
A Fine-Grained Replacement Strategy for XML Query
Cache

�

Li Chen, Song Wang, Elizabeth Cash, Burke Ryder, Ian Hobbs and Elke A. Rundensteiner
Department of Computer Science

Worcester Polytechnic Institute, Worcester, MA 01609–2280�
lichen � songwang � lizesc � jryder � ianh � rundenst � @cs.wpi.edu

ABSTRACT
Caching popular queries and reusing results of previously com-
puted queries is one important query optimization technique, es-
pecially in modern distributed environments such as the WWW.
Based on the recent proliferation of XML data and the emergence
of the XQuery language, we are thus developing a query-based
caching system for XQuery queries, called ACE-XQ. ACE-XQ ap-
plies innovative query containment and rewriting strategies to an-
swer incoming user queries based on the cached XQueries, when-
ever possible, instead of accessing remote XML data sources.

To manage the space of the cache, a straightforward application
of traditional replacement strategies would correspond to removing
a complete cached query and its derived XML document as a whole
when space needs to be freed. This coarse granularity however
does not match well with the typical access pattern of web searches
where new queries often partially overlap with cached queries.

In this paper, we propose a novel replacement strategy appro-
priate for such query-based XML caching systems. In particular,
we collect user access statistics at the granularity of the XML path
structure instead of the complete XML query regions. We then
apply a more fine-grained replacement strategy that purges XML
fragments off a cached region instead of the whole XML document
and accordingly adjusts the query descriptor. This may better cap-
ture the user access patterns since more frequently used XML doc-
ument fragments are likely to remain in the cache while other less
beneficial parts are purged. This approach has been implemented in
our ACE-XQ System. Preliminary experiment results illustrate the
performance improvement achievable by our fine-grained replace-
ment strategy over the one which replaces a whole XML view at a
time when the cache size is relatively large.

�
This work was supported in part by the NSF NYI grant IIS-

979624. Li Chen would like to thank IBM for the IBM corporate
fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’02, November 4–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

Categories and subject descriptors: H.2.3 [DATABASE MAN-
AGEMENT]: Languages—Query languages; H.2.4 [DATABASE
MANAGEMENT]: Systems—Query processing

General Terms: Algorithms, Languages, Management, Perfor-
mance

Keywords: XML, XQuery, Semantic Caching, Query Contain-
ment, Query Rewriting, Cache Replacement Strategy

1. INTRODUCTION

1.1 Background on Query Caching
Due to the growing demand by web applications for retrieving

information from multiple remote XML sources, it becomes more
critical to improve the efficiency of current XML query engines
by exploiting caching technology to reduce the response latency
caused by data transmission over the Internet. Inspired by the se-
mantic caching idea [4], which utilizes cached queries and their
results to answer subsequent queries by reasoning about their con-
tainment relationships, we propose to build such a caching system
to facilitate XML query processing in the Web environment.

One major difference between semantic caching systems [4, 10]
and the traditional tuple [12, 5] or page-based [2] caching systems
is that the data cached at the client side of the former is logically
organized by queries, instead of physical tuple identifications or
page numbers. To achieve effective cache management, the access
and management of the cached data in a semantic caching system
is typically at the level of query descriptions. For example, the
decision of whether the answers of a new query can be retrieved
from the local cache is based on the query containment analysis of
the new query and the cached ones, rather than by looking up each
and every tuple or page identification of objects that could possibly
answer a current user request. An important responsibility of cache
management is to determine which data items should be retained
in the cache and which ones should be replaced to make free space
for new data, given limited cache space. Most naturally, the data
granularity for replacement in a query-based caching system is the
query and its associated result.

The semantic caching idea has been extensively studied in the re-
lational context [4], where tuples satisfying the predicates imposed
by a relational conjunctive query are stored in a table format in the
cache. However, query evaluation and containment dealing with
tree-structured XML data differ in their nature and difficulty from
those in the relational setting. The essential capabilities of an XML
query are pattern matching and result construction to extract the
desired XML fragments from the complex nested XML data tree
and then to properly organize the possibly nested view structure of
the result XML document.

1.2 Introduction of ACE-XQ
To meet this challenge, we are developing the first XML query-

based caching system, named ACE-XQ [8, 9], to realize more so-
phisticated query containment and cache management issues in the
XML context. In ACE-XQ, queries and views are both expressed in
XQuery, a quickly thriving XML query language proposed by W3C
as the standard [18]. The query descriptions in the ACE-XQ system
encode the query constructs necessary for capturing the semantics
used in the decision for query containment. While [8] describes the
XQuery containment and rewriting techniques in ACE-XQ, in this
paper we focus on cache management of ACE-XQ, in particular the
replacement strategy.

