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Abstract

The XML data is order-sensitive. The order problem,
that is how ordered XML documents and order-sensitive
queries over it can be efficiently supported when mapped
into the unordered relational data model, has not yet been
adequately addressed. In this paper, we present a gen-
eral approach for supporting order-sensitive XQuery-to-
SQL translation that works irrespective of the chosen XML-
to-relational data mapping and the selected order-encoding
method. Our approach, called XSOT, utilizes an order-
aware XML algebra representation. We propose order-
sensitive rewriting rules at the algebraic level to eliminate
the dependency of the order determining operators on the
implicit XML view order. Furthermore, we introduce series
of order-sensitive optimization steps to transform the XML
algebra tree for the purpose of efficient SQL translation.
Lastly, we utilize a template-based approach using SQL-99
order features to generate SQL statements.

1 Introduction

Recent XML management systems [4, 8, 20] bridge re-
lational databases and XML applications by creating XML
views that wrap the relational base. Such system then an-
swer queries against the view by translating them into SQL
queries. However, while it is well known that XML [3] is
an ordered data model and XQuery [16] is an order-sensitive
query language, aspects related to order have been ignored
in most of XQuery-to-SQL solutions [4, 8].

According to [11], the XQuery-to-SQL query translation
problem can be broadly classified into two scenarios:XML
Publishingand XML Storage. The XML publishing sce-
nario studies the translation of queries over the XML views
wrapping anexisting relational database. Since the rela-
tional data model is not order sensitive, any XML result
view generated over an (un-ordered) relational database is
by default not ordered. Ordered XQuery expressions over

such unordered XML views are meaningless. Hence, the or-
der issue has been and for practical purposes can be safely
ignored in this scenario.

On the other hand, the XML storage scenario focuses on
storing and queryingexisting XML data. This involves three
steps. First, a storage structure needs to be designed to load
and maintain the XML data. Typically a relational database
is used for this purpose. Second, a virtual XML viewidenti-
cal to the original XML document is extracted from the re-
lational database. Third, queries against this wrapper view
are translated into SQL statements to be executed against
the relational database. When order is to be considered, the
original XML document order must first beexplicitly cap-
tured in the relational store along with the other document
information. Then it can be extracted asimplicit order into
the XML view. This “round-trip” would guarantee that the
extracted XML view has an associated document order like
any other (regular) XML document. Thereafter an order-
sensitive user query can expect to not only get ordered query
result from such views, but also to be able to specify order
oriented predicates to select the desired portion of the view.
To answer such order-sensitive user queries, the XQuery-to-
SQL translation needs to consider order in the query evalu-
ation and optimization time.

Motivation. Different loading strategies might be re-
quired to store the XML data into the relational database
based on application requirements [9]. For example, it has
been shown that an inlining loading strategies is preferred
when the XML schema is available, while an edge loading
might be chosen when the XML schema is not available.
Different order encodings have also been found to be useful
for different update and query workloads [15]. The exper-
imental study [15] shows that the performances of ordered
XML queries and updates varies with the particular order
encoding methods (e.g., global vs. local) and the loading
strategies (e.g., inline vs. edge) used to build up the rela-
tional database from the XML model.

In fact it is possible to use a hybrid of multiple loading
and order encoding strategies to load one XML document



and schema into the relational database, especially for the
purpose of speeding up certain heavily used user queries
and updates. For example, in a music database applica-
tion, most users will query their favorite band’s informa-
tion, while the administrator may frequently insert or delete
the songs of all bands. One good design may be to or-
der the bands by global order to facilitate fast retrieval, but
encode their songs using Dewey order to optimize perfor-
mance for this heavy update workload [15]. Moreover, the
situation may arise when we want to integrate information
from two different XML documents, where one may have
been loaded using inline loading with Dewey order encod-
ing versus the second document had been loaded using a
different encoding and strategy.

It is obvious that hard-coding XQuery processing engine
for one fixed order-encoding and loading combination is not
practical. Developing an array of many different mapping
and encoding specific query optimization and translation al-
gorithms as done in [15] is not practical or manageable.
There is clearly a need to develop onegeneralXQuery-
to-SQL translation approach handling any existing flexible
encoding and loading strategies as well as possible future
ones. This is exactly the focus of our work.

Utilizing both XQuery and relational technologies in
harmony within the context of order handling can be a
difficult task for two reasons. One, besides the document
order, the user XQuery may impose new order on the XML
query result through explicitOrderBy clauses as well as
through the structure of thenestedFLOWR expressions of
the user query. The query result reflects in an interrelated
manner both the implicitXML document orderand the
order explicitly imposed by theXQuery expression [16].
Both order aspects have to be taken care of in the XQuery-
to-SQL translation. Two, recent XML-relational systems
[4, 8] push as much as possible of the query execution into
the SQL engine, while leaving only construction operations
(Taggers) for extraction to the middle-ware system. When
we consider order in SQL translation, the question arises
whether we indeed want to push all order operations down
into the relational engine. Due to the fact that the nested
SQL syntax destroys the order, translating as much as
possible computation into SQL might force the engine
to perform extra explicit sorting. As we will show, such
redundant sorting may cause the generated SQL statement
to become highly inefficient.

