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Abstract

To improve the query performance over XML documents in a distributed environment,
we develop a semantic caching system named ACE-XQ for XQuery queries. ACE-XQ
applies innovative query containment and rewriting techniques to answer user queries using
cached queries. We also design a fine-grained replacement strategy which records user
access statistics at a finer granularity than the complete XML query regions. As a result,
less frequently used XML view fragments are replaced to maintain a better utilization of
the cache space. Extensive experimental results illustrate the performance improvement
achieved by this strategy over the traditional one for a variety of situations.
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1 Introduction
1.1 Background on Query Caching

Due to the growing demand by web applications for retrieving information from
multiple remote XML sources, it has become increasingly critical to improve the
efficiency of XML query evaluation. One key step towards achieving such an op-
timization is to exploit caching technology to reduce the response latency caused
by data transmission over the Internet. Inspired by the semantic caching idea [14],
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which utilizes cached queries and their results to answer subsequent queries by rea-
soning about their containment relationships, we propose to build such a caching
system to facilitate XML query processing in the Web environment.

One major difference between semantic caching systems [14,21,6] and the tradi-
tional tuple [16] or page-based [6] caching systems is that the data cached at the
client side of the former is logically organized by queries instead of physical tuple
identifications or page numbers. To achieve effective cache management, the access
and management of the cached data in a semantic caching system is thus typically
at the level of query descriptions. For example, the decision of whether the answers
of a new query can be retrieved from the local cache is based on the query contain-
ment analysis of the new query and the cached query descriptors themselves, rather
than by looking up each and every tuple or page identification of objects that could
possibly answer a current user request.

The semantic caching idea has been extensively studied in the relational context
[14]. However, query evaluation and containment dealing with XML data differ in
their nature and difficulty from those in the relational setting. New challenges are
being imposed by the tree-oriented nature of XML and the XQuery language on
the tasks of query containment and rewriting, as we will point out in this paper.

1.2 Introduction of ACE-XQ

We have developed the first XQuery-based caching system, named ACE-XQ [9,11],
to deploy our proposed query containment and cache management techniques in the
XML context. In ACE-XQ, new and cached queries are both expressed in XQuery,
a quickly thriving XML query language proposed by W3C as the standard [44].
The query descriptors in the ACE-XQ system help to capture the query semantics
which are utilized in the decision for query containment. While [9] describes the
XQuery containment and rewriting techniques in ACE-XQ, in this paper we focus
on cache management of ACE-XQ, in particular cache replacement issues.

Typically, a cache system utilizes a replacement manager to decide what to retain
in the cache and what to discard in case of a full cache. In a query-based caching
system, the data granularity for replacement is the query and its associated query
result. The cache manager in ACE-XQ maintains a collection of query regions,
each composed of a query descriptor and the corresponding XML view document,
i.e., query region = query descriptor + result XML view. Query descriptors can
be utilized for reasoning about the containment relationships between the cached
queries and the new query. Also, user access statistics information may be attached
to the query descriptors by the deployed replacement strategy to calculate the region
utility values. The replacement manager usually picks the cached query with the
lowest utility value and purges it to make room for the new query.



1.3 Drawbacks of Replacement at the Query Level

Since a new query is often conceptually subsumed by or overlapping with pre-
viously cached queries, the query region of the latter can be seen logically seg-
mented into two pieces. One corresponds to the overlapping part which is to be
retrieved by the probe query for answering the new query. The left-over piece does
not contribute to answering the new query. The replacement manager of a tradi-
tional query-based caching system may split the containing query region into two
regions corresponding to their respective usefulness in this latest query answering
process. After the splitting, a uniform utility value is then maintained for each query
region. Whenever the cache is full, a complete query region would be the unit for
replacement. However, such a region-splitting scheme entails a large decomposi-
tion overhead each time when a new query overlaps with the cached queries. Also,
it would result in more and more smaller XML view documents over time which
are possibly less useful in answering future queries due to their fragmentation.

An alternative solution is to tolerate some redundancy in the cached queries. That
is, even if newly incoming queries partially overlap with existing queries, we would
opt to not split existing queries in order to avoid fragmentation. Then a straightfor-
ward application of replacement would be to replace a complete query region at
each iteration. However, the data granularity of a whole query region being deleted
each time in such a replacement strategy may be too coarse for “large” XML views.
This would impact the cache space utilization. Also, such a replacement strat-
egy doesn’t reflect the contribution of different fragments in a cached XML view
which may participate in answering different subsequent queries. Replacement at
the granularity of complete XML views hence suffers apparent drawbacks.

1.4 Our Partial Replacement Approach

We now propose a refined replacement strategy, namely, to record utility values for
finer regions of existing cached views in terms of their internal structure rather than
assigning a uniform value for the whole cached query region [12]. To be precise,
we attach to each query descriptor a detailed path table listing all paths returned in
the query. When a cached query contains or partially overlaps with a new query, the
utility statistics of those paths requested by the probe query are updated, however
without splitting the cached query. When the cache is full, the replacement man-
ager does not select complete regions but only specific paths with the lowest utility
value within such query regions for replacement. It then composes a filter query
to remove the fragments corresponding to those paths from the cached XML view.
The relevant query descriptors are then modified accordingly to be consistent with
the changed XML view.



This proposed partial replacement strategy utilizes the view structure to maintain
utility values at a finer granularity than complete query regions. This way, the re-
placement helps to maintain in the cache the most likely “hot” query regions. This
is because the original cached queries may be refined by future filter queries that
remove the less useful fragments within them. It hence forgoes the explicit region
splitting upon every new incoming query, avoiding the generation of too many
small region fragments with little use for answering future queries.

We have also implemented both the proposed partial replacement strategy as well
as the complete region replacement strategy (which we now call total replacement)
within our ACE-XQ caching system. In this paper, we now report upon the ex-
tensive experimental study we have conducted to compare the performance of our
partial replacement and the alternative total replacement strategies in a variety of
scenarios. The results show that in most cases especially when the cache size is
medium, the partial replacement strategy outperforms the total replacement strat-
egy in terms of hit count ratio, hit byte ratio and query response delay.

1.5 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we show the running
example queries to motivate the need for a query containment and rewriting solu-
tion in the context of XQuery. An overview of our overall XQuery caching solution
ACE-XQ is given in Section 3. We then focus on the cache management aspect
of the ACE-XQ system. We analyze the advantages and disadvantages of alterna-
tive query region managing schemes in Section 4, while in Section 5 we describe
a fine-grained replacement strategy (a la partial replacement) deployed in ACE-
XQ. The experimental studies comparing our partial replacement strategy with the
traditional total replacement strategy are given in Section 7. The related work is
described in Section 8 and we conclude in Section 9.

2 Running Example of XQuery Containment and Rewriting

The foundation of query-based caching is query containment, i.e., verifying whether
one query yields necessarily a subset of the result of another query. In the relational
context, the containment problem for conjunctive queries has been extensively stud-
ied [27,38,8,29]. Its complexity was shown to be NP-complete in [7].

A query Q1 is contained in a query @2, denoted Q1 C @2, if for any database
D, the answers to Q1 form a subset of the answers to (2. The two queries are
equivalent, denoted Q1 = Q2, if Q1 C Q2 and Q2 = Q1. Chandra and Merlin [7]
showed that for two conjunctive queries @1 and 2, Q1 C @2 if and only if there



is a containment mapping from variables of Q2 to Q1.

Conjunctive query containment and rewriting have been extensively studied for the
relational algebra and datalog queries. However, the research for XML query con-
tainment is still in its infancy with a flurry of recent work focusing on XPath path
expression containment [3,1,18]. We are in particular interested in the containment
for XQuery [44], which was proposed by W3C as a standard XML query language.

2.1 Running Example of XQueries

In XQuery, the FLWR expression is a major building block. An XQuery composed
of nested FLWR expressions is capable of hierarchical “pattern matching” against
the tree-structured XML data model and of “restructuring” the result tree. For ex-
ample, a user may use query @1 (shown in Figure 1) to integrate book informa-
tion from two remote XML sources, i.e., bib.xml and reviews.xml. Figure 2 gives
a graphical representation of their document structures conforming to bib.dtd and
reviews.dtd respectively.! Q1 joins these two XML documents based on the value-
based equality tests on their title element nodes and returns only those books that
are published after 1990. Assume the result XML view is Q1Res.xml, it contains
the title, year, author, publisher and reviewer’s rate information of such books.

< booklist >
{for $b in doc(“http : | /www.bn.com/bib.xml")/bib/book,
$0k in doc(“hitp : | Jwww.xyz.com/review.xml")//book
where $b/Qyear > 1990 and $b/title = $bk/title
return < entryyear = “$b/Qyear” >
{$b/title} {$b/author} {$b/publisher} {$bk/ * [rate}
< Jentry >}

< /booklist >

Fig. 1. An Example XQuery Q1

bib reviews
book* book*
@yeartitle  (T) publisher price title review*
—

author+ editor+ /,\
/I /N rate reviewer? comments

last first last first affiliation
Fig. 2. Graphical Representation of bib.dtd and reviews.dtd

Suppose the user now issues a new query @2 as shown in Figure 3 refining her
previous queries. Say, she is interested in finding the books that are published by

1 The textual Document Type Definition (DTD) for bib.dtd is exactly the same as that used
for Use Case “XMP” in the W3C working draft “XML Query Use Case” [42].



