 2 <1 N/A
Gpa 0 1 <1 N/A
Grade (1) 25 13 10 1
Grade (2) 6 2 1 1
Grade (3) 36 14 7 1
Java 25 17 11 2
Hanoi (1) 0 4 <1 N/A
Hanoi (2) 0 1 1 N/A

Fig. 8. Times (ms) to compute consistent tuples and to augment scenarios.

is the exception: it produces models with, on average, over
1,300 consistent tuples, more than can be explored by hand.
Implementing strategies for helping the user in such situations
is an interesting topic for future work.

The last column shows how long, on average, it takes to aug-
ment a scenario with a consistent tuple (backtracking between
each augmentation). The “N/A”s correspond to specifications
that have no more consistent tuples, and hence cannot be
augmented. This too takes very little time.

VI. QUALITATIVE IMPRESSIONS

We have run Aluminum on many representative uses of
Alloy beyond those reported in Section V. Here, we report
on qualitative impressions. Instead of dwelling on successes,
we focus on those aspects of Aluminum that are interesting,
potentially controversial, and certainly deserving of future
work (such as rigorous user studies).

Verification versus Realization: There is an (informal)
distinction between two modes of exploring a specification:
verification, where the user has a property to check (and whose
failure yields a counter-example), versus realization, in which
a user wants to see which scenarios are compatible with a
specification. Minimality and orderly growth appear especially
useful for the former (where the pithiest counterexample is
often the most useful) but perhaps less so for the latter, since
the scenarios presented are less likely to surprise the user.
Adding some of the other features discussed below would
ameliorate this weakness.

Negative Information: Aluminum’s consistent tuple enu-
meration does not list what cannot become true. This negative
information can be vital in comprehending scenarios, and
should ideally be incorporated into the exploration process.

Random Exploration: Using exploration, an Aluminum
user can eventually reach any scenario that Alloy would
have generated (Theorem 1). But our experience suggests
that there is an important benefit to Alloy’s more random
generation of scenarios: richer scenarios raise situations that a
user didn’t think to ask about, and can thus be insightful and
thought-provoking. Perhaps Aluminum could add a Surprise

Me! button that presents a random, non-minimal model to
encourage adventitious discovery (or Alloy could be enhanced
with Aluminum’s minimization and exploration facilities).

Transition Systems and Framing Conditions: Framing
conditions describe what should not change between states
of a system. We found Aluminum good at highlighting some
missing frame conditions. For instance, in an address book (as
in [2, chapter 2]), if the add predicate fails to mention that all
existing entries must be retained, the book will contain only
the entry just added. Thus, two consecutive add operations
will starkly illustrate the absence of a frame condition. This
absence may be masked by the non-minimal models of Alloy.

However, frame conditions express not only “lower
bounds”—what must remain—but also “upper bounds”: what
must not be added. In the absence of upper-bounds, a scenario-
finder is free to add extra domain elements or relational tuples.
Alloy will frequently present just such models, alerting the
user to the lack of appropriate framing. In contrast, Aluminum
is guaranteed to excise such superfluity! These superfluous
entries are actually still present in the consistent tuples, but
we believe it is too difficult for users to find them there.

VII. RELATED WORK

Logic programming languages produce single, least, models
as a consequence of their semantics. Because user specifica-
tions are not limited to the Horn-clause fragment, Aluminum
can offer no such guarantee. The more general notion of
minimal model in this paper has already been used in spec-
ifying the semantics of disjunctive logic programming [14]
and of database updates [15] and in non-monotonic reasoning,
especially circumscription [16].

The development of algorithms for the generation of re-
lational models is an active area of research. The two most
prominent methods are “MACE-style” [17], which reduce the
problem to be solved into propositional logic and employ a
SAT-solver, and “SEM-style” [18], which work directly in
first-order logic. The goals of these works are mostly orthog-
onal to ours, since their concern is usually not the exploration
of the space of all models of a theory. Generation of minimal
models specifically usually relies on dedicated techniques,
often based on tableaux (e.g., [19]) or hyperresolution (e.g.,
[20]). Since we are more concerned with exploration as an
enhancement of established software design methodology,
we made a choice to work with the SAT-solver technology
bundled with a tool (Alloy) designed for presenting models.

