
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Optimization of nested XQuery expressions with orderby clauses

Song Wang *, Elke A. Rundensteiner, Murali Mani

Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA

Received 14 March 2006; received in revised form 14 March 2006; accepted 14 March 2006
Available online 18 April 2006

Abstract

XQuery, the defacto XML query language, is a functional language with operational semantics, which precludes the
direct application of classical query optimization techniques. The features of XQuery, such as nested expressions and
ordered semantics, further aggravate this situation. The appropriate extension of existing optimization techniques to XQu-
ery processing hence represents an important and non-trivial task. We propose an algebraic rewriting technique of nested
XQuery expressions containing explicit orderby clauses. Unlike prior work, this technique enables the optimization of
nested XQuery expressions not only with set but also with ordered sequence semantics. Our technique is based on two
steps. First, we perform order-sensitive algebraic query unnesting. Second, we apply query minimization techniques that
exploit pairwise XPath set containment after pulling up order-sensitive operations. We illustrate how our proposed tech-
nique is able to not only successfully tackle the XQuery logical optimization problem solved in the NEXT framework, but
also to correctly support ordered semantics. We have implemented the proposed optimization techniques on top of the
XAT algebraic framework in our RainbowCore project. We show the performance gain achievable by our approach using
an experimental study with the RainbowCore engine.
� 2006 Elsevier B.V.. All rights reserved.

Keywords: XQuery processing; Ordered semantics; XQuery optimization

1. Introduction

The XQuery language [23] and the XML path language [22] have both been widely accepted for querying
XML data. XPath expressions specify patterns to be matched in the XML document, and return a sequence of
XML elements. Beyond the semantics of pattern matching, XQuery1 expressions are capable of performing
complex querying and customizing output result construction. XQuery expressions utilize nested query blocks
and explicit ordering clauses to achieve these features.

XQuery expressions are typically composed of highly nested FLWOR (short for the for, let, where, orderby
and return) blocks to retrieve and reconstruct hierarchical and ordered XML data. An XQuery expression is
said to be correlated if an inner FLWOR block refers to a bound variable defined outside this block.

0169-023X/$ - see front matter � 2006 Elsevier B.V.. All rights reserved.

doi:10.1016/j.datak.2006.03.004

* Corresponding author.
E-mail address: songwang@cs.wpi.edu (S. Wang).

1 In this paper, we use the term XQuery to refer to complex XQuery expressions that cannot be rewritten as XPath expressions.

Data & Knowledge Engineering 60 (2007) 303–325

www.elsevier.com/locate/datak

Aut
ho

r's

pe
rs

on
al

co

py

Unlike in relational databases, order is an important issue for XML queries. By default, both the XPath
and XQuery languages are order sensitive. The XPath language has order sensitive functions such as posi-

tion(), first() and last(). All the functions used in the XPath language work on the document order. Infor-
mally, document order is the order defined by a pre-order, depth-first traversal of the nodes in an XML
document. In addition XQuery expressions may contain the orderby clause as part of a FLWOR expression
that overwrites the document order for XML fragments generated by that XQuery expression based on expli-
cit sorting. XML result structures generated by XQuery expressions can also be partially ordered. For exam-
ple, the parent ‘‘books’’ are ordered by their publishing year, but the children ‘‘authors’’ inside each ‘‘book’’
element may not be ordered.

Many optimization techniques have been proposed for XPath expressions in recent years. Among them, the
logical level XPath expression optimization includes XPath containment [9], answering XPath queries using
views [2] and XPath satisfiability [13]. These logical optimization techniques tremendously improve the perfor-
mance of XPath evaluation. Intuitively applying these techniques to XQuery expressions, which include multi-
ple XPath expressions in general, will be particularly beneficial. However, the direct applicability of these
techniques to XQuery expressions is precluded by the features of the XQuery language, such as the nesting
of the FLWR clauses and the orderby clauses. The extend of existing query optimization techniques to handle
such complex XQuery expressions becomes an important and non-trivial task.