1.3 Drawbacks of Replacement at Query Level
Typically, the replacement manager helps to decide what to re-

tain in the cache and what to discard in case of a full cache. Since
subsequent queries are often conceptually subsumed by or over-
lapped with previously cached queries, the semantic regions may
be managed in two ways. The first solution is to decompose the
containing query into an overlapping part which corresponds to the
probe query and a non-used part which is the difference between
the original query and the probe query. In this scheme, a uniform
utility value is maintained for each query. When the cache space
is full, a victim query is picked by the replacement manager to be
discarded from the cache to free room for the new query. However,
such a solution entails a large decomposition overhead each time
when a new query is overlapped with the cached queries. Also, it
would result in more and more smaller region fragments over time
which are less possibly useful in answering future queries.

An alternative solution is to tolerate reasonable redundancy in
cached queries. Then a straightforward application of replacement
would be to replace a complete query (the same one as originally
cached) and its associated XML document at each iteration. How-
ever, the data granularity of a whole XML document handled in
such a replacement strategy is too coarse for “large” size XML doc-
uments. This would impact the cache space utilization. Also, such
a replacement strategy doesn’t reflect the contribution of different
XML regions in a cached XML document which may participate
in answering different subsequent queries. The replacement in the
granularity of complete XML documents hence suffers apparent
drawbacks.

1.4 Our Partial Replacement Approach
We now propose a refined replacement strategy that records util-

ity values for finer regions of existing cached views in terms of
their internal structure rather than assigning a uniform value for the
whole cached query. To be precise, we attach to each query region
a detailed path table listing all paths returned in the query. When a
cached query contains or partially overlaps a new query, the utility
statistics of those paths requested by the probe query are updated,
however without splitting the cached query. When the cache is full,
the replacement manager chooses paths of query regions with the
lowest utility value. It then composes a filter query to remove the
XML fragments corresponding to those paths from the cached view
document. The relevant query descriptors are also modified accord-
ingly to be consistent with the changed result XML documents.

In this proposed replacement scheme, we utilize the view struc-
ture to maintain utility values at a finer granularity than complete
query descriptions. This way, the replacement helps to maintain
real “hot” queries (although in their refined descriptions) within
the cache while it avoids query splitting which may cause too many
small region fragments with little use for answering future queries.

1.5 Organization of the Paper
In the rest of the paper, we will explain the fine-grained replace-

ment strategy (also called partial replacement) deployed in our
XML query-based caching system – ACE-XQ. We have also im-
plemented the complete region replacement strategy (called total
replacement) and compare both strategies. Our experiments show
that when the cache is relatively large, the partial strategy results
in a better cache performance in terms of query response delay and
hit ratio than the total replacement.

2. RUNNING EXAMPLE OF XQUERY CON-
TAINMENT AND REWRITING

Previous work on query containment has considered queries ex-
pressed in either relational algebra or datalog. We say that ���� �	� if and only if there is a containment mapping from Vari-
ables (� �) to Variables (� �) [3]. However, the research for XML
query containment is still in its infancy due to that the complex-
ity of the problem comes with the extra expressiveness of pattern
matching based on XML hierarchy and result construction. For ex-
ample, a user may want to use � � (shown in Figure 1) to find in the
bib.xml document the books that are highly rated (4.5 out of 5)
by another resource reviews.xml. Suppose the returning result
XML document is stored as Q1Res.xml in the cache. It contains a
list of such goodbooks with their title, author and price
information.

���������������������� "!#!%$'&"(�(���)%�+* �,��-.(��/)%�0* 1"-3254 4768(�(��9����:<;����4<���=���������� "!#!%$'&"(�(�>�?,@�)%?,ACB�* �,��-.(�>�?,@�)%?,ACB�* 1D-3254 4%68(�(��9����:EGFIHJKHL���9(�!M)N!M2O?CPG����4%(�!M)N!M2N?RQC�3SG����47(�>�?,@�)%?,AC(�>�T�!8?VUXW"* YKHKZJ[�K�]\N^_�������9����:a`M����(�!M)O!M2N?�;,���9(0$_>�)%�,?\%(�^�������������:_`
Figure 1: An Example XQuery �b�

� � performs a “join” of two XML data sources conforming to
different DTDs. The traditional containment mapping [3] is not
directly applicable to such tree structure-based XML queries since
mapping atoms in relational queries are flat relations and attributes.

Due to the tree structure-based XML queries, we have proposed
a framework for XQuery containment [8]. The main idea is to first
normalize all queries into a format which explicitly reveals the vari-
able dependencies, and then to perform a progressive containment
mapping on the variables of a new query and a cached query. Since
variables are specified using regular path expressions, the contain-
ment mapping process incorporates type inference and subtyping
mechanisms for regular expression types to check the subsumption
relationships between variable types. Here, we briefly explain our
containment mapping technique using an example, while more de-
tails can be found in [8].