XSOT Approach. The XQuery-to-SQL Order-sensitive
Translation (XSOT) approach presented in this paper is the
first general order-handling approach that tackles the above
challenges. Building inside of the theRainbowXML Query
Engine [20], XSOT uses an XML algebra tree (XAT) as in-
ternal representation of both the view and user queries as
well as their composition. A series of order-aware algebra

equivalence rules, classified asorder explicitrules andSQL-
oriented XAT rewriterules, are used to optimize the com-
posed XAT for subsequent efficient SQL generation. An
SQL translation algorithm then converts the optimized XAT
into SQL statements (to be evaluated by the underlying re-
lational engine) and construction operators (to be executed
by theRainbowXQuery engine). We have conducted sev-
eral experiments to verify the feasibility and generality of
our XSOT approach.

Our XSOT approach isgeneralin the sense that the SQL
translation techniques are independent of the loading and
encoding strategies used to build the relational database.
The reason of this independence is that theview queryand
theorder-code comparison functions“encapsulate” both the
order-encoding and the data loading diversity. Our XSOT
framework is thus able to re-apply the techniques from the
XML publishing scenario in this XML storage scenario, in
particular query composition and optimization. It isefficient
since most computation intensive operations (such asOr-
derBy) can be pushed down to the relational engine, while
only a few operators, which can be evaluated efficiently, re-
main for the XQuery native engine.
Contributions. (1) We propose a general framework
for XQuery-to-SQL order-sensitive translation (XSOT) ap-
proach. (2) We extend the XML algebra tree (XAT) in
[20] to support the order-sensitive XQuery semantics. (3)
We present SQL-oriented order-sensitive XAT optimization
techniques. (4) We propose efficient order SQL statements
generation and optimization techniques. (5) We have im-
plemented our XSOT approach using the Rainbow XQuery
Engine [20]. (6) Experiments are shown to verify the gener-
ality and to assess the SQL translation performance in dif-
ferent order-encoding and XML loading scenarios.
Outline. Section 2 introduces our XSOT system frame-
work and necessary background in particular the XQuery
algebra representation. Order preserving loading strategies
and order sensitive XQuery examples are described in Sec-
tion 3. Section 4 discusses the optimization techniques for
order-sensitive SQL translation. The translation algorithm
is presented in Section 5. Section 6 provides experimental
studies. Section 7 reviews the related work while Section 8
provides the conclusions.

2 The XSOT Framework

As shown in Fig. 1, the architecture of XSOT in-
cludes two core subsystems, namely an order-preserving
XML Mapping Managerand an order-sensitiveXQuery En-
gine. First, the order-preserving XMLMapping Manager
maps the original XML documents with their corresponding
schemas when available (e.g., Fig. 2) into the relational stor-
age. We embed the XML document order encoding tech-
niques [15] into the loading strategies [6] and lossless-ly



load XML document into the relational back-end. Lossless-
ly loading means that the identical XML document can be
extracted back out. Fig. 3(a) shows the result for the local-
order inline loading.

Second, the Rainbow XQuery engine is extended to sup-
port order-sensitive XQuery-to-SQL translation. A virtual
default XML viewextracted from the relational tables is au-
tomatically computed by the system. This default view cor-
responds to a one-to-one mapping between the hierarchical
XML model and the flat relational data model. The database
administrator then writes aview queryover the default XML
view. The view can be ordered appropriately based on the
explicitly captured XML document order. Fig. 3(b) depicts
the view query expressed in the XQuery language. It is used
to reconstruct a view identical to the original XML doc-
ument (Fig. 2) from the inlined relational database. The
order code comparisonfunction defined by the database
administrator is used to compare two order codes. It thus
hides the diversity between different order-encoding strate-
gies from users.
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Figure 1. The Architecture of XSOT
<xs:schema xmlns:xsd="http://www.w3.org/XMLSchema">
<xs:element name="RECORDLIST">
<xs:complexType>
<xs:element name="PLAY" 

minoccurs="1" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="BAND" type="xs:string"/>
<xs:element name="SONG" type="xs:string" 

minoccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:complexType>

</xs:element>
</xs:schema>

<RECORDLIST>
<PLAY>

<BAND> Misfits </BAND>
<SONG> She </SONG>

</PLAY>
<PLAY>

<BAND> Back Street Boy </BAND>
<SONG> Bullet </SONG>
<SONG> We Are 138 </SONG>

</PLAY>
<PLAY>

<BAND> Project X </BAND>
<SONG> SXE Revenge </SONG>
<SONG> Shutdown </SONG>

</PLAY>
</RECORDLIST>

(a)  record.xsd (b) record.xml

Figure 2. XML Schema and Document

To access the data, a user formulates auser queryover
the XML view. The RainbowXAT generatorrepresents
both the view query and the user query asXML Algebra
Trees(XAT), namedview XATanduser XATrespectively.
Particularly, order specific operators, such as theOrderBy
operator and thePosition function operator, are utilized to

represent the order operations.View Composerthen com-
bines the two XATs into onecomposed XATby replacing
all leaf nodes of the user XAT with the view XAT [4, 21].