“Addison-Wesley” more recently (the published year is later than 1995) and highly
rated (the reviewer’s rate is at least 4 out of 5). Furthermore, she wants particu-
lar information about the author’s first name for these books if the last name is
“Bernstein”. Like @1, Q2 also joins the same two XML documents, bib.xml and
reviews.xml. If the requested information would contain only title, author’s first
name and reviewer’s rate of such books, one could easily tell that ()2 is totally con-
tained in Q1. Q2’s answer can fully be retrieved by reusing the result of the cached
query Q1. In this case, the user however requests some extra information about the
book’s price, which is not part of the answer for Q1. Therefore, (2 needs to be
broken into two queries, namely, the probe and the remainder query, the former of
which retrieves part of the answer from the local cache and the latter is sent to the
remote server to fetch the data used for augmenting the probe query result.

We aim to find an automated technique for such a task. Clearly, the query con-
tainment reasoning between XQuery queries cannot directly utilize the traditional
containment mapping [7] technique developed in the relational context, since the
mapping atoms in relational queries are flat relations and attributes.

< result >
{for $b in doc(“http : | /Jwww.bn.com/bib.xml")/bib/book,
$0k in doc(“hitp : | Jwww.zyz.com/review.xml" )/ [book
where $b/Qyear > 1995 and $b/publisher = “Addison — Wesley"”
and $b/title = $bk/title and $bk/review/rate > 4
return < goodbook >
{$b/title} {$b/price} {$bk/review/rate}
{for $a in $b/author[last = “Bernstein”]
return < author >
{$a/first}
< [author >}
< /goodbook >}

< [result >

Fig. 3. A New XQuery Q2

2.2 A Quick Review of Our XQuery Containment Solution

We hence have proposed a containment and rewriting framework for XQueries [9].
Below we identify the challenges imposed by XQuery for the tasks of query con-
tainment and rewriting. Correspondingly, we have proposed techniques, as briefly
stated below, for tackling the relevant problems. We refer the interested readers to
[10] for details.

e The flexibility of the XQuery syntax makes it possible to compose an XQuery
expression using arbitrarily nested FLWR expressions. Our first task is hence to
normalize the input XQuery, which is restricted to consist of only the negation-



free, disjunction-free and loop-free XPath path expressions and nested FLWR
constructs. Also, we currently do not consider queries involving XML constructs
such as Comment, Pl data or mixed content.

e The semantics of an XQuery are composed of two essential parts: pattern match-
ing and result restructuring. We propose to cleanly separate them using a pat-
tern tree and a tagging template to capture both semantics respectively. Different
from the pattern tree representation used in the literature [45] which basically
captures the navigation pattern purely based on navigation steps, our pattern tree
is composed of the defined variables and hence called VarTree. The variable de-
pendencies are captured via the expressions-based tree edges in VarTree and the
return path expressions form the leaf nodes attached to their prefixing variable
nodes. In addition, another tree-like structure called TagTree is used to provide
the restructuring template and to preserve the correspondence mappings between
element types in the view and the source document structures.

e In order to tackle the XQuery containment problem, we minimize the VarTree
structure to contain only the essential variables needed for result construction.
Our containment mapping process then incorporates type inference and subtyp-
ing mechanisms for regular expression types [19,41] to check the subsumption
relationships between variable types.

e XQuery rewriting needs to consider the possibly restructured view schema. Based
on the containment mappings established during the containment checking pro-
cedure, we rewrite the navigation paths for defining variables in the new query
according to the tagging template of the cached query.

Here, we briefly explain our containment mapping and rewriting techniques using
the running example queries, while more details can be found in [9]. In order to
showcase how we utilize the XML type related theory [19,41,40,30] to facilitate
our guery containment process, we first declare some types derived from bib.dtd
following the style used for the example in [19]. 2

type Bib = bib[Book*];
type Book = book[Title, Year, (Author+|Editor+), Publisher, Price];

type Author = author[Alast, Afirst];

type Alast = last{PCDATA];

type Editor = editor[Elast, Efirst, Affiliation];
= last[PCDATA];

type Elast

2 For simplification, the name convention for the type of an element is to capitalize the first
letter of its label name. In case of name conflicts, we make the type specification dependent
on the context, along the lines shown in [19]. In this example, the Alast and Elast types
have the same label name and content model but they differ in their context element types,
i.e., Author and Editor respectively.



First, we build VarTrees for Q1 and Q2 respectively for capturing the corresponding
variable dependencies in them. For example, $692 is a variable node in the VarTrees
of Q2 ($b9? denotes a variable $b in Q2 to be distinguished from $69* for $b in
Q1). $692 has a child variable node $a%2, because $a is defined based on $692 in
the inner FLWR block. Also, we associate with $692, $a92 and $5%@* their affiliated
return path expressions .

Based on our type-enhanced containment mapping criteria in [10], since variable
$b in Q2 (denoted by $692) is defined using the same path expression /bib/book
as variable $b in Q1 (denoted by $6“') and the former is associated with more
restricted conditions than the latter, we can hence set up a containment mapping
$b@1 — $b92. Furthermore, we annotate with this mapping the remaining condition
($o/@year>1995 and $b/publisher=*Addison-Wesley” and $b/rate>4). Following
the same procedure, we set up another containment mapping $6k9* — $bk92. We
then check whether the return expressions associated with $6%92 and $bk92, i.e.,
$692 /title, $b92/price and $bk9? /review /rate, have their corresponding return
expression mappings in Q1. It turns out that $69! /title — $b92 /title, $bkO/ *
[rate — $bk9? /review/rate based on the mappings established between their
corresponding prefixing variables.® However, $692 /price has no match and it is
thus marked to reflect the need for compensation via a remainder query.

The variable $a specified in the inner block of Q2 is mappable to $69! /author, i.e.,
$09t /author — $a%?, based on our containment mapping rule allowing a variable
in a new query to be mappable to a return path expression in a previous query. *
In such a case, we consider all the return path expressions associated with $a 92
($a@?/ first is the only return path in this example) as matched due to the implicit
deep-copying semantics for returning $a .

After this top-down progressive containment mapping process, we formulate for
Q2 a probe query for retrieving the part of the answer available from the result
view of 1, and a remainder query for fetching the price information in particular
from the remote server. Figure 4 shows the probe and remainder queries produced
by our ACE-XQ. The probe query rewrites the original path expressions in (22 with
respect to the view structure of “Q1Res.xml” based on the established containment
mappings. For example, the bound expression /bib/book for variable $6%9? is rewrit-
ten as /booklist/entry because $69* — $592 and a new tag < entry > is constructed
for each $62! binding within the root element scope labeled by < booklist >. The
remainder query is constructed based on the by-product yield from the containment
mapping procedure, i.e., the remaining conditions annotated on the established con-
tainment mapping pairs and the marked missing return path expressions.

3 The type inference and subtyping theory has been utilized to identify the mapping
$bkQl/ x [rate — $bkQ? /review/rate.

4 However, the other direction, namely, mapping from a variable specified in a previous
query to a return path expression in a new query is not allowed. Details are skipped here
due to space limitations.



< ProbeQueryResult >
{for $bb in doc(“Q1X M LView.xzml")/booklist/entry
where $bb/Qyear > 1995 and $bb/publisher = “Addison — Wesley"
and $bb/rate > 4
return < bb >
{$bb/title} {$bb/rate}
{for $aa in $bb/author[last = “Bernstein’]
return < author > {$aa/first} < [author >}
< /bb >}
< /ProbeQueryResult > Probe Query

< RemainderQueryResult >
{for $bb in doc(“hitp : | /www.bn.com/bib.xml")//book
where $bb/Qyear > 1995 and $bb/publisher = “Addison — Wesley"
return < bb >
{$bb/title} {Sbb/price}
< /bb >}
< /Remainder QueryResult > Remainder Query

< Result >
{for $r1in doc(“pgRes.xml")//bb, $r2in doc(“rqRes.xml")//bb
where $rl/title = r2/title
return < goodbook >
{$r1/title} {$r2/price} {$r1/rate} {$r1/author}
< /goodbook >}
< /Result > Combining Query

Fig. 4. The Probe, Remainder and Combining Queries for Answering Q)2

The results returned from the probe and remainder queries need to be combined
at last to provide the user with the complete answers. ACE-XQ hence deals with
the issues such as “data correspondence” in order to merge the results derived from
the same source by different queries using a combining query. Unlike other XML
merging work [31] which either assume or impose object identifiers throughout
the source documents to make it possible merging two pieces, we utilize primar-
ily the DTD knowledge and user designated key constraints for identifying node
equivalency. The concept of relative key path proposed by [2] is exploited to allow
the source subscriber to specify the key constraints, e.g., “/bib[book([title]]” means
that “under the context of the whole file, each book can be uniquely identified by
its title child”. A heuristic rule for deriving key constraints is to use the required
attribute(s) or non-descendant singleton child element(s) of an element as its key
constraint. By non-descendant, it implies that the comparison of key values would
not involve a deep equality test. The inferred key constraints, however, need to be
confirmed by the source subscriber or validated by the underlying documents.

In our running example, the remainder query for Q2 needs to fetch the missing price
information to be appropriately merged with the other information obtained by the
probe query for the identical book. As shown in Figure 4, we hence also piggyback



title in the remainder query and employ a join condition $rl/title=%r2/title in the
combining query for matching up the book elements derived from the probe query
and from the remainder queries (i.e., $r1 and $r2 bindings respectively).