������TC���c�������9�/ "!#!%$'&a(�(���)%�0* �,�0-.(���)7�0* 1D-I2N4 4%68(�(�T�dD!8 <�0>ae 2NT_B9!�Pf�+EgT�hi^�4 45jKHKZJ[�K�]\7�9����: ��kaT�dD!8 <�0>�`M��TD;\%������:_B+`
�����������c�������9�/ "!#!%$'&a(�(���)%�0* �,�0-.(���)7�0* 1D-I2N4 4%68(�(��9����:De T�dD!8 <�0>CPl��T�j%;����4D���=���������� "!#!%$'&"(�(�>�?,@�)%?,ACB�* �,��-.(�>�?,@�)%?,ACB�* 1D-3254 4%68(�(��9����:EGFIHJKHm����(�!M)O!M2N?KPl����47(�!M)O!M2N?nQC�3Sg���/4%(�>�?+@�)7?,AC(�>�T�!8?VUXW"* YKHCZC[�K�o���9(0!M)O!M2N?�;,����(0$_>�)7�,?\%(��9����:aB+`\7(��9����: �/k"T�dD!8 D��>�`

Figure 2: A New XQuery �p�

Suppose the user now issues a new query �p� as shown in Fig-
ure 2 to find among the highly rated books the ones authored by
the persons with the last name “Wang”. The title information
of such books is returned, and then grouped by the authors. There
are two joins involved in �p� . One join is between the book ele-
ments in bib.xml and those in reviews.xml, and the other is
a self-join between the author elements bound to $a in one pass
of bib.xml and the author elements related to $b (book ele-
ments) bound in another pass of the same document. Obviously,
we can re-use the cached query �b� to save the computation cost
for the first join of � � .

To retrieve the answers contained in �b� , the remaining part from
the remote XML document and to combine them to form the final
result for �	� , ACE-XQ generates the probe, remainder and result
combination queries respectively, as shown in Figure 3.

��V��������=���������8q�r��?0B�* 1"-3254 4768(�(0^_�������9����:KHKZJ[�K�]\O>�?+B,d<2s!8`M���9(�!M)N!M2N?�;,���9(0$�>�)%�,?\7(�>�?0B,d<2s!8` t+u�v/w�x�y�z�x,u+{

��V���TJ�������������� "!#!%$'&"(�(���)%�+* �,��-.(��/)%�0* 1"-3254 4768(�(�T_d"!8 <��>_e 2NTaB9!�Pf�,EgT_hi^�4 4OjKHKZJ[�K�]\O>�?+B,d<2s!8`M��TD;�\7?,hi!M>�kaB+`
��Vb���|���=���������� "!#!%$'&"(�(���)%�+* �,��-.(��/)%�0* 1"-3254 4768(�(��9����:<e T_d"!8 <��>JPG��T�jKHKZJ[�K�}����(�!M)O!M2N?K\%(�?,hi!M>�kaB+`\7(�>�?0B,d<2s!8` ~�x������/���0x,u�y�z�x,u+{

��V���>����=���������/>�?,-.T�)Oh���?,>��?0B�* 1"-3254 4768(�(�>�?+B,d<2s!9;9��T�������>�(�T�dD!8 <�0>�;KHKZJ[�K�]\7�9����: ��kaT_d"!8 <��>�`8��T<;0\7�9����:_B0`
��Vb�0!����=��>�(�?,hi!M>�kaB+(�!M)N!M2O?�;��������=���������#$_>����9?0�?0B�* 1"-3254 4768(�(�>�?+B,d<2s!EGFIHJKHm���9(�!M)N!M2O?CPG�0!M4KHKZJ[�K�c����(�!M)O!M2N?�;,���9(0$_>�)%�,?�\%(��9����:aB+`\7(��9����: ��kaT�dD!8 <��>�` ~�x0�/z��,����v/�+w��/���9���,v���y9z�x,u+{

Figure 3: The Probe, Remainder and Combining Queries for
Answering �p� Using �b�
3. THE ACE-XQ SYSTEM OVERVIEW

In this section, we briefly describe the ACE-XQ system. The
framework of the ACE-XQ system is depicted in Figure 4. It mainly
consists of two subsystems, a Query Matcher and a Cache Man-
ager. The Query Matcher subsystem implements the query con-
tainment and rewriting, and the Cache Manager manages the cache
space and applies replacement and coalescing techniques.