TheXAT Optimizeroptimizes this composed XAT with
order in consideration. This includes a querydecorrelation
step to replace the costly nestingFOR operator [18, 19] and
several optimization rules. We focus in particular on the
addition of the order rewrite rules as described in Section 4.

Theoptimized XATcan be conceptually divided into the
top XML construction portion and the bottom computation
portion. TheSQL generatortranslates the bottom portion
into SQL using the order-based SQL template using the al-
gorithms shown in Section 5. The generated order-sensitive
SQL queries are sent to the relational engine. TheXML
generatortakes the SQL query result and publishes it as the
final XML query result to the application user.

3 Order-sensitive XML Algebra Tree

Rainbow XML Algebra Tree. Given that to date no
standard XML algebra for query processing purposes has
emerged, we will work here with the XML algebra named
XAT [22] to represent the XQuery expression in the Rain-
bow query engine [20]. Fig. 5 depicts the correlated XAT
representation for the view query (Fig. 3(b)).

The intermediate data model for the XAT algebra is a
table model namedXAT table. An XAT table R is an order-
sensitive table of tuplestj (e.g.,tj ∈ R), where the column
names represent either a variable binding from the user or
view XQuery, e.g.,$record from Figure 4, or an internally
generated variable name, e.g.,$col1. Each cellcij in a tuple
can store an XML node or a sequence of nodes.

Typically, an XAT operator takes as input one or more
XAT tables and produces an XAT table as output. In gen-
eral, an XAT operator is denoted asopout

in (s), whereop is
the operator symbol,in represents the input parameters,out
the newly produced output column ands the input source(s)
for that operator. The XAT operators are classified into two
general categories:XML operatorsandXAT SQL operators.
Here we restrict our discussion to the core subset of the XAT
algebra operators [22].

XAT SQL operators correspond to the relational com-
plete subset of the XAT algebra. They includeSelect
σc(R), CartesianProduct×(R, P ), ThetaJoin 1c

(R, P ), LeftOuterJoin
◦
1Lc(R, P ), Distinct δ(R),

GroupBy γcol[1..n](R, func) andOrderBy τcol[1..n](R),
whereR andP denote XAT tables. Those operators are
equivalent to their relational counterparts, with the addi-
tional requirements that the order among the tuples in the
input XAT table(s) is reflected in the order among the tu-
ples in the output XAT table. For example, in the output
XAT table ofSelect, the relative order between each pair
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<RECORDLIST>
FOR $play IN

document("temp/dxv.xml")/PLAY/ROW
ORDER BY $play/POSITION/text()
RETURN
<PLAY>
FOR $song IN

document("temp/dxv.xml")/SONG/ROW
[PID/text() = $play/IID/text()]

ORDER BY $song/POSITION/text() 
RETURN
<SONG>
$song/SONG_PCDATA/text()

</SONG>
</PLAY>

</RECORDLIST>
(b)

Figure 3. (a) Relational Database from Inlining
Loading with Local-Order and (b) View Query
over Fig.(a)

<RESULT>
<SONG> 

We are 138
Shutdown

</SONG>
</RESULT>

<RESULT>
FOR $record in document(“record.xml")
RETURN

<SONG> 
$record/PLAY/SONG[2]/text() 

</SONG>
</RESULT>

Figure 4. An Order-sensitive Query and Query
Result Example

Combine $dataPlayTag

Source “dxv.xml”
$P

Tagger <RECORDLIST> $dataPlayTag</ RECORDLIST >
$record

FOR $play

Navigate$song, SONG_PCDATA/text()
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Tagger <PLAY> $dataSongTag</PLAY>
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Navigate $P,  PLAY/ROW
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Source “dxv.xml”
$S

Navigate$S, SONG/ROW
$song

Navigate$song, PID/text()
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Navigate$play, IID/text()
$pIID

Select$pIID=$sPID

FOR $song

Tagger <SONG>$sdata</SONG>
$dataSongTag

Combine $dataSongTagNavigate$play, POSITION/text()
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OrderBy $pPos
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Figure 5. Correlated XAT for View Query in
Fig. 3 (b)

of tuples corresponds to the relative order between those
two tuples in its input XAT table. TheOrderBy opera-
tor, however, orders the tuples by the values in the columns
given as argument.