In case when an element is not provided with a key constraint, the default key is
the composition value of all its children elements, whose key values are recursively
defined in the same way. We assume that such a key generation function is affil-
iated with the query evaluation engines at both the cache and the remote server
sites. At the remote site upon the arrival of a remainder query augmented with the
request for joinable keys, our key generation function is called from the query en-
gine to walk through the subtree of a specific element and return the generated key
value. This key generation function guarantees to produce the same key value for
the same element regardless of the different queries. 5 Surely, a remainder query is
augmented only if the probe query can be modified in the same manner for retriev-
ing the corresponding key values available in the XML view document. We request
that even the warm-up queries are augmented properly to have the cached XML
view documents equipped with keys.

Key generation on-the-fly may be time-consuming. However, the complexity has a
linear upper bound in terms of the subtree size. It can be optimized for situations
where some subtree elements have designated key constraints available to allow
for early returns from tree walking. When this approach of utilizing keys and query
augmentation is found to be too costly in some scenarios, we may choose to sim-
ply flag a non-rewritable case and let the query bypass the cache. In contrast to
the approach assuming an object identifier for each XML element, this is a rather
unrealistic expectation in practice for many autonomous XML data servers. Fur-
thermore, it is typically not possible for a cache to take charge of the remote data
source so to insert the generated ids back into the XML sources. Hence, the design
choices sketched out above are favorable.

3 The ACE-XQ System Overview

The framework of the ACE-XQ system is depicted in Figure 5. It consists of two
subsystems, a Query Matcher which implements the query containment and rewrit-
ing techniques and a Cache Manager which manages the cache space and applies
replacement and coalescing techniques.

When a new user query comes in, the Query Decomposer (shown in the Query
Matcher subsystem on the left hand side of Figure 5) applies normalization rules
[32,9] to derive its nesting format, revealing the variable dependency hierarchy
specified in the query’s matching patterns. It further re-groups the conditions and

5 We assume no updates occur to the source documents.
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Fig. 5. The ACE-XQ System Architecture

return expressions centering around their referring variables to form variable-specific
sub-queries. The Query Pattern Register encodes the semantics of a query and reg-
isters them as the query descriptor. For a pair of new and cached queries, the Query
Containment Mapper explores containment mappings between their variables. It
makes the query containment decision depending on whether one-to-one contain-
ment mappings can be established. Type inference and sub-typing mechanisms are
utilized for this containment mapping. Based on the established containment map-
pings, the Query Rewriter rewrites the new query with respect to the view structures
of the cached queries. Thus the user’s new XQuery is divided into a probe query
to retrieve answers from the cached local views, and a remainder query to obtain
the remaining answers from remote sources, and a combining query to make one
complete answer.

As shown on the right hand side of Figure 5, the Cache Manager of ACE-XQ man-
ages a collection of query regions, each composed of a semantic query descriptor
of a cached query and the result XML view. The former part is used for reason-
ing about query containment while the latter can be queried by the probe query to
provide any answer available in the cache to the new query as quickly as possible.

Due to the limited cache space, we propose a novel replacement strategy and deploy
it in the Replacement Manager of ACE-XQ. When a new query comes and there is
no cache space left, victim queries are chosen to be evicted from the cache to make
room for the new query. The user access statistics are necessary since they can
be used for calculating the region utility values, based on which the replacement
decision is made. The remainder of this paper will focus on the description of the
proposed replacement strategy, which utilizes the user access statistics recorded at
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the path level to perform a fine-grained region purging, as opposed to the strategy
of completely replacing a cached query and its associated XML view.

The Region Coalescer uses some semantic locality algorithm to discover “adjacent”
queries so to merge them into a combined region. In contrast to the replacement
manager, coalescing will not cause any data to be removed from the cache. Instead,
it is a heuristic to optimize the cached regions by reasoning about the semantic
distance between queries.

4 Design Choices for Alternative Cache Region Management Schemes

In a traditional query-based caching system [14], a query region is the minimal
granularity managed in the cache. A query region consists of an encoded query
descriptor and a pointer to access the associated result XML view. In this section,
we will take a look at existing alternative schemes and compare them in their ways
of managing the query regions in the presence of replacement activities.

When a new query arrives, the containment mapper will first determine if it is con-
tained or partially overlapping with a cached query. If yes, a probe query PQ is
formulated to access the cached data which satisfies the new query and thus will
contribute to the answer. If not all the desired data requested by the new query is
available in the cache, a remainder query RQ will also be sent to the remote servers
to fetch the rest of the answer. In this sense, query regions may logically be seg-
mented by probe queries upon the arrival of new queries. Below we describe several
possible schemes proposed by [14,24] for maintaining such query regions.

One region management scheme is to allow redundancy between query regions.
In such a scheme, query regions are never adjusted once they have been formed.
They are not split even if the subsequently cached queries overlap with them. For
each such cached query, one uniform utility value is maintained that assesses the
perceived usefulness of the query region to the users of the system. We refer to this
as the region-preserving scheme.

Another way of managing the query regions is to split a cached query @1 into two
regions upon the arrival of a new query Q2. One corresponds to the part utilized by
the probe query PQ2 for answering the new query, and the other, represented by
Q1 — PQ2, corresponds to the part not usable for answering the new query. The
region Q1 — PQ?2 inherits its utility value from its parent region from which it was
split off. The region PQ2 is marked with an increased utility value compared to the
original cached query to indicate its contribution in answering this current query.
This process is shown in Figure 6.

Alternatively, the query regions for the earlier cached queries may be preserved as a
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Fig. 6. Pictorial Illustration of the First Region-splitting Technique

whole. In this scheme, a new region is allocated to capture only the remainder query
RQ?2 since PQ2 is already contained in the existing query region Q1. The XML
view content of this new region RQ2 represents the “net” increase of information
obtained by the new query. This can equivalently be seen as a process of splitting
the newly incoming query region first and then caching only the non-redundant
portion of the region as a new region. This process is shown in Figure 7. The utility
values of each region will be increased every time a hit occurs.

|: RQ2 |: RQ2
Q1 Q1 1 QL 2
1 2 3
1

: RQ3

1.Q1 2.Q1,Q2 3.Q1,Q2,Q3
Fig. 7. Pictorial Illustration of the Second Region-splitting Technique

In the latter two scenarios, in effect the region-splitting scheme is applied. This
helps to reduce the cache redundancy. However, the first region-splitting scheme
of managing regions tends to result in too many small region fragments over time
which tend to be less useful in answering future queries. Also, such a scheme entails
the overhead of query region splitting each time when a new query is launched.
Hence, it may have to resort to frequent coalescing to make up for the fact that the
cache space has been severely fragmented over time.

The second region-splitting scheme avoids the coalescing computation overhead
compared to the first splitting schema. However, it has its own drawbacks as well.
First, the uniform utility value assigned for the whole region does not precisely
indicate the various contributions made by different region fragments in answering
subsequent queries. Second, a straightforward application of a replacement strategy
would replace a complete region at a time. Such a replacement unit may likely be
too coarse grained, requiring us to remove potentially huge sets of XML elements
even when only a small space is needed in the cache. This would result in less
efficient cache space utilization.
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5 The Partial Replacement Strategy

5.1 Query Descriptor Hierarchy

To overcome the drawbacks identified above of naive region-splitting replacement
strategies, we instead suggest here that different utility values may be maintained
for finer parts within a given region to account for different levels of accesses by
users. This then should be done independently from the final decision of splitting
the region. When a new query overlaps with a cached query region, the overlapped
portion in the cached region is accessed by the return expressions of the probe
query. They correspond to the data objects associated with certain paths in the re-
gion. To record such accesses of certain parts of a cached region, we extend each
query descriptor with a utility tracking table containing all complete path expres-
sions in the corresponding XML view document. Each path expression corresponds
to a row in this path table, referred to as XPathRow.

The XPathRows of such a path table can be easily constructed based on the return
expressions in a query. We simply enumerate all the complete paths from the root
of the view document to the leaf element types in the view schema and use them as
XPathRows. For example, the type inferred for a return path expression $b/author
in @1 is Author which contains two leaf element types Last and First. Therefore,
two XPathRows /booklist/entry/author/last and /booklist/entry/author/first corre-
sponding to these types are listed in our XPathRow table. All the other XPathRows
in the path table are complete paths appearing in the view schema of Q1. The
statistics related to the user access information are now no longer associated with
the complete region, but more precisely with the specific XPathRows. The different
types of statistics such as hit frequency, last access timestamp and etc., are all asso-
ciated with each XPathRow. With the utilization of the path table, we maintain the
user access statistics at the granularity level of XPathRows for each cached query.
Figure 8 displays a snapshot of the extended query descriptor of Q1.

Q1| XPathRow hits | last_access_time | obj_bytes

/booklist/entry/@year 1 | 12:33pm May 30 1600
/booklist/entry/title 12:33pm May 30 2100
/booklist/entry/author/last 12:33pm May 30 2860
/booklist/entry/author/first 12:33pm May 30 2620
/booklist/entry/publisher 12:33pm May 30 1840
/booklist/entry/rate 12:33pm May 30 1980

A

Fig. 8. Path Table with Initial Statistics for Q1

When a new query overlaps with a cached query, the probe query PQ is formulated
to retrieve the relevant data in the XML view via the path expressions specified in
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the return clauses. These path expressions correspond to the XPathRows in the path
table. We can hence correspondingly update the statistics for these XPathRows that
are involved in the probe query. For example, Figure 9 shows the path table con-
structed for (Q2’s query region and the updated statistics in the cached query region
Q1. As we explained before, the answer of Q2 has utilized the cached data from
region Q1. The replacement manager hence correspondingly modifies the statistics
of the highlighted XPathRows in Q1’s path table that are involved in the probe
query for answering Q2. The fragments along two paths /booklist/entry/@year,
/booklist/entry/title and /booklist/entry/author/first in Q1’s XML view contribute
to answering Q2.