In this paper, we discuss how to optimize query expressions that contain orderby clauses in the nested XQuery
context. We propose an algebraic rewriting technique of nested XQuery expressions containing explicit orderby
clauses. Our technique is based on two steps. First, we perform algebraic query unnesting based on the principles
of magic decorrelation [25]. Second, we apply query minimization techniques that exploit pairwise XPath set
containment after pulling up order-sensitive operations. Thus the ordered semantics of the XQuery expressions
are isolated from the XPath expressions. This enables existing optimization techniques to be applied.

In the NEXT framework [5], the authors propose a new nested Xtableaux approach for logical XQuery
optimization. We now go beyond this work, while using a more traditional algebraic rewriting and unnesting
approach that follows well established formal principles as well as practice in industrial query engines. Using
our approach, we are able to not only achieve the optimization specified in the NEXT framework but now also
to correctly support ordered semantics.

Example. The following XQuery expression shown in Fig. 1 sorts part of the authors by their last name and
groups books together with their first author. Then it sorts each author’s book by its publishing year. This query
is adapted from W3C XQuery Use Cases XMP Q4 [21] by adding the position function and orderby clauses.

In this example XQuery expression, the outer for clause binds $a to a sequence of authors appearing in the
XML document. The outer orderby clause sorts this sequence by the authors’ last name. For each instance of
$a, the inner query block is then evaluated. Such an intuitive iterative execution tends to be less efficient than
an equivalent collection-oriented execution strategy, since for every binding of $a, many operation steps are
repeated in the inner sub-query. For efficient execution of such XQuery expressions, decorrelation is necessary.
After decorrelation, a join will be generated to connect the outer and inner query blocks. In the decorrelated
query, a one time navigation into the XML document for the inner sub-query is sufficient. While we briefly
sketch the decorrelation process in Section 4, details of this process can be found in [20,24].

Fig. 1. Motivation XQuery example: Q1.

304 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

After decorrelation, a closer inspection of the example XQuery reveals that we can even do better: the nav-
igations in the ‘‘outer’’ and ‘‘inner’’ query blocks turn out to be rather similar. The set of author nodes in $b/

author [1] are contained in the author nodes in $a under set semantics. These navigations however differ in that
the author nodes in $a are sorted by their last names, whereas the ones in $b/author [1] are sorted by the books’
year. Even though these two navigations are not identical, they are similar enough so that one of the two nav-
igations could be saved. We thus suggest that a more ‘‘optimal’’ query plan for this example query will be (1)
get all the books; (2) get the first author associated with each book; (3) sort by the author’s last name (major
order) and the book publication year (minor order); and (4) group all the book titles by authors. Our exper-
iments in Section 7 indeed confirm that such a plan can be 2–3 fold faster compared to the unoptimized one. In
this paper, we will show a systematic approach for achieving such optimized query plan.

Such XQuery expressions are not rare; rather such cases will always occur when a nested XQuery expres-
sion is used for reconstructing the given XML into some new format. If we do not discover that the two nav-
igations are similar, the query plan would include a join between these two navigations. Instead our approach
enables the elimination of such redundant navigations whenever possible. In this paper, we will describe how
to adapt known XPath containment algorithms to apply them for the reduction of such redundant XPath
navigations in XQuery expressions containing orderby clauses.

We have implemented the proposed optimization techniques on top of the XAT algebraic framework in our
RainbowCore [26] project. The XAT algebra extends the relational algebra by allowing collection-valued col-
umns and by being order-preserving. It also introduces new operators to express necessary XQuery semantics.
However, our approach is general and could easily be applied to other XML algebras like NAL [16] and SAL
[3].

Our work brings forth the following novel contributions to XQuery optimization:

• To the best of our knowledge, we are the first to provide a practical approach for handling XQuery logical
minimization with sequence semantics.

• Our magic branch approach inherits the advantages of magic decorrelation and opens the opportunities for
further optimizations using existing algebraic techniques.

• We implement the magic branch decorrelation and the algebraic tree minimization techniques in our
XQuery engine.

• We conduct experimental studies showing the performance improvements achievable by our proposed opti-
mization techniques.

This paper is organized as follows. We first give a description of the related work in Section 2 and then
briefly describe the algebraic framework used in this paper in Section 3. The magic branch decorrelation
approach is illustrated in Section 4. The ordered semantics of XQuery and our algebraic minimization tech-
niques are discussed in Sections 5 and 6, respectively. We present our experimental results in Section 7, while
Section 8 concludes this paper.