Koshimura et al. [21] uses minimality of propositional
models to optimally solve job-scheduling problems. Our min-
imization algorithm is essentially identical to theirs. However,
their algorithms do not make use of symmetry-breaking, nor
do they address augmentation or consistent-tuple generation.

Janota [22] offers an algorithm to compute all minimal
models of a formula once one is computed, and shows how
to compute a minimal model by modifying a SAT-solver
satisfying a certain technical property. Our technique works
with unmodified solvers; it would still be interesting to com-
pare the performance of Janota’s method with ours. Another

instance of changing the solver would be to use a specialized
solver like Max-SAT. We opted to use an ordinary SAT-solver
(SAT4J.CORE) because using Max-SAT would have involved
significant changes that might have introduced confounding
factors that would complicate a side-by-side evaluation.

The goals of the Cryptographic Protocol Shapes Ana-
lyzer [5] are closely aligned with ours. In analyzing protocols,
it too generates minimal models. However, its application
domain and especially algorithms are quite different from ours.

ACKNOWLEDGMENTS

We are grateful to Joshua Guttman, Daniel Jackson, and
Emina Torlak for valuable discussions about this work. Joe
Beck and Janice Gobert gave us guidance on data presentation.
This work was partially supported by the NSF.

REFERENCES

[1] T. Nelson, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “Toward
a more complete Alloy,” in International Conference on Abstract State
Machines, Alloy, B, and Z, 2012.

[2] D. Jackson, Software Abstractions, 2nd ed. MIT Press, 2012.
[3] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,

“The Margrave Tool for Firewall Analysis,” in USENIX Large Installa-
tion System Administration Conference, 2010.

[4] K. Fisler, S. Krishnamurthi, L. Meyerovich, and M. Tschantz, “Ver-
ification and change impact analysis of access-control policies,” in
International Conference on Software Engineering, 2005.

[5] S. F. Doghmi, J. D. Guttman, and F. J. Thayer, “Searching for shapes in
cryptographic protocols,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2007.

[6] D. Akhawe, A. Barth, P. Lam, J. Mitchell, and D. Song, “Towards
a formal foundation of web security,” in IEEE Computer Security
Foundations Symposium, 2010.

[7] R. Becker, S. Eick, and A. Wilks, “Visualizing network data,” IEEE
Transactions on Visualization and Computer Graphics, 1995.

[8] T. Tran, E. Al-Shaer, and R. Boutaba, “PolicyVis: firewall security policy
visualization and inspection,” in USENIX Large Installation System
Administration Conference, 2007.

[9] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in Tools
and Algorithms for the Construction and Analysis of Systems, 2007.

[10] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2,” Journal on
Satisfiability, Boolean Modeling and Computation, 2010.

[11] I. Shlyakhter, “Generating effective symmetry-breaking predicates for
search problems,” Discrete Applied Mathematics, 2007.

[12] J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy, “Symmetry-
breaking predicates for search problems,” in Principles of Knowledge
Representation and Reasoning, 1996.

[13] R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing.
Academic Press, 2012.

[14] J. Lobo, J. Minker, and A. Rajasekar, Foundations of Disjunctive Logic
Programming. The MIT Press, 1992.

[15] R. Fagin, J. Ullman, and M. Vardi, “On the semantics of updates in
databases,” in Symposium on Principles of Database Systems, 1983.

[16] A. Robinson, Handbook of Automated Reasoning. Elsevier, 2001, vol. 2.
[17] W. McCune, “MACE 2.0 reference manual and guide,” CoRR, 2001,

cs.LO/0106042.
[18] J. Zhang and H. Zhang, “SEM: a system for enumerating models,” in

International Joint Conference On Artificial Intelligence, 1995.
[19] I. Niemelä, “A tableau calculus for minimal model reasoning,” in

Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, 1996.

[20] F. Bry and A. Yahya, “Positive unit hyperresolution tableaux and
their application to minimal model generation,” Journal of Automated
Reasoning, 2000.

[21] M. Koshimura, H. Nabeshima, H. Fujita, and R. Hasegawa, “Minimal
model generation with respect to an atom set,” in International Workshop
on First-Order Theorem Proving, 2009.

[22] M. Janota, “SAT solving in interactive configuration,” Ph.D. dissertation,
University College Dublin, November 2010.