The XML operators, used to represent the XML specific
operations, are defined below.Source Scol′

xmlDoc is always
a leaf operator in an algebra tree. It takes the XML docu-
mentxmlDoc as input and outputs an XAT table with a
single columncol′ and a single tupletout1 = (c11), where
the cellc11 contains the entire XML document.
Navigate φcol′

col,path(R) unnests the element-
subelement relationship. For each tupletinj from the
input XAT table R, it creates a sequence ofm output
tuplestout

(l)
j , where1 ≤ l ≤ m, m = |tinj [col]/path|,

tout
(l)
j [col′] = (tinj [col]/path)[l].
Combine Ccol(R) groups the content of all cells corre-

sponding tocol into one sequence (with duplicates). Given
the inputR with m tuplestinj , 1 ≤ j ≤ m, Combine
outputs one tupletout = (c), where tout[col] = c =
◦⊎m

j=1tinj[col].

Tagger T col
p (R) constructs new XML nodes by apply-

ing the tagging patternp to each input tuple. A patternp is a
template of a valid XML fragment [3] with parameters be-
ing column names, e.g.,< result > col < /result >. For
each tupletinj from R, it creates one output tupletoutj ,
wheretoutj [col] contains the constructed XML node ob-
tained by evaluating the patternp for the values intinj .

XAT Order Extension. The order-sensitive user
XQueries includePosition andRange predicates [15].

The basic XML algebra needs to be extended. A new
operator namedPosition function is added for this
purpose. ThePosition POScol′

col (R) function appends a
new columncol′ to the input XAT tableR to represent the
relative positions of its tuples ordered bycol. Fig. 6 depicts
the correlated XAT for the user query in Fig. 4.

Since the user query XAT is defined over the view in-
stead of the relational database, it needs to be composed
with the view query to be evaluated over the relational data.
A Composed XAT(Figure 7) is thus generated by replacing
the Source node in the decorrelated user XAT with the
decorrelated view XAT. For keeping correct order seman-
tics of XAT through the decorrelation procedure, a set of
order-sensitive decorrelation rules is used [19]. For exam-
ple, theOrderBy operator in the inner query tree has to be
grouped on its context, namely the outer FOR binding. For
details please refer to [19].

4 XAT Optimization with Order

4.1 Order Dictionary

The operators in XAT can be classified as either
order-determining or non-order-determining. Anorder-
determining XAT operatorimposes a new order on the out-
put (e.g.,OrderBy). A non-order-determining XAT op-
erator just preserves and propagates order through. As
identified by the thick-lined nodes in Figure 7, the order-
determining XAT in the user XAT query tree includes
the Position function and its context nodeGroupBy.
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While in the view portion, it includes theOrderBy and its
context nodes (hereGroupBy).

In a view defined by a FLWOR expression, the or-
der of the view elements is determined by the “OrderBy”
clauses. For example, in Fig. 3, the order of the re-
sult structure “PLAY” is decided by the clause “OrderBy
$play/POSITION/text()”. It thus in turn is decided by the
order-determining XAT operatorsNavigate (node 3) and
OrderBy (node 4) in Fig. 7 according to the view query.

However, this connection between the view order and
order-determining operators in XAT is not captured by the
view XAT itself. Thus a metadata table is created in par-
allel with the loading procedure to capture this connection,
named theOrder Dictionary.

XML PATH Order Code
RECORDLIST NULL
RECORDLIST/PLAY PLAY/ROW/POSITION
RECORDLIST/PLAY/BAND PLAY/ROW/POSITION
RECORDLIST/PLAY/SONG SONG/ROW/POSITION

Table 1. Order Dictionary for Relational
Database in Fig. 3

The Order Dictionary is a generic table that is suitable
for any encoding strategies and loading methods. For ex-
ample, Table 1 represents the Order Dictionary for the re-
lational database in Fig. 3 TheXML Path column stores
the XPath of all XML elements in the view. For exam-
ple, the full XML path is stored for the element “PLAY”
as “RECORDLIST/PLAY”. TheOrder Codecolumn cap-
tures the order encoding XML path in thedefault XML view
(DXV), which refers to the relational column storing the or-

der encoding values. Note that the first line of the Order
Dictionary represents the root of the view. Since it is al-
ways a single XML element, we thus denote its order code
as “NULL”(no order really matters here).

4.2 Order-sensitive XAT Optimization

The order-sensitive XAT optimization includes two
steps. (1)Order explicit step. As we mentioned before,
the user order-determining XAT depends on the order of
the view, which isimplicit. Eliminating this dependency
will open more opportunities for optimization. In other
words, we need to change theposition and range
function from filtering on the data column (by its implicit
physical position) to filtering on the order code column
(by its explicit order value). (2) TheSQL-oriented XAT
optimization steptransforms the XAT tree for efficient
order-preserving SQL translation. The purpose is to push
as many as possible operators down to the bottom of
the XAT tree, as long as they have the corresponding
relational operations. The rewrite rules used here include
theComputation push-down, Order pull-upandOrderStep
rewrite rules. Fig. 9 depicts the final optimized XAT for
our running example.