2. Related work

Modern database systems [12,7,20] attempt to merge sub-query blocks into the outer query block, thereby
eliminating correlations and avoiding nested iterative evaluation. Such ‘‘decorrelation’’ is typically done by
introducing outer join and grouping operations.

More recently, methods that focus on the efficiency of decorrelated sub-queries have been proposed. In [20],
the authors proposed a technique called magic decorrelation for nested SQL queries. By materializing results
from sub-queries and postponing the Outer Join, this approach produces a typically more efficient query plan.
Our proposal is conceptually inspired by this technique.

Our decorrelation technique is inspired by the magic decorrelation proposed in [20]. Our approach, called
the Magic Branch, is a natural extension and adaption of this technique towards more efficient XQuery
decorrelation.

Decorrelation of XQuery expressions has also been studied in relationship to native XML query engines.
One effort is by Paparizos et al. [17] in the TIMBER system. There the authors pointed out the implicit use of

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 305

Aut
ho

r's

pe
rs

on
al

co

py

grouping constructs in the XQuery’s result construction. Recognizing and explicitly adding the grouping oper-
ation can lead to unnesting of XQuery expressions. Their work is based on the tree algebra in TIMBER. Their
grouping operator is defined on sets of trees. One drawback of this approach is that their transformation from
the XQuery language to the TAX tree is complex and not complete, as pointed out in [16]. Also they do not
consider ordering, as now tackled by our solution.

Fegaras [8] and May et al. [16] have studied XQuery unnesting based on the unnesting techniques from
object-oriented query languages [4,7]. However, these works do not discuss decorrelation of XQuery expres-
sions containing orderby clauses, which is the main focus of our work.

The work that is most closely related to ours is the NEXT [5] framework, where the authors study mini-
mization of nested XQuery expressions under ‘‘mixed set and bag semantics’’. Here the authors introduce
new syntactic constructs to the XQuery language. Compared to this, we use a more traditional algebraic
approach for decorrelation. In fact, we demonstrate that our classical algebraic rewriting achieves the same
XQuery minimization as in the NEXT framework. Further our approach extends the problem tackled by their
work and now solves it under sequence semantics, that is, by considering nested XQuery expressions with
explicit orderby clauses. In addition we show how to utilize existing XPath containment and matching tech-
niques to achieve query minimization in the ordered context.

Query containment has been studied in depth for the relational model [14]. Query containment for XPath
expressions has been discussed for various axes and quantifiers [9], tag variables and equality testing [1], etc. In
[6] the authors study the containment problem for nested XQuery expressions with different fanout. However
none of these works consider the order semantics in XQuery; they do not even consider document order in
XPath expressions. In short, our work provides a practical approach that fills the gap between the existing
works of query containment and XQuery minimization with order semantics.

3. Preliminaries of algebraic XQuery processing

XQuery: In this paper, we consider a subset of the XQuery language [23] defined by the grammar in Fig. 2.
This subset, plus some extensions of user-defined functions, suffices to express the XMark benchmark query

Fig. 2. Syntax of XQuery subset.

306 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

set [19]. Besides the basic FLWOR clauses, the XQuery fragment we consider also includes order-related func-
tions (e.g., the position function), and quantifiers.

We discuss our approach under the assumption that the query plan can be described as a tree. However
XQuery also allows user-defined functions, and these functions can be recursive. Discussion of such recursive
user-defined functions is beyond the scope of this paper.

In this paper, we focus on nested XQuery optimization with orderby clauses instead of complex XPath pro-
cessing. Evaluation algorithms for complex XPath expressions having arbitrary navigation axes and node tests
[10,11] are orthogonal to XQuery decorrelation.

XAT Algebra: Our algebra (XAT) used in the RainbowCore project [26] expresses the subset of the XQuery
language shown in Fig. 2. XAT is an order-preserving extension of the relational algebra designed to handle
ordered XML data. For the purpose of decorrelation, this algebra is similar to NAL [16], SAL [3] and the
algebra proposed in [18]. Hence our approach can be easily extended to these algebras.

We use the XATTable to represent ordered sequences of tuples. The input(s) and output of each operator
are XATTables. An XATTable may contain nested tuples, that is, the content of an attribute may be a
sequence of zero or more tuples.