When a new user query comes in, the Query Decomposer ap-
plies normalization rules [7, 8] to derive its nesting format, re-
vealing the variable dependency hierarchy specified in the query’s
matching patterns. It further re-groups the conditions and return ex-
pressions centering around their referring variables to form variable-
specific sub-queries. The Query Pattern Register encodes the se-
mantics of a query and registers them as the query descriptor. For a
pair of new and cached queries, the Query Containment Map-
per explores containment mappings between their variables. It
makes the query containment decision depending on whether one-
to-one containment mappings can be established. Type inference
and sub-typing mechanisms are utilized for this containment map-
ping. Based on the established containment mappings, the Query
Rewriter rewrites the new query with respect to the view structures
of the cached queries. Thus the user’s new XQuery is divided into
a probe query to retrieve answers from the cached local views, and
a remainder query to obtain the remaining answers from remote
sources.

The Cache Manager of ACE-XQ manages a collection of se-
mantic regions, each identified by an encoded query descriptor that
captures the semantics of the cached view. Each region also has a
pointer referring to its cached view XML document. Query descrip-
tors are utilized by the containment mapper to determine query con-
tainment relationships between the new query and cached queries.
The corresponding XML document is then accessed by the probe
query to retrieve relevant answers. Besides the query descriptor, a
semantic region usually also has some associated user access statis-
tics. This allows the Replacement Manager to calculate the region
utility values in order to pick victim queries when there is no room
for caching a new query.

The remainder of this paper will focus on the description of
a partial replacement strategy utilizing the user access statistics
recorded at the path level to perform a fine-grained region purg-
ing, as opposed to a total replacement strategy which replaces a
complete query and its associated XML document at each iteration.
As our preliminary experiments illustrate, this partial replacement
helps to improve the cache performance over time.

The Region Coalescer uses some semantic locality algorithm
to discover “adjacent” queries so to merge them into a combined
region. In contrast to the replacement manager, coalescing results
in no deletion. It is more a heuristic to optimize the cached regions
by reasoning about the semantic distance between queries.

4. CACHE REGION MANAGEMENT IN ACE-
XQ

4.1 Region-preserving vs. Region-splitting Re-
placement

When a new query arrives, the containment mapper decides if it
is contained or partially overlapping with a cached query. If yes,
a probe query (PQ) is formulated to access the cached data which
satisfies the new query and thus will contribute to the answer. If
not all the desired data is stored in the cache, a remainder query
(RQ) will also be sent out to remote servers to fetch the rest of the
answers. Obviously, cached queries may logically be segmented by
probe queries upon the arrival of new queries. Below we describe
alternative solutions for maintaining the regions.

Some semantic caching systems allow redundancy between cached
queries and do not adjust cache regions. In this scenario, queries
are kept the same as when they first come to the cache system and
they do not split even when subsequently cached queries overlap
with them. For each such cached query, one uniform utility value
is maintained.

Some systems split a cached query Q into two regions. One cor-
responds to PQ and the other represents Q-PQ. The latter region
inherits its utility value from its parent from where it was split off,
while the former is marked with an increased utility value com-
pared to the original cached query. The cache manager combines
PQ and RQ both used for answering the new query and forms one
new region.

Some other systems prefer to keep the earlier cached query as a
whole while only allocating one new region for RQ (since PQ is al-
ready contained in the existing cached query). Although the region
maintaining schemes used in the latter two scenarios can help to re-
duce redundancy, they often result in too many smaller region frag-
ments over time which tend to be less useful in answering further
queries. Also, such strategies entail query region splitting overhead
each time when a new query is launched, and later frequent coalesc-
ing to make up for the fact that the cache space has been severely
fragmented.

Query Parser

Query Pattern
Register

Query Rewriter

View Results

XQueries

query
descriptor

probe query

remainder query

XML XMLXML
…..

Replacement Manager

Query Matcher Cache Manager

Query Interface

Query
Decomposer

Query Containment Mapper

Result Combiner

Region
Coalescer

query/cache
mappings

q1
q2

qn

Semantic Regions

V1 V2 Vn

…

semantics locality

remainder query result

combining query

rID statistics View XMLDoc

Query Executor

Query Executor
remainder query result

Figure 4: The ACE-XQ System Architecture

��� XPathRow hit count last access time # of objects ...
/goodbook/title 1 12:33pm May 30 40
/goodbook/author/last 1 12:33pm May 30 86
/goodbook/author/first 1 12:33pm May 30 86
/goodbook/price 1 12:33pm May 30 132

Figure 5: Path Table with Initial Statistics for ���

Within the limit of tolerant redundancy, the region-preserving
strategy avoids the computation overhead compared to the region-
splitting strategy. However, it has its own drawbacks as well. First,
the uniform utility value assigned for the whole region does not
precisely indicate the various contributions made by different parts
in answering subsequent queries. Second, a straightforward appli-
cation of replacement would replace a complete region at a time.
Such a replacement unit would be too coarse for “large” size XML
documents. This would result in less efficient cache space utiliza-
tion.