Step 1: Order Explicit. As a commonly used optimiza-
tion technique [14, 20], theTagger operators in the view
query and the correspondingNavigate operators in the
user query can always be canceled out as long as no oper-
ator “above” theNavigate uses the result generated by
theTagger. However, the order-determining operators (
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e.g.,Position function) that appear in the user XAT de-
pend on the implicit order of theTagger result. In that
case, theTagger cannot be canceled since its result is re-
quired later. These non-cancelableTaggers in turn block
further optimization such as the computation push-down.
Theorder explicitrule given below is utilized to eliminate
this dependency on theTagger result, and to create more
opportunities for future optimization.

Given an XAT T , let
◦

TU be the set of the order-

determining operators in the user XAT, while
◦

TV be the
set of order-determining operators in the view XAT. Let
O denote the Order Dictionary ofT (Table 1). Two func-
tions are used for our order explicit rewrite rules. Function
TraceVariableBinding($var, T)returns the full XPATHp for
a given variable binding$var. For example,TraceVari-
ableBinding($uPlay,T)=“RECORDLIST/PLAY”. Another
function OrderCode($var, O) returns the order codec for
the given variable binding$var from the Order Dictionary
O. The function first usesTraceVariableBinding($var,T)to
trace the binding XPathp for a given variable$var. p is
then used to look up the OrderCode in the Order Dictionary
O. The OrderCodec of $var is finally returned. For exam-
ple,OrderCode($ucol1, O)= “PLAY/ROW/POSITION”.

Fig. 8 shows the optimization for the composed XAT in
Fig. 7 using the two order explicit rewrite rules below.

Rule 1: Partition Elimination Rewrite Rule.

Let GroupBy$col[1...n](R, func)∈
◦

T U , where func = POS$col′

$col
(R).

(OrderCode($coli,O)=NULL, 1≤ i ≤ n)
⇒ GroupBy$col[1...n](R, func) = GroupBy$col[1...(i−1),(i+1)...n] (R, func).

Rule 1 indicates that the partition on a column$col, rep-
resented byGroupBy$col in the order-determining XAT,
can be eliminated if the OrderCode of$col is “NULL”.
Namely, there is no order inside$col.

For example, sinceTraceVariableBinding($record,T)
= “RECORDLIST” while OrderCode($record,O) =
NULL, according to Rule 1,GroupBy$record,$uPlay =
GroupBy$uPlay . That is, the order partition on$record
does not make any difference, since in our example it only
includes a single collection, namely the whole view.

Rule 2: Order Combination Rewrite Rule.

(i) Let POS$col′

$col
(R) ∈

◦

T U .(∃$var ∈ V ,
OrderCode($col, O) = TraceV ariableBinding($var, T ))

⇒ (POS$col′

$col
(R) = POS$col′

$var
(R)).

(ii) Let GroupBy$col(R, func)∈
◦

T U .
∃$var ∈ V , OrderCode($col,O) = TraceVariableBinding($var,T))
⇒ (GroupBy$col(R, func) =GroupBy$var (R,func)).

Rule 2 describes that the user order-determining XAT
can be combined with the view order-determining XAT by
replacing the user order column$col with the view order
column$var, as long as the OrderCode of$col and$var
are equal. As a result, the user order-determining operator
does not depend on the implicit order of the view result, but
on the explicit order-determining view XAT.

For instance, OrderCode($uPlay,O)=“PLAY/ROW/
POSITION”, TraceV ariableBinding($play)=
“PLAY/ROW/POSITION”. According to Rule 2, we thus
have GroupBy$uPlay (R, func)=GroupBy$play(R, func).
That is the order of$uP lay in the user XAT is decided by
the order of$play in the view XAT. Similarly, we have
POS$uNumPos

$uSong
(R) = POS$uNumPos

$sPos
(R).



Step 2: SQL-Oriented XAT optimization. After the
order explicit step above, the order-determining user XAT
no longer depends on the intermediate view result. Tradi-
tional SQL-oriented rewrite rules such asNavigate-Tagger
Cancel-OutandComputation Push-down[14, 20, 21] can
now be used to optimize the XAT and prepare the XAT
for order-sensitive SQL-generation. The optimized XAT is
shown in Fig. 9.

OrderBy Pull-up. One rule specific for the order-sensitive
SQL translation is calledOrder Pull-up. The SQL-standard
(SQL-99) implies order overwrite between nested SQL
statements. That is, the sorting of the inner query result is
not kept by the outer SQL statement. TheOrderBy oper-
ation should thus appear in the translated nested SQL state-
ments as late as possible to avoid expensive re-orderings.
For this purpose we designed theOrderBy Pull-uprule to
pull theOrderBy operator high up the XAT tree.

An OrderBy operatorτin can be pulled above an oper-
atoropout

in as long asop is insensitive to the order ofτin’s
result. Typically, thePosition function is the only oper-
ator sensitive to the order. Thus as long as thePosition
function is not sensitive to the result ofOrderBy, it can be
pushed through the XAT as far up as possible.