Since XAT is not designed for type inference purposes, we only have two kinds of atomic values in an XAT-
Table: the ID of an XML node and the string value of an XML node. We distinguish the ID based operations
from the string value based operations. The XML data storage provides conversion functions from the node
ID to the associated string value. For simplicity, we will not show such functions explicitly in our later
discussions.

To define the order-preserving semantics of XAT operators, we will use a sequence abstraction of the XAT-
Table. For an input XATTable R, h(R) denotes the first tuple (head) of the XATTable and t(R) denotes the
remaining tuples (tail) of the XATTable. The symbol � is used for the concatenation (ordered union) of two
XATTables. The concatenation of XATTable columns is denoted by s. We define the algebraic operators
recursively on their input XATTable(s). For binary operators, we use left hand side (LHS) and right hand side
(RHS) to distinguish between the two input XATTables. We use � to denote an empty XATTable.

The XAT algebra inherits all operators from the relational algebra, such as Select (rp), Project (PAttr), Join

(fflp), Left Outer Join (LOJ,fflo L), Natural Join (NJ,ffl), Cartesian Product (CP, ·), etc. Except for the addition
of order preserving semantics, these operators have the similar semantics as in the relational context. Below we
define the Cartesian Product of two XATTables as an example showing order preserving semantics. (Let
rL = h(RL).)

RL � RR :¼ ðrL ��RRÞ � ðtðRLÞ � RRÞ;
where

rL ��RR :¼
� if RR ¼ �
ðrL � hðRRÞÞ � ðrL ��tðRRÞÞ otherwise

�

Other Join operators can be similarly defined by augmenting their corresponding relational counterparts
with order-preserving semantics.

For the XQuery function distinct-values(), we introduce a value-based duplicate elimination operator Dis-
tinct. This operator is not order preserving and has semantics identical to its relational counterpart. Similarly
we have an Unordered operator to represent the unordered function in the XQuery, which makes the order
insignificant for the following variable binding.

We also define the operators: Orderby and Position. The Orderby operator sorts the tuples in the input
XATTable by the string value of specified column(s). The Position operator gets the row number (beginning
from 1) of each tuple and puts it as explicit value into a new column.

The XAT algebra also introduces new operators to represent the XQuery semantics, such as Navigation

(/xp), Tagger (TagPattern), Nest (N), Unnest (U), Cat (C), etc.
Since in this paper we do not focus on complex XPath processing, we use a ‘‘powerful’’ Navigation oper-

ator that can extract XML nodes and process XPath expressions over XML documents. We denote the
Navigation operator as follows:

/$colj:xpð$coliÞðRÞ :¼ ðhðRÞ � RNavÞ � /$colj:xpðcoliÞðtðRÞÞ

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 307

Aut
ho

r's

pe
rs

on
al

co

py

where the schema of RNav is {colj}, RNav is the sequence of extracted XML nodes from the XML node in coli of
h(R) by applying XPath processing.

The Tagger operator accepts a pattern indicating where and which open tags and close tags to add around
the content of certain columns in the input XATTable.

Given a tuple with a sequence-valued attribute Attr, we define the Unnest operator as

U AttrðRÞ :¼ ðhðRÞ‘Attr
� RAttrðhðRÞÞÞ � UAttrðtðRÞÞ

where ‘Attr projects out the Attr column from R and RAttr(h(R)) retrieves the sequence of attribute values in
Attr. The Nest operator is a inverse of Unnest and can be defined accordingly.

The Cat operator concatenates multiple columns together to form a single column. This operator is used to
merge pieces of XML separated by comma in the return clause of XQuery expressions.

To clarify the translation of FLWOR expressions into the XAT algebra, we introduce the Map operator.
The Map operator is a binary operator with the LHS input XATTable defining the for-variable and the RHS
defining an algebra expression e. The Map operator is defined as follows:

Mapa:eðAttrÞðRÞ :¼ ðhðRÞ � aÞ �Mapa:eðAttrÞðtðRÞÞ
where the Attr denotes the for-variable in the FLWOR expression and a is the new attribute whose value is
calculated from expression e for every instance of Attr.