Q2| XPathRow hits | last_access_time | obj_bytes
/goodbook/title 1 | 12:47pm May 30 220
/goodbook/price 1 | 12:47pm May 30 150
/goodbook/rate 1 | 12:47pm May 30 260
/goodbook/author/first 1 | 12:47pm May 30 380

Q1) XPathRow hits | last_access_time | obj_bytes
/booklist/entry/@year 1 | 12:33pm May 30 1600
/booklist/entry/title 2 | 12:47pm May 30 2100
/booklist/entry/author/last 1 | 12:33pm May 30 2860
/booklist/entry/author/first 2 | 12:47pm May 30 2620
/booklist/entry/publisher 1 | 12:33pm May 30 1840
/booklist/entry/rate 2 | 12:47pm May 30 1980

Fig. 9. 2’s Path Table and Q1’s Path Table with Updated Statistics

5.2 Utility Value and Replacement Function

The utility value is considered to be the indicator for the replacement likelihood
of cached objects. Based on the collected statistics, a caching system may adopt a
particular replacement policy in favor of purging some cached objects with certain
characteristics over other ones. A replacement function is used to reflect the re-
placement preference of a caching system. It calculates the utility values of cached
objects, based on which the replacement manager chooses the victim to be purged
to make room for new objects.

Cache replacement policies have been extensively studied in different scenarios,
such as page-based [6] and tuple-based [16] caches. Various replacement schemes
[37,33,4,35,28] have been investigated. Among them, the well-known replacement
schemes are the Least Recently Used (LRU), the Least Frequently Used (LFU)
schemes and their varieties. The LRU scheme is widely used due to its simplic-
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ity while still being effective when recently referenced objects are likely to be re-
referenced in the near future. The LFU policy [37] uses reference frequency instead
of recency as the parameter for the replacement function.

In this paper, we propose to utilize the detailed path tables® to perform a finer
granularity replacement than replacing a complete query region at a time. That is,
the input to the replacement function are not the statistics recorded at the whole
query level, but those at the level of the internal path structure of view documents.
For example, last_access_time is a timestamp recorded when an XPathRow is used
in the latest probe query. hits is the number of times an XPathRow has been used for
answering subsequent queries. obj_bytes is a size estimation of the data collected
along a particular path. If a path were to be selected as the next victim, this number
gives a hint about how large a fragment would be purged from the XML view. We
also keep track of more global statistics at the query level such as xml_doc_size,
which is the overall document size in bytes, and fetching_delay_cost, the original
query evaluation time.

The considered statistics can be classified into several categories. One category con-
cerns the user access reference pattern, such as the recency value last_access_time
and frequency value hits. The hits measure on an XPathRow is increased by one
each time when it is requested by a probe query. Its last_access_time is updated to
the current time upon such an update. The second category is related to the data
size that would be freed upon a purge, i.e., the obj_bytes on a particular XPathRow
and the xml_doc_size. If two groups of XPathRows have a tie in their frequency
values, the one associated with a larger obj_bytes is replaced. This is because our
fine-grained partial replacement strategy may need to perform path-related-region
subtraction several times to free enough space for a new region. Hence our replace-
ment function is in favor of purging a larger piece at a time for efficiency.

The distance involved in the data transmission and network delay fall into the third
category. We consider the benefits brought by preserving a region by measuring
the loss caused by not caching it, which can be represented by the initial response
delay for answering a query, denoted as fetching_delay_cost. By retaining regions
with longer initial fetching delay, large fetching cost for such regions in the future
could be avoided. Furthermore, we roughly measure the byte fetching_delay _cost
for a particular query by dividing fetching_delay_cost by xml_doc_size (in bytes).
Therefore, the benefits of retaining a particular XPathRow in the query region can
be measured by byte_fetching_delay_cost x obj_bytes. Below, we propose a re-
placement function to calculate the comprehensive utility value of each XPathRow
based on the collected statistics.

hits x fetching_delay_cost x obj_bytes

rp_fun = 1)

aml_doc_size

6 Concerning the enlarged descriptor size caused by this path table structure, we consider
to minimize the space overhead by adopting some indexing or compression techniques.
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Other functions in favor of different scenarios can be easily plugged into our sys-
tem. We have indeed experimentally studied several such functions when designing
this formula.

5.3 The Partial Replacement Algorithm

Containment | probe query, |Update Statistics— — — — —»| gi | xPathRow| hits] last_access]#objgxMLDof
Mapping ;3%
affectedlxpathRows[] of gi f
Re-calculate e
Utility Value (u) | R
1 View Results
’ Sort XPathRows{ ] by u ‘ :
1
nO : 1
s , |
’ Pick Victim XPathRows] ] ‘ Modify Query Descriptor| 1
1
" H Rebl acement
FormFilterQuery | = = = = = = = — = = = = =
’ y purging query "Manager

Fig. 10. The Replacement Control Flow

Figure 10 shows the control flow of the replacement manager in ACE-XQ. After the
statistics information has been updated for those XPathRows involved in a probe
query, the pre-defined replacement function re-calculates their utility values. Only
when there is a need for replacement due to exhausting of the cache capacity, the
replacement manager chooses those XPathRows with the lowest utility value as
the victim XPathRows. It then composes a filter query to remove the fragments
corresponding to these paths from the relevant XML view(s). The query descriptors
of those affected cached queries are also modified accordingly to be consistent
with their changed XML views. The detailed replacement algorithm is described in
Algorithm 1.

Filter Query. Suppose ten queries 1 to Q10 are in the cache after the cache has
been in use for a while. Different utility values are recorded in these queries’ path
tables. Now a query Q11 arrives and there is not enough space in the cache for it.
Based on the lowest utility value, the replacement manager decides that victim@
and victim X PathRows| | are Q1 and [/booklist/entry/Qyear,
/booklist/entry/author [last, /booklist[entry /publisher] respectively (the statis-
tics of @1 and 22 may not be the same as illustrated in Figure 9 any more). To re-
move XML fragments corresponding to victimX PathRows| | from Q1Res.xml,
XML update statements can be adopted [39]. An alternative method is to extract
the parts that are of interest and discard the remainder from the view content with
the help of some filtering mechanism such as the filter query shown in Figure 11.7

T Note that the filter query returns the complement path set of victim X PathRows| ].
The construction of such a filter query utilizes the view DTD knowledge for preserving the
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Algorithm 1 The Replacement Algorithm
Initialize cache capacity cap, replacement function rp_fun.
Buffer incoming queries in a query queue QQ.
loop
while QQ is not empty do
q < pop(QQ)
if g overlaps with a cached query cqg then
Update statistics of overlapped XPathRows| | in cg’s region.
end if
while Not enough space for holding g do
for all CachedQueries do
for all XPathRows do
Invoke rp_fun to calculate the utility value.
end for
end for
victimXPathRows| | < victimXPathRows with lowest utility value.
victimQ < cached query containing victimXPathRows] |.
Formulate filter query to purge fragments related to victimXPathRows[].
Modify query descriptor of victimQ.
end while
Construct a query region for g.
end while
end loop

< booklist >
{for $b in doc(“Q1Res.xml")/booklist/entry
return < entry >
{$v/title} {$b/author/ first} {$bk/rate}
< Jentry >}
< /booklist >

Fig. 11. An Example Filter Query

6 The Analysis of Cache Performance

We have discussed earlier the methodologies adopted by our partial replacement
approach versus the alternative approaches. Here, we attempt to give an analytical
model for better understanding how the caching system interacts with various fac-
tors such as cache size and query access pattern. Based on this model, we analyze
how the cache would behave in the face of different replacement strategies. This
may help us to gain insights into the reason why the cache equipped with our par-
tial replacement strategy can achieve a higher cache hit ratio than the alternative
one.

structural hierarchy in the updated view content.
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6.1 Query Trace Model

We describe the semantic nature of a query trace in terms of query selectivity,
locality and skewness, etc. Suppose there is a sequence of query access requests
for one of N > 1 documents D1,..., DN. Visually, we may imagine the whole
semantic space is set by the source document DTDs. A query can then be seen as
an object with certain spatial expansion like a rectangle region. Query selectivity,
denoted as S, is the size ratio of the query result over the source documents. Assume
the semantic space is normalized, the selectivity of @i, namely S(Q), can then be
used for representing its query region size. S(Q1) is closely related to the query
condition strictness and the projection scope, which can be viewed as the length
and the width of Qi. The query locality is measured by the distance D between a
given query pair. Suppose Q1, Q7 are two queries with Q7 preceding Q7 in a given
query trace. Below we show three scenarios where the computing of D(Qi, Q7)
(i.e., the distance between Qi and Q) takes different approaches.

00 when Qi and Qj are semantically disjoint;
D(Qi,Qj) = S(‘;(J‘.’?r%i) when Qj overlaps with Qi;
1 when Q)j is totally contained within Qi.