4.2 Cache Region with Associated Path Table
To overcome the drawbacks implied by a naive region-preserving

replacement strategy, we suggest that despite the query region still
being preserved, different utility values may be maintained for finer
parts within a region by utilizing the internal view structure. In
other words, we attach with each region descriptor a detailed path
table containing all complete XPaths in the corresponding result
XML document. Each such XPath corresponds to a row in the path
table, hence referred to as XPathRow. The statistics related to the
user access information (as explained in the following section) form
the columns of the path table. The XPathRows of such a path ta-
ble can be easily constructed based on the return clause of a query,
which reveals the result view document structure and thus how it
is composed of XML fragments extracted from the original XML
document.

When a new query overlaps with a cached query, the probe query
PQ is formulated to retrieve the relevant data via navigating along
XPaths in the cached XML document. We maintain the utility
statistics at the level of XPathRows, and update those involved in
the probe query. Figure 5 shows the path table structure for the
query descriptor �b� in Figure 1. We use complete XPaths of leaf
objects in an XML document, thus avoiding a potential size explo-
sion of the path table.

When � � is answered by ACE-XQ, its region is also constructed
in the cache (see bottom of Figure 6). The replacement manager
modifies the statistics for � � since the current probe query has been
posed against its view structure. Figure 6 shows the cache region
status after �p� is cached. The XML fragments along two paths,
/goodbook/title and /goodbook/price, within �b� ’s re-
sult document contribute to answering �p� .
5. THE PARTIAL REPLACEMENT STRAT-

EGY

5.1 Utility Value and Replacement Function
Utility value is usually considered as the indicator for the re-

placement likelihood of cached objects. Based on the collected
statistics, a caching system may adopt a particular replacement pol-
icy in favor of purging some cached objects with certain character-
istics illustrated via their statistics over the others. A replacement
function is often used to reflect the replacement preference of a
caching system. It calculates the utility values of cached objects,

� � XPathRow hit count last access time # of objects ...
/goodbook/title 2 12:47pm May 30 40
/goodbook/author/last 1 12:33pm May 30 86
/goodbook/author/first 1 12:33pm May 30 86
/goodbook/price 2 12:47pm May 30 132� � XPathRow hit count last access time # of objects ...
/book byauthor/author 1 12:47pm May 30 7
/book byauthor/books/title 1 12:47pm May 30 15
/book byauthor/books/price 1 12:47pm May 30 21

Figure 6: �b� ’s Path Table with Updated Statistics and �p� ’s Path Table

Containment
Mapping

probe query Update Statistics

Re-calculate
Utility Value (u)

affected XPathRows[] of qi

Sort XPathRows[] by u

Pick Victim XPathRows[]

yes

Form FilterQuery Replacement
Manager

Modify Query Descriptor

View Results

V1 V2 Vi

qi
xp1
xp2

xpn
…

XPathRow hits last_access #objs XMLDoc

purging query

need replacement?Exit
no

Figure 7: The Replacement Control Flow

based on which the replacement manager chooses the victim to be
purged to leave room for new objects.

Cache replacement policies have been extensively studied in dif-
ferent scenarios, such as page-based [2] and tuple-based [5] caches.
Various replacement schemes [17, 14, 1, 16, 11] have been inves-
tigated and applied based on different heuristics. Among them,
the well-known replacement schemes are the Least Recently Used
(LRU), the Least Frequently Used (LFU) schemes and their vari-
eties. The LRU scheme is widely used due to its simplicity while
still being effective when recently referenced objects are likely to
be re-referenced in the near future. The LFU policy [17] uses refer-
ence frequency instead of recency as the parameter for the replace-
ment function.

For the Web context, other replacement functions have been pro-
posed to address the size and latency concerns. Among them, Greedy-
Dual [13] is a simple yet popular algorithm which handles variable-
cost cache replacement. One of its extended versions GreedyDual-
Size [15] combines locality, size and latency cost concerns to achieve
a better performance in terms of hit ratio and latency reduction.

For a semantic cache in the relational model (eg. [4]), cache
hits are typically recorded on the basis of query regions. Some
further approaches adopt region-splitting strategies to decompose
the original cache region and then update the hits or recency value
on different smaller regions after the split.