The last operator discussed here is the Groupby (GB) operator, which is denoted as GBcoli;colj;opðRÞ. This
operator is introduced mainly for the purpose of decorrelation. This GB operator is an extension of the
groupby in the relational context. The Groupby operator will group the tuples of the input XATTable by
the column coli, then perform the operator op (e.g., the aggregation functions and the position function) on
colj of each group of tuples, finally concatenate all the groups together as output. The Groupby operator
can also group on multiple columns.

For further detailed discussion of the XAT algebra, please refer to our technical report [27].
XQuery normalization: Prior to translating the XQuery expressions into the XAT algebra expression, we

use a source-level normalization step applied to the original XQuery expressions. Similar normalizations
are also discussed in [15]. Our normalization does not aim to do optimization of the XQuery expressions,
but rather provides a suitable format for easy generation of the XAT algebra tree.

Normalization rule 1: The let-variables are treated as temporary variables. During normalization, they can
be eliminated: the expression binding the let-variable is substituted for all occurrences of the let-variable. Note
that in the implementation, the let-variable is calculated only once and is materialized for sharing among all
the occurrences.

Normalization rule 2: Since the Map operator is binary, the For clause defining more than one for-variable
will be split into a sequence of nested For clauses. Each clause defines one for-variable only.

Translation of XQuery expressions to XAT algebra: Normalized XQuery expressions are translated into
their corresponding XAT algebra representation in two steps: translating XPath expressions and translating
the FWOR (without the Let clause) query expressions. As mentioned before, we simply translate each XPath
expression into one Navigation operator.

Nest ($ret_col)

Map

for Clause

$for-var

orderby Clause

where Clause

return Clause

$for-varΠ Π$ret_col

Fig. 3. Build algebra tree for XQuery FWOR expression.

308 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

The translation pattern of a flat FWOR query block to the XAT algebraic expression is illustrated in Fig. 3.
A nested XQuery block can be translated recursively using this pattern. In this translation pattern, the Map

operator introduces one for-variable from the for clause in the LHS expression. This for-variable can be
referred to in the nested query blocks in the RHS. The Nest operator on top of the Map is used to construct
a sequence of all intermediate results. For those where clauses where no position function is used, the where
clause can also be put in the LHS of the Map operator, just like the orderby clause.

The operators generated during the translation form an XAT algebra tree. We also allow the sharing of com-
mon sub-expressions (e.g., the let-variable expression) among multiple operators. This turns the XAT tree into
a DAG. In this paper, we do not emphasize the difference between them and just generally call them XAT tree.

4. XQuery decorrelation

After XQuery normalization and translation, the correlation in an XQuery expression is represented in the
XAT tree by the Map operator and linking operators (operators in the inner query blocks referring to variables
defined in the outer FLWOR query block). The Map operator introduces the for-variable from the LHS For
clause and the linking operator refers to it in the RHS. Intuitively the Map operator forces a nested loop eval-
uation strategy. Hence, eliminating the nested loop iteration, that is, removing the Map operator in the XAT
tree transformation is the main goal of the decorrelation algorithm. Depending on the different semantics of
the operators that the Map is pushed over, the Map operator will be pushed down along the RHS accordingly,
until the linking operator is reached and the Map operator is rewritten as a join. Our techniques are an exten-
sion of magic decorrelation [20]. These extensions are sufficient to ensure efficient XQuery decorrelation.
Please note that in this paper, we omit the detailed discussion about the empty collection problem, which is
handled in the decorrelation algorithm by adding left outer joins. Since our example XQuery does not need
left outer joins, we omit this step here. For the complete magic branch decorrelation algorithm, please refer
to our technical report [27].

Below we will use the XQuery expression shown in Section 1 as the running example. The generated XAT
tree for the example query is shown in Fig. 4. The I1, I2 and I3 blocks are generated from the outer query
block. They represent the orderby clause, for clause and return clause, respectively. Similarly the J1, J2, J3

and J4 blocks are generated for the inner query.
We now discuss how the different operators affect the ‘‘pushing down’’ of the Map operator. For this, we

first distinguish between tuple-oriented and table-oriented operators. The propagation of the Map operator
down over tuple-oriented operators is different from that over table-oriented operators.