The query skewness /C is an overall characteristic of a query trace indicating how
the query regions are distributed in the semantic space. Corresponding to our two-
tier query descriptor scheme, we group queries into a two-tier cluster hierarchy.
Each top-tier cluster (called TTC) corresponds to an individual document. Queries
that involve the same document are collected into one TTC. One query may appear
in more than one TTC. The low-tier clusters (LTC) represent the local “hot spots”
within a specific document. The measurement of K occurs at both tiers. On the
TTC tier, Kt indicates the document access distribution pattern. Certain documents
may have more query accesses than others. Whereas /C/ on the LTC tier hints how
unevenly queries are spread over a particular document.

6.2 Cache Hit Probability

Numerous studies in the web caching field have concluded that web access fol-
lows a Zipf-like distribution [26,25]. That is, the relative probability of a request
for a document is inversely proportional to its popularity rank ¢ (i = 1..N). The
probability Pd(i) of a request for the i’th popular document is proportional to 1/i*
(0 < a < 1). In our context, we think it is appropriate to model the XML doc-
ument access pattern using this Zipf-like distribution. Since « in the distribution
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model implies document access skewness ® , it is closely related to K.

Independent of the document access pattern, we also observe that the average dis-
tance of query pairs within a given document likely indicates the skewness of query
region access distribution. That is, the smaller the average distance, the more inten-
sive is the concentration of query accesses to hot regions. Hence, the indicator of

query region access skewness Kl is Kl = W. In this formula, the nu-
merator is the sum of the inverse of the distances (of all query pairs within a certain
document cluster) adjusted by a parameter 7. The denominator is the number of all
possible combinations of query pairs, assuming m is the number of queries access-
ing the given document). Suppose the region access distribution follows a similar
Zipf-like model, we then compute the probability Pr(j) of a request for the k’th

popular region is proportional to 1/57 (0 < 8 < 1 and /3 closely related to K1).

For Zipf-like distributions, the cumulative probability that one of the top &£ docu-
ments (among the total V documents) is accessed is given asymptotically by:
o(k) = Tk, 2, where Q = (T, 1/i) " ~ (1 — a) /N

Thus ¢(k) =~ (k/N)!~@ (when a = 1, ¢(k) =~ In(k/N)). Because k/N < 1, a
larger o increases ¢(k), meaning more queries focus on a few hot documents. The
probability Pd(i) of an access to the top i’th popular document is Pd(i) = = ~
=2 (&), Similarly, if considering the probability Pr(;) of a query request for the
top j’th popular region within a particular document, we have Pr(j) ~ %(%)ﬂ,
where M is the number of query regions in a document, and j is the parameter
suits the region access distribution in a particular document.

In a query-based caching environment, we are concerned about the popularity rank-
ing of query regions across documents. First, we look at the overall probabil-
ity P(i,j) of a query request for the j’th popular region within the i’th popular
document. Suppose Pd(i) and Pr(j) are independent of each other, we obtain
P(i,j) = Pd(i) x Pr(j) ~ S0 (X)a(M)5 |f the situation is simpler and
a uniform « suits both the document and all the query region access distributions,

P(i,j) ~ (J{;X“])Vz (J‘f:f’)a, which implies a multivariate Zipf-like distribution. We
infer from this equation that if two query regions have the same i x j produc-
tion value (i.e., the document popularity rank times the local query region pop-
ularity rank), then they have the same overall popularity. For such a multivariate
distribution, we have the cumulative probability ¢(k) = {_, 3%, P(i, j), where

txu<k.

This model assumes that the query requests are independent and both the document
and query region access patterns follow the Zipf-like distribution with the same

8 When « is close to 1, the top 1 popular document gets twice query accesses than the next
most popular one. If « is close to 0, likely every document is evenly accessed.
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parameter. It may be not very realistic, but the model is tractable and it is sufficient
to help us understand how the hit ratio can be influenced by various factors.

Correlation between Hit Ratio and Cache Size. Studies of web caching have
found that when the cache size is infinitely large, the correlation between the access
frequency and document size, if any, is weak in general and can be ignored [26].
We believe this finding is valid in our context as well. However, if the cache source
is limited, the Zipf-like distribution will be “cut-off”” and eventually the top ¢ most
popular query region groups ? will fill the cache to its size limit ideally. However, it
is hard to derive ¢ from the cache size C due to the factoring problem. If we assume
that the query region sizes are the same and the factoring can be continuous (not
a realistic assumption though), ¢ is approximated as v/2C due to ¥°¢_, Z;’?Ql =C.
Thus the cumulative probability

o(C) m TV T2 P S P N e

i,7) ~ W

The asymptotic hit ratio H(C') is closely related to ¢(C). If « is very close to 1,
H(C) grows with the cache size C logarithmically, i.e., H(C) ~ In 5. Other-
wise, H(C') cannot easily be approximated by a particular function. However itis

bounded by some polynomial function with a small power, e.g, H(C) < (35)'~.

Correlation between Hit Ratio and Query Pattern. From the hit ratio function,
we can see that the parameter « plays a role in controlling the slope steepness of
the curve. Since % < 1, the closer v is to 1, the smaller 1 — o is and consequently
the larger H(C') gets. As we discussed before, « is related to the document access
skewness Kt and the query region access skewness Kl. Therefore, the more query
requests are concentrated on a few hot spots, the higher hit ratios can be achieved,
ideally. We also observe that, if the overall document size is fixed, N and M will in-
crease when the average individual document size and query region sizes decrease.
With the same cache size and query skewness, H(C') will become smaller. Due to
the close relationship between the average query region size and the query selec-
tivity S as we have discussed earlier, a larger S implies a larger region and thus a
smaller H(C).

6.3 Hit Ratio and Different Replacement Strategies

We have analyzed the cache hit ratio with varied cache sizes, document sizes, query
selectivities and skewnesses. The assumption is that the cache replacement strategy
is nearly ideal and it replaces query regions by strictly following the popularity
order. It is hence unlikely for a real cache to achieve this high expectation. Also,
the concept of query regions used in the model is oversimplified. For example, all

9 If multiple query regions have the same overall popularity, e.g, P(1,6) = P(2,3) =
P(3,2) = P(6,1), we consider them as one query region group.
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queries would have to have the same selectivity to result in the uniform region size.
Furthermore, a query region is the smallest unit and one either exact matches or it is
disjoint with another. There is no notion of partial overlap between query regions. In
this sense, the model cannot be directly applied to our query-based caching context.
However, we could make some adjustment and still use this model to analyze how
the cache would behave differently in the face of different replacement strategies,
in particular for recurring partial overlapping query cases.

Suppose a new query arrives at the cache and it partially overlaps with a cached
one. We now consider a query region consists of only one return path expression.
That is, we associate the concept of query region with our concept of XPathRow.
For an incoming query Qn, it is then viewed as being broken down into a series
of n smaller query regions. Among them, p regions that belong to the overlapping
part with a cached query QQc can be seen as cache hits while the rest as misses.

Imagine Qnew enters a cache where the region-preserving strategy is deployed.
As a result, all n query regions that Qnew is composed of together with those
m composing Qnew are marked with one more hit, even though only p regions
really hit the cache. This is because this region-preserving does not split queries to
indicate different uses of different query regions. This means a unfaithful recording
of the utility values (i.e., the popularity ranks in the model) and would likely impair
the cache performance due to its failing to separate hot-pots from cold-pots.

If the region-splitting strategy is applied, @new would be physically divided into
PQ (containing p regions) and Q-PQ (containing n — p regions). Having overcome
the aforementioned shortcomings of the region-preserving strategy, the region-splitting
however raises a new issue that too many small queries are likely produced from
splitting. Over time, queries in the cache may have been split to be as small as just a
query region unit. In this scenario, the size difference between a new query (which
has not experienced splitting) and a cached query is expected to be big. This is not
desirable when query containment and rewriting is considered. Due to the problem
of query fragmentation, we need to find possibly up to p cached queries for match-
ing them with Qnew’s p regions. This exhaustive search within the cache space
is usually costly, let alone the cost for combining results from p different views.
Therefore, we prefer the cached queries not being overly split as this may possibly
induce extraneous efforts for containment mapping and rewriting 1° .

In our partial replacement strategy, we set up for a query its descriptor in two tiers,
namely corresponding to the query itself and its component query regions. Our
replacement approach overcomes both disadvantages of the region-preserving and
the region-splitting strategy due to its strategy of separating the notion of physical
splitting from that of statistics value recording. This way, the utility values can

10 Even if we can adopt the “first-found” policy to randomly picks one candidate cached
query for query rewriting, the cache utilization would be very inefficient since the small
cache query size further restricts the possibly overlapping region size
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be computed at the finer query region granularity without necessarily splitting the
query physically. The coarser-level query splitting only occurs when replacement
is inevitable. When it happens, the statistics recorded at the finer-level regions help
to replace fairly the less popular regions and preserve the more popular ones. A
by-product of this replacement process is an “optimized” query in the sense that
the “ fluff” (i.e., less useful portions of query regions) is removed from the query to
result in an overall more popular query. In summary, the cache utility is improved
due to the fine-grained optimization of each individual query in the cache.