To do this, we record the ordered information of each in-
termediate XAT Table according to the semantics of each
operator. If the pulling up does not destroy the correct or-
dered information in the result XML, we call such OrderBy
pulling upsafe. Pullup can then be performed without loss
of ordered semantics. More details about OrderBy pulling
up in XAT tree can be found in [18].

For example, compare the composed XAT in Fig. 7,
and the optimized XAT in Fig. 9 thePosition function
(Node 23) is affected by the order of the column$sPos
within the partition over the column$pPos. It is not
affected by the order of the column$pPos. TheOrderBy
operator (Node 4) in Figure 7 can be pulled all the way
up to the position shown in Fig. 9, since all the operators
between the two positions are insensitive to the result of
ordering on the column$pPos. However, theOrderBy
operator (Node 11) with its contextGroupBy (Node 12)
cannot be pushed through Node 22.

OrderStep Rewrite. To make SQL translation straight-
forward, the XAT operators which map to the SQL order-
template are merged into one special operator, named
OrderStep. An OrderStep OScol′

pcol[1...m],ocol[1...n] op-
erator takes two input parameters:pcol[1...m] is the set
of partition columns, while$ocol[1...n] is the set of order
columns. The output parameter is a columncol′ numbering
the ordered output by some explicit ordering number.

In OrderStep rewrite,OrderStep operators are cre-

ated by merging thePosition function with all its order-
related nodes. This includes its contextGroupBy node,
theOrderBy operator generating the ordered tuples used
by thePosition function, and the context node of this
OrderBy. In Fig. 10, theOrderStep operator (Node
29) merges Nodes 11, 12, 22 and 23 from Fig. 9. It par-
titions on the column$pPos, orders on the column$sPos
and outputs the explicit ordering in column$uNumPos.
In the next section, we will discuss how theOrderStep
operator is mapped to the SQL order template.

5 Order-based SQL Translation

Generating order-sensitive SQL. SQL generation is
done in an incremental bottom-up tree traversal process. As
an operator is visited, an appropriate SQL statement frag-
ment is created. The order-determining operator is trans-
lated into SQL order clauses by applying the SQL order
template introduced below. For the algorithm of generat-
ing SQL, please refer to [17].

To translate the order-determining operators into SQL
fragments, an order-based template (Fig. 13) has been de-
signed. Although the grammar adheres to Oracle’s “or-
dered” query lingua, the templates can be easily adapted
for other DBMS specific SQL versions.

One feature specific in SQL-99 is the analytical function
row number(). It creates integer values in the same fash-
ion as the XATPosition function. Theovermethod tells
the analytical function what values to work with. Thepar-
tition by phrase creates groups or partitions as context on
which theorderby clauses is ordering. Not all queries re-
quire the partitioning clauses, indicated by the ’?’ at the end
of the partition rule. More specifically, the partition clauses
appear only ifPOS requires aGroupBy context operator.
$pos func binding is the binding from the algebra tree. In
our example, the$pos func binding is $sPos. This bind-
ing is then constrained by theWHEREclause. For example,
$uNumPos = 2.

TEMPLATE:
SELECT rownumber() over
(<PARTITION>?<ORDERBY>) $posfunc binding
FROM <TABLE> +

PARTITION: partition by<ELEMENT>

ORDERBY:
order by<TONUMBER> | <ELEMENT>

ELEMENT: element name
TONUMBER: to number(<ELEMENT>)
TABLE: table name| TEMPLATE

Figure 13. Grammar of Order Template

The order template is filled when theOrderStep op-
erator is encountered. LetOScol′

[pcol1,...,pcoln],[ocol1,...,ocoln].
The corresponding SQL order fragment is:“row number()
over (PARTITION BY pcol1, ..., pcoln ORDER by
ocol1, ..., ocoln) col’”. For example, the Node 29
(OrderStep) in Figure 10 is translated into the clauses
“row number() over (PARTITION BY pPos ORDER by
sPos) uNumPos”.



Navigate$song, POSITION/text()
$sPos

OrderStep [$pPos],  [$pPos, $sPos] 
$uNumPos

Source “dxv.xml”
$S

Navigate$S,  SONG/ROW
$song

Navigate$song, PID/text()
$sPID

ThetaJoin $pIID=$sPID

Source “dxv.xml”
$P

Navigate $P, PLAY/ROW
$play

Navigate$play, POSITION/text()
$pPos

Navigate$play, IID/text()
$pIID

1
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9

10

29

OrderBy $sPos, $pPos
4

Combine $uDataSongTag

Tagger <RESULT> $uDataSongTag</RESULT>
$result

Tagger <SONG> $sData</SONG>
$uDataSongTag

Select$uNumPos=2
24

26

27

28

Navigate$song, SONG_PCDATA/text()
$sData

13

Figure 10. The XAT after Or-
derStep Rewrite

SQL Q1
$pPos, $sPos, $sData

30

Q1 =  SELECT P.POSITION AS pPos, S.POSITION AS sPos, 
S.SONG_PCDATA AS sData

FROM PLAY P, SONG S
WHERE P.IID = S.PID

OrderStep [$pPos],  [$sPos] 
$uNumPos29

OrderBy$pPos, $sPos
4

Combine $uDataSongTag

Tagger <RESULT> $uDataSongTag</RESULT>
$result

Tagger <SONG> $sData</SONG>
$uDataSongTag

Select$uNumPos=2
24

26

27

28

Figure 11. Translated sub-
query for XAT in 10

Q5    =  
SELECT Q2.sData 
FROM

(SELECT Q1.pPos, Q1.sPos, Q1.sData,
row_number()  OVER (PARTITION BY Q1.pPos 
ORDER BY Q1.sPos)  uNumPos