The goal of our effort is not to propose new replacement func-
tions for calculating utility values. Rather, we adapt the existing re-
placement functions for the ACE-XQ system. However, we utilize
the detailed path tables to perform a finer granularity replacement

than replacing a complete query region at a time. That is, the in-
put to the replacement function is not the statistics recorded at the
whole query level, but those at the level of the internal path struc-
ture of view documents. For example, last access time is a times-
tamp recorded when a path is used in the latest probe query. The
hit count is the number of times a path has been used for answer-
ing subsequent queries. The # of objects is an estimation of the
number of leaf objects along that complete XPath. If a path were to
be selected as the next victim, this number gives a hint about how
large an XML fragment would be purged from the XML document.
We also keep track of more global statistics at the query level, such
as xml doc size, initial create time, fetching delay cost, etc.

The considered statistics can be classified into several categories.
One category concerns the recency and frequency values, such as
the last access time and hit count respectively. The hit count on
an XPathRow is increased by one each time when the XPath is re-
quested by a probe query. Its last access time is updated to the
current time in such a case. The second category is related to the
data size that would be free upon a purge, i.e., the # of objects on a
particular XPath and the xml doc size. If two groups of XPathRows
have a tie in their recency and frequency values but one has a larger
XML fragment associated with it than the other, the former group
with the larger # of objects is replaced. This is because our fine-
grained partial replacement strategy may need to perform path-
related-region subtraction several times to free enough space for
a new region. Hence our replacement function is in favor of purg-
ing a larger piece at a time for efficiency. Instead of considering
the benefits brought by preserving a region, the fetching delay cost

is a factor indicating the loss caused by not caching a region. By
retaining regions with longer initial fetching delay, large fetching
cost for such regions could be avoided.

Based on the collected statistics, we propose to calculate the
comprehensive utility value using the following replacement func-
tion: ��� ���|��� (�5�_�N� ���0�"�"�,���� 9�O�,���O�a¡ ¢� 9£ ¤�¥ ���0¦9�#§¨ ��� ��©Oª� /�9�%¦). Other functions
in favor of different scenarios can be easily plugged into our sys-
tem. We have indeed experimentally studied several such functions
when designing the just described formula.

5.2 The Partial Replacement Algorithm
Figure 7 shows the control flow of the replacement manager

in ACE-XQ. After the statistics information has been updated for
those XPathRows involved in a probe query, the pre-defined re-
placement function is called to re-calculate their utility values. Then
the replacement manager chooses those XPathRows with the low-
est utility value as the victim XPathRows and composes a filter
query to remove the XML fragments corresponding to these paths
from the relevant XML document(s). The query descriptors of
those affected cached queries are also modified accordingly to be
consistent with their changed view XML documents.

Filter Query. Suppose ten queries �b� to �b�8« are in the cache
after the cache has been in use for a while. Different utility values
are recorded in these queries’ path tables. Now a query ���,� arrives
and there is not enough space in the cache for it. Based on the
lowest utility value, the replacement manager decides ¬iM®�¯/8°g� and¬iM®�¯�M°G±l²I³´¯9µ|¶¸·a¹3º<»�¼ are ��� and [½�¾´·"·a¿´À�·a·DÁ�½_³���¯,µ�·a�<½"��M�<º�¯�Â½�¾´·"·a¿´À�·a·DÁ�½0���"M®�Ã] respectively (assuming the statistics of � � and�	� are not the same as illustrated in Figure 6 any more). To remove¬iM®�¯�M°G±l²I³´¯9µ|¶¸·a¹3º<»_¼ from ¬iM®�¯�M°g� , we instead use a query to
keep the remaining paths �"Ã�°g³´M�nM��¾�²I³´¯,µ|º<»0¼ which are the paths
in �b� ’s path table except those included in ¬iM®�¯/M°G±l²I³´¯,µ�¶¸·"¹Iº<»,¼ .
Since the �DÃ�°g³´M��M��¾�²I³´¯9µ|º<»�¼ of �b� in this case are [½�¾´·"·a¿´À�·a·<Á½_¯�M¯9Ä7ÃiÂ+½_¾´·a·"¿´À0·"·DÁ�½_³´�|¯,µ�·a�D½"Ä7³�º�¯], a filter query is formulated as in
Figure 8.

6. EXPERIMENTAL RESULTS
We have implemented our ACE-XQ [8] in Java 1.3. We utilize

the Quilt parser and Kweelt query engine available at:
http://cheops.cis.upenn.edu/Kweelt to analyze and evaluate the in-
put XQuery. To realize the type-enhanced query containment and
rewriting algorithm, we deploy the type inference and subtyping
mechanisms provided by the XDuce system [6] in ACE-XQ.

We install the Kweelt query engine on a local UNIX machine
which holds the ACE-XQ system, and another one on a remote
server where a set of XML documents are also hosted. We have
validated the correctness of our queries rewritten by ACE-XQ via
comparing their results with those produced by directly evaluating
the original query against the remote documents. ACE-XQ also
serves as a testbed for various experimental studies investigating
the query performance gain achieved by answering queries using
cached views.