7 Experimental Studies

7.1 System Setup

We have implemented our ACE-XQ [9] in Java 1.3. We utilize the Quilt parser and
Kweelt query engine available at: http://cheops.cis.upenn.edu/Kweelt to analyze
and evaluate the input XQuery. To realize the type-enhanced query containment
and rewriting algorithm, we deploy the type inference and subtyping mechanisms
provided by the XDuce system [20] in ACE-XQ.

We installed the Kweelt query engine on a local UNIX machine where the ACE-
XQ system resides, and another one on a remote web server where a set of XML
documents is hosted. We have validated the correctness of our XQueries rewritten
by ACE-XQ by comparing their results with those produced by directly evaluating
the original query against the remote documents. ACE-XQ has been deployed as
a testbed for various experimental studies. Our experiments investigate the query
performance gain achieved by answering queries using cached views. They also
compare our partial replacement strategy with the total replacement strategy.

In the experiments, we implemented our own XML data generator for generating
data sets conforming to the bibliography DTD bib.dtd, which is the example XML
document DTD used for the “XML Query Use Case” [42]. Our XML data generator
enables us to produce source XML documents satisfying certain characteristics by
tuning the input parameters. This way, we have a full control of the data value
range, the number of elements of a certain type, etc.

7.2 Experiments on Caching versus Non-Caching

In this experiment, we set the cache size to unlimited, which means there will
not be any replacement for any query workload. We design three types of query
workloads, each containing 40 XQueries. In the first query workload, by shrinking

23



of predicate data range and removing returned XPaths, the subsequent incoming
queries are designed to be totally contained in one of the previous queries in the
trace. Therefore, each time the new query can be answered by a previously cached
query. The second query trace has new queries partially overlapping with the pre-
vious ones. Some of them have overlapping value predicates, others have overlap-
ping return expressions. For the third query workload, we randomly select path
expressions to be returned and predicate data values to be applied according to the
source XML structure and data value domain. This way we generate a set of ran-
dom XQueries. We vary the source document size for 10 times and run these three
traces on them. We test the average query response time for each query workload
to compare the performance when using the ACE-XQ system versus when directly
fetching the result from the remote server.
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Fig. 12. Query Response Delays for a Variety of User Traces: Caching versus Non-Caching
Architecture.

We show in Figure 12 the query response time for these three different query work-
loads in two scenarios, i.e., when using the ACE-XQ system versus when directly
fetching the result from the remote server without using the cache. In both scenar-
i0s, the Kweelt engine is deployed locally but the source XML file is on a remote
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web server. Consistent with our expectation, the results show that the average re-
sponse time is reduced when utilizing the ACE-XQ caching system for all three
workloads. In particular for the query workload with only contained queries in Fig-
ure 12(a), the reduction in response time delay is significant. We also observe that
the response times in both scenarios get longer when the sizes of the source XML
documents increase.

For the remainder of our experimental study, we fix the size of the source XML
documents and perform the experiments focusing on the comparison of the perfor-
mance of partial replacement and total replacement strategies.

7.3 Experiments on Replacement Strategies

We now compare the performance of the two different replacement strategies, i.e.,
partial replacement versus total replacement, that are employed in ACE-XQ when
the cache space is limited. To be concrete, we generate two query traces to com-
pare the query performance of alternative replacement strategies when the cache
size varies. Each query trace includes 40 queries that are specified against 10 differ-
ent, although about equally sized, XML documents located on remote web servers.
Each XML document is around 180K bytes (the minimum size of the XML doc-
uments tested in the first experiment), and the size of all XML documents com-
bined in total is about 1.8M bytes. We expect that our experimental results such as
hit count ratio and hit byte ratio obtained for small XML source documents would
scale in proportion to the XML document size given static selectivity of each XPath
in the source documents.

In the first query trace, queries are randomly selected from all possible valid user
queries against source XML documents. The second query trace contains only re-
fining queries on different XML source files, i.e., most subsequent queries are con-
tained in some previous queries requesting the same documents. We refer to the
first query trace as a random trace and the second one as a refining trace !'. Prac-
tical scenarios for both query traces can easily be found. For example, in a web
search, a user may issue a query with conditions expressing his/her main concerns
before he/she has enough knowledge about the queried web source. The user may
then refine the query conditions over time based on the information gained from
previous query results. This would form a query trace of the refining type with the
queries having more and more refined conditions and thus smaller return results
overtime.

In both query traces, we control the query selectivity to range from 15% to 70%.

1 Actually in the case when the partial replacement strategy is applied, we cannot guaran-
tee that the subsequent queries are totally contained in previous ones, since part of a cached
query result may have already been replaced.
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That is, for a query imposed against a source document of 180K bytes, the returning
result size varies from 30K bytes to 130K bytes. Initially, we set the cache space
to be 150K bytes and then increase it each time by 50K bytes until it reaches 1.2M
bytes. That is, for each designed query trace, our smallest cache size is still large
enough to hold at least one query result, while the largest cache may approximately
hold the most frequently queried fragments of all the source XML documents in
the most ideal scenario. In the following experiments, we employ three metrics as
shown in Figure 13 to measure the query performance.

For partial replacement experiments, we keep track of all the access statistics on
the XPathRow table and use statistic of each XPath in replacement decision mak-
ing. We also keep track of statistics for each query result and use them for total
replacement.

Metric Meaning Formula
(acronym)

Hit Count | Number of queries that re-use cached .
Ratio query results compared to total num- | _ZEacreltes

(HCR) ber of asked queries

Hit Byte | Average bytes of cached query re-
Ratio sults that are re-used by a subsequent
(HBR) query compared to cache size

E Reused_Bytes
#Total_QueriesxCache_Size

Response | Average response time per query in a | s~ gesponse. Time
Time (RT) | query trace #Total-Queries

Fig. 13. Query Performance Metrics

As shown in the replacement function rp_fun in Section 4, the usage information
hits (hit counts) recorded in the path table of a cached query is one of our main
statistics in determining the victim XPathRows in our partial replacement strategy.
In other words, the LFU policy is incorporated into our cache replacement strategy
for the selection of the victim objects, being XPathRows if the partial replacement
strategy is employed in ACE-XQ or complete cached query regions if the total
replacement strategy is deployed instead.

7.3.1 Hit Count Ratio Comparison of the Two Replacement Strategies

In this set of experiments, we compare the query performance of the two replace-
ment strategies in terms of the Hit Count Ratio (HCR). Each time when a new query
is contained or overlapping with one of the queries in the cache and hence a probe
query is generated, we consider this a cache hit. HCR refers to the percentage of
such hits over the total number of queries in the given workload (see Figure 13).

Figures 14(a) and 14(b) show the HCR for the refining and random query traces
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Fig. 14. HCR for Two Replacement Strategies With Varying Cache Sizes

respectively. The two different replacement strategies we employed are partial and
total replacement. For both strategies and for both query traces, HCR increases
with the growth of the cache size. Overall, we see that HCR of partial replacement
is always higher than that of total replacement. From both Figures 14(a) and 14(b),
we see that the relative HCR improvement of the partial replacement compared to
the total replacement is declining when enlarging the cache size. The “zigzag” for
the small cache mainly is due to the “thrashing” activity of the cache when it is
rather small and not stable. This also explains the unstable curves for the relative
HCR improvement of our partial replacement over the total replacement during
these stages. However, the relative HCR improvement is in general positive, indi-
cating that our partial replacement strategy always wins over the total replacement
strategy.

As shown in Figures 14(a) and 14(b), our partial replacement outperforms the total
replacement with a relative HCR improvement of 40%-50% for both query traces
when the absolute HCRs for both strategies range from 30% to 50%. This would
happen for a medium size cache, when replacements may not occur that frequently
for both strategies. In this case, the cache may hold more valuable queries when the
partial replacement is applied than when the total replacement is used. The reason
is that the partial replacement can adjust the cached queries and preserve only the
more useful partial queries. This way, a given size cache holds likely more but
smaller queries for the partial replacement than for the alternative total replacement.
While for a very large cache, the cache space resource is not precious any more.
The query region refinement pursued by partial replacement becomes less critical.

As we have expected, both replacement strategies are especially beneficial for the
refining query trace. The sequence of queries in this trace are designed to have
more contained query cases than the random trace and hence more cache hits likely
happen in the refining trace. We also see that the relative improvement of the partial
replacement over the total replacement for the refining query trace is somewhat
better than that for the random query trace. In this sense, partial replacement works
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more precisely to discover the “hot portions” of queries that are more likely to be
used by the subsequent queries in a refining query trace.

7.3.2 Hit Byte Ratio Comparison of the Two Replacement Strategies

We now use the metric of Hit Byte Ratio (HBR) to compare the performance of
the two different replacement strategies. The two curves in Figure 15 represent
the HBR for the partial and total replacement strategies respectively. When the
cache size is small, the HBR is shown to be about 10% and 8%, with the partial
strategy wining over the total one by 2%. With an increase of the cache size, both
HBRs slowly decline to about 4% when the cache size reaches 1.2M bytes. The
second chart in Figure 15 illustrates the relative HBR improvement of the partial
replacement over the total replacement for the refining query trace. This is shown
to be above 30% when the cache is roughly of medium size.
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Fig. 15. Refining trace: HBR for Two Replacement Strategies With Varying Cache Sizes

We then repeat this experiment with the random query trace. The HBR results are
shown in Figure 16. The HBRs for both replacement strategies follow the same
trend as for the refining trace, decreasing when the cache size becomes gradually
larger. Although the partial replacement still outperforms the total replacement in
most cases, the relative HBR improvement is shown to be less significant than that
for the refining trace.