FROM
(SELECT P.POSITION AS pPos, S.POSITION AS sPos, 

S.SONG_PCDATA AS sData
FROM PLAY P, SONG S
WHERE P.IID = S.PID
) Q1

) Q2
WHERE Q2.uNumPos = 2
ORDER BY Q2.pPos, Q2.sPos

SQL Q5
$sData

32

Combine $uDataSongTag

Tagger <RESULT> $uDataSongTag</RESULT>
$result

Tagger <SONG> $sData</SONG>
$uDataSongTag

26

27

28

Figure 12. Translate SQL for
XAT in 11

Note that our SQL generation algorithm does not rely
on any specific loading or order-encoding. Unlike existing
work in [15], it is not hard-coded but rather a general solu-
tion. In fact, there is only a rather small difference when the
SQL statements are generated for the edge loading. For the
interested readers, in [17], the XQuery-to-SQL translation
procedure over an edge loaded relational database will be
described. The similarity of the generated SQL statements
confirms the generic nature of our solution.

About Push-down Strategies. For the relational engines
that do not support therow number() function, the SQL
generation can be stopped before the OrderStep, causing the
other operators to be conducted in the middle-ware. Since
the middle-ware operations can keep the ordered seman-
tics of the input XAT Tables, the re-sorting can be avoided.
Thus even if the query engine supports the SQL-99, not
pushing the OrderStep into the relational engine may be
preferred. Since the middle-ware is limited in memory
and other resources, we limit the computing power of the
middle-ware to the extent that such computation can be
achieved by a single pass over the SQL query results. Based
on this criterion, the two push down strategies are achiev-
able by the middle-ware.

Without considering order, in general we try to push as
much as possible computation into the relational engine to
alleviate the workload and complexity of the middle-ware.
At the same time, better performance is expected by push-
ing more into the relational engine. It is a quite different
scenario when the order is considered. The SQL engine
is not defined for order except the explicit sorting clause.
We have to perform multiple sortings, which may even be

repeated, during the SQL translation. For example, in the
subqueryQ2 in Figure 12, a sorting onsPos is performed
for the partition clause, while in theQ5, repeated sorting
onsPos is performed again. For some cases, such repeated
sorting will degrade the performance.

There are multiple choices for pushing computation to
the relational engines considering order. None of them can
always outperform others. There are some tradeoffs be-
tween them like the selectivity of the selection operator,
network traffic cost, sorting cost and others. Based on these
statistics, a better push down strategy can be chosen. We
perform a comparison of these SQL translation strategies
also in the experimental session.

Discussion: Further Optimization of SQL. To highlight
the order related aspects of our approach, we choose to gen-
erate a single nested SQL statement. We note, however, that
theSilkRoute[8] cost-based optimization for SQL transla-
tion could be fairly easily embedded into our XSOT frame-
work and thus optimizing the generated SQL statement.

The SQL statements generated by our translation al-
gorithm can be further optimized if some order encoding
knowledge is assumed. For example, if the global order en-
coding is used, then the SQL statement in Fig. 12 can be
optimized by ordering only on the column$sPos, instead
of ordering on both$pPos and$sPos. The reason is that
the global order encoding of$sPos includes the order in-
formation of the$pPos.

Assuming the SQL translation component is aware of the
underlying relational schema and its constraints, the gen-
erated SQL can be further optimized. For example, the
schema-specific SQL optimization [10] could be plugged



into our XSOT framework.

6 Experimental Study

The experiments were run on a UNIX machine with
two PIII450M CPU processors and 512 Megs of RAM The
XML data generated complies with the schema of Fig. 2(a)
and includes 10000 PLAYs/file. The underlying relational
database was loaded with the Inline and the Edge shredding
and two different order encodings (global and local). The
test queries are shown in Figure 14.

On Pushing the OrderStep into SQL.Different selec-
tivities of the Select operator (Node 24 in Figure 11) will
affect the network cost between the middle-ware and the
database server. Different SQLs then will have different
performance. In this experiment, we vary the condition of
the Select operator to achieve various selectivities of theSe-
lect operator. The result is shown in Fig. 15.