6.1 Experiment on Caching versus Non-Caching
First, we use a number of fixed queries to “warm up” the cache

and design the new incoming queries to be either totally contained
in the cached queries or partially overlapping with them. The cache
capacity is assumed infinitely large so that no replacement occurs.
We compare the query performance in terms of the response delay
when using the ACE-XQ system to answer queries versus when
directly fetching the result from the remote server. Figure 9, con-
sistent with our expectation, shows that for such contained cases,

the query performance improvement using ACE-XQ is significant,
by an order of magnitude in a distributed environment.

0

20

40

60

80

100

120

140

175 890 1800

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

ec
on

ds
)

Source XML Document Size (Kbytes)

Comparison of response time for
different query containment cases with varying document sizes

contained/non−caching
contained/caching

overlap/non−caching
overlap/caching

Figure 9: Query Response Delay for Totally Contained Queries

6.2 Experiments on Replacement Strategies
We now study the impact on the performance of ACE-XQ when

the partial versus total replacement strategies are used for limited
cache space. We generate two query traces. Each query trace has
80 queries that may query against 10 different XML documents (in
total about 2M bytes) located on remote web servers. Queries in
the first trace are randomly generated. The second query trace con-
tains only refining queries, i.e., subsequent queries that are usually
contained in the previous queries requesting the same documents.
Initially, we set the cache space as large as 200K bytes and then
increase it each time by 180K bytes until it reaches 1.2M bytes.

In the experiments, we consider the performance in terms of not
only the response delay, but also the hit ratio. Each time when a
new query is contained or overlapping with the cache and hence a
probe query is generated, we consider it a cache hit and the percent-
age of hits over the total number of queries hit ratio. Since a probe
query is a local query and the response delay is relatively smaller
than queries across the Internet, the higher the hit ratio is, the more
improvement on the average initial response to the user’s query can
be achieved.

Figure 10 shows the average response time for the random and
refining query traces under two different replacement strategies:
partial versus total. Overall, we see the average response time for
the refining query trace is smaller than that for the random query
trace. The response times for both traces are decreasing when the
cache size becomes large. Within each query trace, two replace-
ment strategies have roughly very close query response time, al-
though the partial replacement does slightly better (by 5%) when
the cache size is medium (about 614.4Mbytes).

As shown in Figure 11, the hit ratio increases with the growth
of the cache size for both replacement strategies and for both query
traces. Although the partial replacement strategy does not show ob-
vious advantage over the total replacement in either traces, it does
win a little over the latter when the cache size is not too big nor
too small. We interpret this phenomenon as below. In the case of
a very small cache, fewer queries are held in the cache which may

������>����������9d<-3?+hi!9���/qVr��?+B�* 1D-I2N4 4%6
C��Å|ZKHJX�M* (�B+?+2NÆ.& &�^_�������9����:'Ç�* (�B+?,2NÆ3& &�!M)O!M2N?CÇsÇ�* (�B+?,2OÆ3& &�!8?,1a!9�769e * (+$aT�>�?,hi!n& &_!M)N!M2N?9j* (�B+?,2OÆ3& &�^�������������:'Ç�* (�B0?,2NÆ.& &_T�dD!8 <�0>�Ç�* (�B+?,2NÆ3& &_2NTaB9!�Ç�* (�B0?,2NÆ.& &�!8?,1"!9�O69e * (0$aT�>�?,hi!n& &�2NT_B,!%js6KHKZJ[�K�c��>

Figure 8: An Example Filter XQuery

3200

3400

3600

3800

4000

4200

4400

4600

0 204.8 409.6 614.4 819.2 1024 1228.8

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(m

ill
is

ec
on

ds
)

Cache Size (Kbytes)

Comparison of response time for
different replacement strategies with varying cache sizes

partialRepl/randomQtrace
totalRepl/randomQtrace

partialRepl/refiningQtrace
totalRepl/refiningQtrace

Figure 10: Response Time for Different Replacement Strategies
With Varying Cache Sizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 204.8 409.6 614.4 819.2 1024 1228.8

H
it

R
at

io

Cache Size (Kbytes)

Comparison of hit ratios for
different replacement strategies with varying cache sizes

partialRepl/randomQtrace
totalRepl/randomQtrace

partialRepl/refiningQtrace
totalRepl/refiningQtrace

Figure 11: Hit Ratio for Different Replacement Strategies With
Varying Cache Sizes

cause the replacement to occur more frequently. When a partial
replacement happens, it attempts several rounds of partially purg-
ing less-useful XML fragments from the cached XML documents,
which may still leave not enough space for the new query. More
likely, some XML document may need to be removed as a whole
to make enough space for the new query. This behaves similar to
total replacement, except that more replacement efforts are wasted

at the beginning. For a medium cache, such frequent replacement
may not happen and the cache may hold more queries for the par-
tial replacement case than for the total replacement case since the
queries in the former case may be ”0” by filter queries and hence
relatively smaller than those in the latter case. While for the very
large cache, cache space resource is not precious any more. Query
region refinement pursued by partial replacement becomes less crit-
ical.