We can also observe that in some cases when the cache size is very large, the partial
replacement may not always work better than the total replacement. We interpret
this phenomenon as below. When applying the partial replacement strategy for a
large cache, the cached queries tend to become smaller due to the partial replace-
ment even though this is not necessarily needed given the availability of cache
space. Therefore, even if the hit count ratio (HCR) of the partial replacement may
be slightly higher than that of the total replacement, the average bytes used by each
cache hit in a partial replacement scenario are likely smaller than those used in the
total replacement.
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Fig. 16. Random trace: HBR for Two Replacement Strategies With Varying Cache Sizes

7.3.3 Response Time Comparison of the Two Replacement Strategies

In the last set of experiments, we study the effects of the two replacement strategies
on the query performance in terms of response time. This intuitively has a close
relationship with the HCR and HBR measures. Since the response time for a local
probe query is usually much smaller than that for a query fetching results across the
Internet, the higher the HCR or the HBR is, the larger a reduction in the average
query response time is likely achieved.

In both Figures 17 and 18, we compare the response times under three scenarios: 1)
retrieving the query answers directly from the remote data server while bypassing
the ACE-XQ system; 2) utilizing our ACE-XQ caching system supported by the
total replacement strategy; 3) utilizing our caching system supported by the partial
replacement strategy. Figure 17 shows that the response time for the bypassing sce-
nario (without using the caching system) is roughly the same, i.e., about 5 seconds.
The partial replacement strategy helps to improve the query performance by about
25% to 35% in terms of the average reduction in response time, while the total
replacement achieves about 15% to 25% improvement on average.
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Fig. 17. Refining trace: RT for Two Replacement Strategies With Varying Cache Sizes

29



‘ —+— Total Replacement = Partiall Replacement —+—ByPassing ‘ —+—Total Replacement —=—Partiall Replacement ‘
6 & 50%
£ 45%
5 ——— s a0% A . e et
3 N P—
3 35%
@4 2
° n
: M 8 s0% - —
3 e — S 25% /‘\_/ /
>
g 20% 7 ol
2
g2 15%
I ’/4—/
4 8 10%
PR AN
0 2 0%
oooooooooooooooooooooooooooooooooooooooooooo
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
PREBBSIETBBE8E8RLLBEZEEST 2ER PREB8929BBBERILE88838888 L8
Cache Size(KB) Cache Size(KB)

Fig. 18. Random trace: RT for Two Replacement Strategies With Varying Cache Sizes

These experiments show that our partial replacement strategy outperforms the total
replacement in most of the tested scenarios. The former strategy will perform es-
pecially better than the latter for a medium sized cache, neither too small to hold
the result for a single query, nor too huge to make a replacement of necessity since
all the query results can be held in the cache. We can have over 40% relative im-
provement on hit count ratio and 15%-30% on relative improvement on hit byte
ratio under this scenario. It is also clear that the partial replacement will be more
useful when the user query trace is in the favor of refining queries. So when there
are some queries totally contained in previous ones in the user access history, the
partial replacement will win.

8 The Related Work

8.1 XML Query Containment

The problem of query containment is fundamental to query evaluation and opti-
mization in database systems. This problem was first studied by Chandra and Mer-
lin [7] for conjunctive queries, whose expressive power is equivalent to that of
the Select-Project-Join (SPJ) queries in relational algebra. A flurry of extensive
research efforts have followed to investigate all the relevant aspects ranging from
the complexity theory to its practical applications in optimizing queries, answering
queries using views and detecting update relevancy.

The emerging tree-oriented XML data model and its compatible query languages
has stirred a re-newed interest in studying the query containment problem in the
XML setting. Several research projects have started studying containment for the
core query mechanism over semistructured data, namely regular path queries. Such
regular path expressions also serve as the navigation facility commonly used in
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many recently proposed XML query languages such as XPath [43], XML-QL [15],
XQL [36] and XQuery [44]. In general, the complexity of containment is NP-
complete for the relational conjunctive query and even goes up to ExpSpace for
conjunctive regular path queries even with inverse operators [3]. Significant con-
tributions have been made [1,18] to identify the fragments of regular path queries
with their corresponding containment complexities.

In ACE-XQ, we hence base our XQuery containment work on the state-of-the-art
theoretical research in query containment for XPath and regular path expressions.
To trade-off the expressiveness and tractability, we consider only the negation-free,
disjunction-free and loop-free XPath path expression in XQuery. We allow wild-
cards “*”, branches “[ |” and descendant-or-self axis “//” in XPath path expression.
Such a fragment of XPath path expression is identified to form a tractable class and
sometimes is even PTIME efficient [18].

There is a focused interest in the containment problem for XPath path expression
[18], regular path expressions [3], regular-path-expression based query languages
such as StruQL [17] and TSL [34] over semi-structured databases and the tree pat-
tern queries in XCacher [22]. However, regular path expressions alone are not suffi-
cient to be used as an XML view specification language. Simple tree pattern queries
[22] are incapable of restructuring the results and hence not appropriate to serve
as a view specification language either. In contrast, our semantic caching system
ACE-XQ targets an XML query language in the real-world, i.e., the standard XML
query language XQuery composed of nested block-based structures. To our best
knowledge, no work so far has tackled this issue for XQuery, which is obviously of
practical interest due to its increasing popularity.

Empowered by nested FLWR clauses, the expressiveness of XQuery is beyond pure
tree pattern matching and other navigation-based languages mentioned above in
that it is a strongly typed query language with a hybrid of features from both logic
and functional programming languages. For example, variable-based XQuery ex-
pressions induce variable dependencies, and the nested FLWR structure implies
functional control flow. Our containment checking algorithm hence takes into con-
sideration both variable dependencies and control flow dependencies. In XCacher
[22], containment mapping is based on the graph homomorphism by simply match-
ing labels between the input tree pattern queries. The containment checking of two
simple queries is mainly based on the logical implications between their value con-
ditions. Whereas the containment mapping module in our ACE-XQ system incor-
porates the type inference and subtyping mechanisms to facilitate our containment
checking process. It can handle complex queries with nested structures and the re-
structuring capability. In this sense, our ACE-XQ provides a more comprehensive
XQuery-based caching system than XCacher.
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8.2 Cache Space Management and Replacement Strategies

As the cache space is a limited resource, the cache may need to discard some data to
free space for new data. To this end, various replacement schemes have been studied
[37,33,23,4,35,28]. Yet, the Least Recently Used (LRU) replacement scheme is still
widely used due to its simplicity. While simple, it adapts well to the changes of the
workload, and has been shown to be effective when recently referenced objects are
likely to be re-referenced in the near future [13]. A main drawback of the LRU
scheme, however, is that it cannot exploit regularities in region accesses such as
sequential and looping references and thus yields degraded performance [23] in
such cases. Instead of using recency as the parameter for replacement, the Least
Frequently Used (LFU) replacement scheme [37] uses reference frequency. LFU
assumes that the more often a query is being used to answer sequential queries, the
more likely it is to be used to answer a future query. However, a potential hole of
LFU is that some data may accumulate its use to a high number and then is never
used again. When applying the LFU scheme, such data tend to be more difficult to
purge to free space for other useful data.

The varieties of the LRU and LFU schemes include the LRU-K scheme [33], the
IRG scheme [35] and the LRFU scheme [28]. The LRU-K scheme bases its replace-
ment decision on the regions’ kth-to-last reference. The IRG scheme [35] considers
the inter-reference gap factor and the LRFU scheme [28] considers both the re-
cency and frequency factors. These schemes, however, show limited performance
improvements because they do not consider regular references such as sequential
and looping references. There are other proposed replacement schemes oriented to
the reference regularities. For example, the 2Q scheme [23] can quickly remove
from the cache sequentially-referenced blocks and looping-referenced blocks with
long loop periods. The SEQ scheme [35] detects long sequences of page faults and
applies the Most Recently Used (MRU) scheme to those pages.

In the Web context, other replacement functions have been proposed to address the
size and latency concerns. Among them, GreedyDual [46] is a simple yet popu-
lar algorithm which handles variable-cost cache replacement. One of its extended
versions GreedyDual-Size [5] combines locality, size and latency cost concerns to
achieve a better performance in terms of hit ratio and latency reduction.

Different from the traditional replacement schemes designed for replacing buffer
pages [6] or data tuples [16] in the database systems, a semantic caching system
based on the relational model replaces query-based regions. That is, the hits and
recency values are recorded for each query and the replacement unit is the query
descriptor and the associated query results.

The partial replacement strategy utilized in our semantic caching system ACE-XQ
maintains user access statistics for finer-grained fragments within a query region
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at the path level. Our replacement function is based on several parameters such as
reference frequency, initial fetching cost and the number of objects involved. For
example, since the number of objects along different paths may differ significantly,
our replacement function favors removing a larger fragment in case of a tie of other
statistics values of two XPathRows for replacement efficiency.

In XCacher [22], all cached queries are integrated to be represented by one modified
incomplete tree (MIT). Corresponding to the different value domains specified in
consecutive queries, a set of disjunctive conditional tree types are specified in MIT.
The concept of specialized tree type in XCacher is similar to that of query region in
ACE-XQ. Hence their replacement by utilizing the update statement is analogous
to our partial replacement strategy in a sense. However, when a new query enters
XCacher, only the incremental value differences caused by it with respect to MIT
are specialized into new disjunctive types to be added into MIT. This means that
they do not identify the overlapped region. Thus there is no natural way to record
the relative high usage of the overlapped fragment in XCacher. In this sense, their
replacement strategy is not as fine-grained as our replacement, which may incorpo-
rate a variety of replacement policies.

