XCache - A Semantic Caching System for XML Queries’

Li Chen

Elke A. Rundensteiner

Song Wang

CS Department, Worcester Polytechnic Institute, Worcester, MA 01609
{lichen|rundenst|songwang} Qcs.wpi.edu

1. INTRODUCTION

A wide range of Web applications retrieve desired infor-
mation from remote XML data sources across the Internet,
which is usually costly due to transmission delays for large
volumes of data. Therefore we propose to apply the ideas of
semantic caching to XML query processing systems [2], in
particular the XQuery engine. Semantic caching [3] implies
view-based query answering and cache management. While
it is well studied in the traditional database context, query
containment for XQuery is left unexplored due to its com-
plexity coming with the powerful expressiveness of hierarchy,
recursion and result construction. We hence have developed
the first solution for XQuery processing using cached views.

We exploit the connections between XML and tree au-
tomata, and use subtype relations between two regular ex-
pression types to tackle the XQuery containment mapping
problem. Inspired by XDuce [1], which explores the use of
tree-automata-based regular expression types for XML pro-
cessing, we have designed a containment mapping process
to incorporate type inference and subtyping mechanisms
provided by XDuce to establish containment mappings be-
tween regular-expression-type-based pattern variables of two
queries. We have implemented a semantic caching system
called XCache (see Figure 1), to realize the proposed con-
tainment and rewriting techniques for XQuery.

The main modules of XCache include: (1) Query De-
composer. An input query is is decomposed into source-
specific subqueries explicitly represented by matching pat-
terns and return structures. (2) Query Pattern Register.
By registering a few queries into semantic regions, we warm
up XCache at its initialization phase. (3) Query Contain-
ment Mapper. The XDuce subtyper is incorporated into
the containment mapper for establishing query containment
mappings between variables of a new query and each cached
query. (4) Query Rewriter. We implement the classical
bucket algorithm and further apply heuristics to decide on

*This work was supported in part by the NSF NYI grant
#IRI 94-57609 and IBM fellowship support.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGMOD 2002 June 4-6, Madison, Wisconsin, USA

Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

Query Interface
L XML queries Replacement Manager
Query Parser srD_timeStmp_inviRatio
Query —
Decomposer uer
Query Pattern | 3y i
Régister descriptors| Region
*_1 Coalescer
[| \

) uery/cache| |-S22 3
Query Containment Mapper 7%@?'0”5 s sm 2

L S10Q 3

probe S1'=S1-S10Q 1

Query Rewriter query g
. Cache
Query /Cache Matcher Result Combiner Manager
v remainder query 4

E 1

Figure 1: The XCache Architecture

an “optimal” rewriting plan if several valid ones exist. (5)
Replacement Manager. We free space for new regions by
both complete and partial replacement. (6) Region Coa-
lescer. We apply a coalescing strategy to control the region
granularity over time.

2. DEMO DESCRIPTION

Our XCache prototype is developed in Java JDK 1.3 and
the front end is hosted by Apache Web Server and Tom-
cat servlet engine. We have adapted Kweelt (available from
http//cheops.cis.upenn.edu/Kweelt:) for evaluating XQuery
and exploited the XDuce system [1] for establishing type in-
clusion relations between the pattern variables of two XQueries.
The demonstration focuses on:

e validating the rewritten queries and results with the
results returned from the remote sources directly;

e monitoring system internal decisions and status;

displaying utilization of cache regions over time;

e analyzing query performance with various workloads.

3. REFERENCES
[1] H. Hosoya and J. Vouillon and B. C. Pierce. Regular

Expression Types for XML. In Int. Conf. on Functional
Programming (ICFP), pages 11-22, 2000.

[2] L. P. Quan, L. Chen, and E. A. Rundensteiner. Argos:
Efficient Refresh in an XQL-Based Web Caching
System. In WebDB 2000, pages 23—-28, May 2000.

[3] S. Dar and M. J. Franklin and B. Jonsson. Semantic
Data Caching and Replacement. In 22nd VLDB, pages
330-341, 1996.