7. CONCLUSION
We have proposed a fine granularity replacement strategy and de-

ployed it in our ACE-XQ XML query caching system. As opposed
to the total replacement at the query level, this strategy maintains
utility values for the XPaths in a cached view and performs the par-
tial replacement that discards the non-beneficial XML fragments
while retaining the useful portions within the view XML document.

We have also conducted experiments to compare the performance
of the partial replacement strategy and the total replacement strat-
egy, when varying the cache size. The experiment results have re-
vealed some interesting patterns between the performance of dif-
ferent replacement strategies and the cache sizes. Extensive exper-
iments need to be conducted in the future work to result in a more
comprehensive performance analysis.

8. REFERENCES
[1] P. Cao, E. W. Felten, , and K. Li. Application-Controlled File

Caching Policies. In Proceedings of the USENIX Summer
1994 Technical Conference, pages 171–182, 1994.

[2] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-grained
Sharing in Page Server Database System. In Proceedings of
1994 ACM SIGMOD, Bombay, India, pages 359–370, June
1994.

[3] A. K. Chandra and P. M. Merlin. Optimal Implementations
of Conjunctive Queries in Relational Data Bases. In STOC,
pages 77–90, 1977.

[4] S. Dar, M. J. Franklin, and B. Jonsson. Semantic Data
Caching and Replacement. In VLDB, Bombay, India, pages
330–341, 1996.

[5] D. DeWitt, P. Futtersack, D. Maier, and F. Velez. A Study of
Three Alternative Workstation-Server Architectures For
Object-Oriented Database Systems. In VLDB, Queensland,
Australia, pages 107–121, Aug. 1990.

[6] H. Hosoya and J. Vouillon and B. C. Pierce. Regular
Expression Types for XML, Montreal, Canada. In ICFP,
pages 11–22, 2000.

[7] I. Manolescu and D. Florescu and D. Kossmann. Answering
XML Queries on Heterogeneous Data Sources. In
Proceedings of the 27th VLDB Conference, Edinburgh,
Scotland, pages 241–250, 2001.

[8] L. Chen and E. A. Rundensteiner. ACE-XQ: A CachE-aware
XQuery Answering System. In Proceedings of the 5th
International Workshop on the Web and Databases (WebDB),
Madison, WI, pages 31–36, 2002.

[9] L. Chen and E. A. Rundensteiner and S. Wang. XCache - A
Semantic Caching System for XML Queries. In SIGMOD
demonstration paper, Madison, WI, page 618, 2002.

[10] L. M. Haas and D. Kossmann and I. Ursu. Loading a Cache
With Query Results. In Proceedings of the 25th VLDB
Conference, Edinburgh, Scotland, 1999.

[11] D. Lee, J. Choi, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim.
On the Existence of a Spectrum of Policies that Subsumes
the Least Recently Used (LRU) and Least Frequently Used
(LFU) Policies. In Proceedings of the 1999 ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 134–143, 1999.

[12] M. J. Carey and M. J. Franklin and M. Zaharioudakis.
Fine-Grained Sharing in a Page Server OODBMS. In
Proceedings of the 13rd SIGMOD Conference, Minneapolis,
Minnesota, pages 359–370, 1994.

[13] N. Yong. On-line caching as cache size varies. In In the 2nd
Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 241–250, 1991.

[14] E. J. O. Neil, P. E. O. Neil, and G. Weikum. The LRU-K
Page Replacement Algorithm for Database Disk Buffering.
In SIGMOD, pages 297–306, 1993.

[15] P. Cao and S. Irani. Cost Aware WWW Proxy Caching
Algorithms. In Proceedings of USENIX Symposium on
Internet Technologies and Systems (USITS), pages 193–206,
1997.

[16] V. Phalke and B. Gopinath. An Inter-Reference Gap Model
for Temporal Locality in Program Behavior. In Proceedings
of the 1995 ACMSIGMET-RICS Conference on Measurement
and Modeling of Computer Systems, pages 291–300, 1995.

[17] J. T. Robinson and M. V. Devarakonda. Data Cache
Management Using Frequency-Based Replacement. In
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 134–142, 1990.

[18] W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, December 2001.