9 Conclusion

We have proposed a fine granularity replacement strategy and deployed it in our
ACE-XQ XQuery caching system. As opposed to the total replacement at the query
level, this strategy maintains utility values at the granularity of the XPath structures
of a cached view. That is, our partial replacement discards the non-beneficial XML
fragments while retaining the useful portions within the XML view document.

In this paper, we also report on extensive experiments which are conducted to com-
pare the performance of the partial replacement strategy and the total replacement
strategy. The experimental results clearly demonstrate the advantages of the partial
replacement over the total replacement in most scenarios, in terms of the query per-
formance measured by hit count ratio, hit byte ratio and the response time. These
experimental results may help us in determining the deployment of favorable re-
placement strategies given the particulars of the scenarios.

References

[1] A. Deutsch and V. Tannen. Containment of Regular Path Expressions under Integrity
Constraints. In 8th Int. Workshop on Knowledge Representation Meets Databases
(KRDB), Rome, Italy, pages 1-11, June 2001.

33



[2] P. Buneman andS. Davidsonand W. FanandC. Hara. Keys for XML. In World Wide
Web Conference (WWW10), Hong Kong, China, pages 21-36, 2001.

[3] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. View-Based Query
Processing for Regular Path Queries with Inverse. In Symposium on Principles of
Database Systems (PODS), Dallas, Texas, pages 58-66, May 2000.

[4] P. Cao, E. W. Felten, , and K. Li. Application-Controlled File Caching Policies.
In Proceedings of the USENIX Summer 1994 Technical Conference, pages 171-182,
1994,

[5] P.Caoand S. Irani. Cost Aware WWW Proxy Caching Algorithms. In Proceedings of
USENIX Symposium on Internet Technologies and Systems (USITS), pages 193-206,
1997.

[6] M. J. Carey, M. J. Franklin, and M. Zaharioudakis. Fine-Grained Sharing in a Page
Server OODBMS. In SIGMOD, Minneapolis, Minnesota, pages 359-370, 1994.

[7] A. K. Chandra and P. M. Merlin. Optimal Implementations of Conjunctive Queries in
Relational Data Bases. In STOC, pages 77-90, 1977.

[8] C. M. Chen and N. Roussopoulos. The Implementation and Performance Evaluation
of the ADMS Query Optimizer: Integrating Query Result Caching and Matching. In
EDBT, Cambridge, United Kingdom, pages 323-336, Mar. 1994.

[9] L. Chen and E. A. Rundensteiner. ACE-XQ: A CachE-aware XQuery Answering
System. In Proceedings of the 5th International Workshop on the Web and Databases
(WebDB), Madison, WI, pages 31-36, 2002.

[10] L. Chen and E. A. Rundensteiner. A Semantic Caching System for XQueries.
Technical report, Computer Science Department, WPI, 2003. in progress.

[11] L. Chen, E. A. Rundensteiner, and S. Wang. XCache - A Semantic Caching System
for XML Queries. In SIGMOD demonstration paper, Madison, WI, page 618, 2002.

[12] L. Chen, S. Wang, and E. A. Rundensteiner. A Fine-Grained Replacement Strategy for
XML Query Cache. In 4th Intl. Workshop on Web Information and Data Management
(WIDM’02), McLean, Virginia, pages 76—83, November 2002.

[13] E. G. Coffman and P. J. Denning. Operating Systems Theory. Prentice-Hall
International Editions, 1973.

[14] S. Dar, M. J. Franklin, and B. Jonsson. Semantic Data Caching and Replacement. In
VLDB, Bombay, India, pages 330-341, 1996.

[15] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for
XML. In Proceedings of the 8th International World Wide Web Conference (WWW-8),
Toronto, Canada, volume 31, pages 1155-1169, 1999.

[16] D. DeWitt, P. Futtersack, D. Maier, and F. Velez. A Study of Three Alternative
Workstation-Server Architectures For Object-Oriented Database Systems. In VLDB,
Queensland, Australia, pages 107-121, Aug. 1990.

34



[17] D. Florescu, A. Levy, and D. Suciu. Query Containment for Conjunctive Queries
With Regular Expressions. In Symposium on Principles of Database Systems (PODS),
Seattle, Washington, pages 139-148, June 1998.

[18] G. Miklau and D. Suciu. Containment and Equivalence for an XPath Fragment. In
Symposium on Principles of Database Systems (PODS), Madison, Wisconsin, pages
65-76, June 2002.

[19] H. Hosoya and B. C. Pierce. XDuce: A Typed XML Processing Language. In WebDB,
Dallas, Texas, pages 111-116, May 2000.

[20] H. Hosoya and J. Vouillon and B. C. Pierce. Regular Expression Types for XML,
Montreal, Canada. In International Conference on Functional Programming (ICFP),
pages 11-22, 2000.

[21] L. M. Haas, D. Kossmann, and I. Ursu. Loading a Cache With Query Results. In
Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, pages 351-362,
1999.

[22] V. Hristidis and M. Petropoulos. Semantic Caching of XML Databases. In 5th
International Workshop on the Web and Databases (WebDB), Madison, Wisconsin,
pages 25-30, June 2002.

[23] T. Johnson and D. Shasha. 2Q: A Low Overhead High Performance Buffer
Management Replacement Algorithm. In Proceedings of the 20th International
Conference on VLDB, pages 439-450, 1994.

[24] A. M. Keller and J. Basu. A Predicate-based Caching Scheme for Client-Server
Database Architectures. The VLDB Journal, 5(1):35-47, 1996.

[25] L. Breslau and P. Cao and L. Fan and G. Phillips. the Implications of Zipf’s Law for
Web Caching. In WWW Caching Workshop, Wisconsin, MI, June 1998.

[26] L. Breslau and P. Cao and L. Fan and G. Phillips. Web Caching and Zipf-like
Distributions: Evidence and Implications. In INFOCOM (1), New York, NY, pages
126-134, 1999.

[27] P. A. Larson and H. Z. Yang. Computing Queries from Derived Relation. In VLDB,
Stockholm, Sweden, pages 259-269, Aug. 1985.

[28] D. Lee, J. Choi, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. On the Existence
of a Spectrum of Policies that Subsumes the Least Recently Used (LRU) and Least
Frequently Used (LFU) Policies. In Proceedings of the 1999 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pages 134-143,
1999.

[29] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering Queries Using Views.
In PODS, San Jose, CA, pages 95-104, June 1995.

[30] M. Fernandez and J. Simeon and P. Wadler. A Semi-monad for Semi-structured Data.
In ICDT, London, UK, pages 263-300, January 2001.

35



[31] G. W. Manger. A Generic Algorithm for Merging SGML/XML-Instances. In
XMLEurope 2001, Berlin, Germany, 2001.

[32] I. Manolescu, D. Florescu, and D. Kossmann.  Answering XML Queries on
Heterogeneous Data Sources. In Proceedings of the 27th VLDB Conference,
Edinburgh, Scotland, pages 241-250, 2001.

[33] E. J. O Neil, P. E. O Neil, and G. Weikum. The LRU-K Page Replacement Algorithm
for Database Disk Buffering. In SIGMOD, pages 297-306, 1993.

[34] Y. Papakonstantinou and V. Vassalos. Query Rewriting for Semistructured Views. In
SIGMOD, Philadelphia, USA, pages 455-466, 1999.

[35] V. Phalke and B. Gopinath. An Inter-Reference Gap Model for Temporal Locality in
Program Behavior. In Proceedings of the 1995 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 291-300, 1995.

[36] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL).
http://www.w3.0rg/TandS/QL/QL98/pp/xgl.html.

[37] J. T. Robinson and M. V. Devarakonda. Data Cache Management Using Frequency-
Based Replacement. In SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 134-142, 1990.

[38] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On Rules, Procedures,
Caching and Views in DataBase Systems. In SIGMOD, Atlantic City, NJ, pages 281—
290, May 1990.

[39] I. Tatarinov, Z. G. lves, A. Y. Halevy, and D. S Weld. Updating XML. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Santa
Barbara, CA, pages 413-424, May 2001.

[40] V. Benzaken and G. Castagna and A. Frisch. Regular Language Description for XML
(RELAX). In Technical Report, ISO/IEC DTR 22250-1, 2001.

[41] V. Benzaken and G. Castagna and A. Frisch. Semantic Subtyping. In IEEE Symposium
on Logic in Computer Science (LICS’2002), Copenhagen, Denmark, pages 137-146,
July 2002.

[42] W3C. XML Query Use Cases, W3C Working Draft 02, May, 2003.
http://mww.w3.0rg/TR/Xquery-use-cases.

[43] W3C. XML Path Language (XPath)Version 1.0. W3C Recommendation.
http://mww.w3.0rg/TR/xpath.html, March 2000.

[44] W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/,
December 2001.

[45] S. A. Yahia, S. Cho, L. V. Lakshmanan, and D. Srivastava. Minimization of Tree
Pattern Queries. In SIGMOD, Santa Barbara, California, pages 497-508, June 2001.

[46] N. Yong. On-line caching as cache size varies. In In the 2nd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 241-250, 1991.

36