In Fig. 15, deep pushing refers to the pushing of the
OrderStep into the relational engine, and shallow pushing
refers to not pushing the OrderStep into the relational en-
gine. When the selectivity of the Select operator is low,
these two pushing strategies perform similarly. When the
selectivity is high (over 10%), the shallow pushing outper-
forms the deep pushing, since the cost of the repeated sort-
ing in the deep pushing will be significant. This is an in-
teresting observation, indicating that pushing as much as
possible computation into relational engine may not always
be preferable, when order processing is considered.

On the Loading and Encoding Strategies. Various
loading strategies, such asinline andedge, are used in var-
ious scenarios to create various relational database struc-
tures. Edge is usually used when the schema is not avail-
able, while Inline is used in the schema-aware case. Even
if the same order encoding strategy is used, the translated
SQLs over these two databases differ as shown in Fig. 16.
The SQL queries over the edge loaded database is typically
more expensive than those over the inline loaded database.
The edge loaded relational database requires self-Joins over
one huge table, which is rather time consuming.

Different example queries depict preference for different
order encoding strategies as shown by Fig. 16. Q1 and Q4
perform better in the inline loaded database using local en-
coding rather than using global encoding. The reason is they
both require the several SONGs from each PLAY, which im-
plicitly favors a local order. Two other queries (Q2 and Q5)
require several SONGs from all PLAYs, which is easy for
the globally ordered inline database. While Q3 and Q6 re-
turn all the SONGs belonging to particular PLAYs, which
do not differ between different encodings.

SQL Execution and XML Construction. The output
of the SQL operator (Node 32) is anorderedtuple stream.
This ordered tuple stream serves as input for the remain-

ing construction operators (Tagger andCombine). Total
time refers to the time from the execution start until the re-
sult output, including SQL execution and construction. The
comparison of the SQL execution time and the total time
for all queries under the edge loading is shown in Figures
17 and 18. The SQL execution takes70% of the total exe-
cution in our example cases.

7 Related Work

Order as a key issue specific to the XML data model has
not yet been addressed by any of those research projects [2,
4, 7, 8, 12] nor by any of the commercial systems [1, 5, 13].

[15] is one of the earliest works assessing the issue of
order in the XML-to-SQL context. Threeorder encoding
methodsare utilized to encode XML order. Algorithms of
translating ordered XPath expressions into SQL, one spe-
cific to each encoding and loading method, are proposed re-
spectively. The performance of the ordered-encoding meth-
ods on a workload of ordered XML queries is also pre-
sented. However, each proposed algorithm isdependenton
and specificto the loading and encoding strategy used to
build the relational database to begin with. That is, (1) the
knowledge of loading and encoding is required by the trans-
lation algorithm, and (2) different loading and encoding
strategies require different translation algorithms. In addi-
tion, not only the translation strategies proposed but alsothe
performance studies described concentrate on the correct-
ness of XPATH translation and evaluation. The complexity
of handling order-sensitive XQuery statements, nested or
not nested, is not addressed.

Compared with their work, our XSOT approach isinde-
pendentas it does not require any knowledge of the utilized
loading strategy nor order encoding method. In other words,
the gap between different loading and encoding strategies is
naturally covered by theview queryembedding this knowl-
edge and theorder code comparison functionfor each spe-
cific order encoding. It is alsogenericsince the algebraic
representation is used to represent the input XQuery. One
single uniform translation algorithm serves for all combina-
tions of existing encoding and loading strategies, even for
the possibly new ones to be introduced in the future.

8 Conclusions

In this paper, we propose an algebraic approach
for order-sensitive XQuery processing over relational
databases. Based on an XML algebra tree (XAT) to repre-
sent order-sensitive XQuery expressions, a series of order-
related optimization steps for XQuery to SQL translation
are proposed. Our approach now serves as a general solu-
tion for order-sensitive XQuery to SQL translation, which



<RESULT>
FOR $record in document("record.xml")
RETURN

<SONG> $record/PLAY/SONG[5]/text() </SONG>
</RESULT>

<RESULT>
FOR $record in document("record.xml")
RETURN

<SONG> 
($record/PLAY/SONG)[900]/text() 

</SONG>
</RESULT>

<RESULT>
FOR $play in document("record.xml")/PLAY[800]
RETURN
<SONG>$play/SONG/text()</SONG>

</RESULT>

<RESULT>
FOR $record in document("record.xml")
RETURN
<SONG>$record/PLAY/SONG[Position()=2 to 5]/text()</SONG>

</RESULT>

<RESULT>
FOR $record in document("record.xml")
RETURN
<SONG>

($record/PLAY/SONG)[Position()=100 to 800]/text()
</SONG>

</RESULT>

<RESULT>
FOR $play in document("record.xml")/PLAY[ Position()=100 to 800]
RETURN
<SONG>$play/SONG/text()</SONG>

</RESULT>

Q1 Q4

Q2 Q5

Q3 Q6

Figure 14. The Test Queries used in Experiment
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Figure 15. Different Push Strategies
for Various Selectivity
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Figure 17. SQL vs. Total Time
using Edge Loading
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is irrespective of the data loading and order encoding strate-
gies used in building the underlying relational database.
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