Definition 1. A tuple-oriented operator is one that examines each tuple in the input XATTable(s) one at a
time and generates a corresponding output tuple(s) as needed. A table-oriented operator, on the other hand,
examines multiple and possibly all tuples in the input XATTable(s) for generating an output tuple(s).

The table-oriented operators in our algebra include: Nest, OrderBy, Groupby, Distinct and all relational
aggregation functions. Further, since the order semantics in XQuery have to be defined on a sequence of
tuples, all order-sensitive operators such as Position are classified as table-oriented operators. Other operators
such as Select, Project and Join correspond to tuple-oriented operators.

We show the Position operator below as an example of a table-oriented operator. The output of the Position

operator depends on all the tuples in the input XATTable.

For a tuple-oriented operator we can simply push the Map operator down over it. For table-oriented oper-
ators, we need to perform an extra rewriting for the operator. That is, we will generate a Groupby operator,
which groups the input tuples by the for-variable introduced by the Map operator, and performs the original

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 309

Aut
ho

r's

pe
rs

on
al

co

py
table-oriented operator for each group. Intuitively the added grouping operator separates the whole column
used by the table-oriented operator into partitions according to the context variable. Thus each partition
keeps the group boundary of the column correctly. We will now illustrate this decorrelation process for the
XAT tree in Fig. 4 in a step-by-step fashion below.

Step 1: Considering the Map operator of the inner query block, we simply push the Map operator down the
RHS until we reach the table-oriented position operator. For the position operator, a Groupby oper-
ator is generated and the position function becomes the embedded operation of the Groupby opera-

Map

σ$bap=1

$bap:Position$ba

$b

φ$ba:$b/author

$s2:doc(“bib.xml”)

φ$b:$s2/book

$b

Orderby$by

φ$by:$b/year
σ$ba=$a

φ

∏ ∏

∏

∏
∏

∏

$bt:$b/title

$bt

Map

$bap:Position$ba

$b

φ$ba:$b/author

$b

σ$bap=1

σ$ba=$a

φ$bt:$b/title

$bt

$bap:GB$b(Position$ba)

φ$ba:$b/author

$b

σ$bap=1

σ$ba=$a

φ$bt:$b/title

$bt

A

A
A

B

Fig. 5. Propagation of map operator for inner query block.

Nest($res)

Map$a

$res:Tagger(<result>,$abt)

Map

Nest($bt)

σ$bap=1

$bap:Position$ba

$b

$s1:doc(“bib.xml”)

φ$a:$s1b/author

Orderby$al

φ$al:$a/last

φ$ba:$b/author

$a

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

$b

Orderby$by

φ

Π Π

∏∏

$by:$b/year
σ$ba=$a

φ$bt:$b/title

$bt

$abt:Cat($a,$bt)

$res

I1

I2

I3

J1

J2

J3

J4

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

Fig. 4. The XAT tree for the example XQuery in Section 1.

310 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

tor. We then continue pushing down the Map operator until the RHS becomes empty and the Map
operator can be removed. This step is shown in Fig. 5.

Step 2: Next we consider the Map operator of the outer query block in Fig. 4. We simply push the Map oper-
ator down the RHS until we reach a Nest operator. The Nest operator is another table-oriented oper-
ator. Propagation of the Map over the Nest operator is shown in Fig. 6.

Step 3: Continuing to push the Map operator of the outer query block down, now the linking operator r$ba=$a

becomes the right child of the Map operator. The last step of the propagation is to absorb the Map
operator into the linking operator. A Join is formed to connect both the branches. This transforma-
tion of the XAT tree is shown in Fig. 7.

Nest($res)

Map$a

$res:Tagger(<result>,$abt)

Nest($bt)

$a

$abt:Cat($a,$bt)

$res

B

C

$bt

Nest($res)

Map$a

$a

B

$bt

C

$res:Tagger(<result>,$abt)

GB$a(Nest($bt))

$abt:Cat($a,$bt)

$res

D

$s1:doc(“bib.xml”)

φ$a:$s1b/author

Orderby$al

φ$al:$a/last

Distinct($a)

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

∏ ∏

∏

∏∏∏

Fig. 6. Propagation of map operator for the outer query block.

Map$a

$a $bt

C

$bap:GB$b(Position$ba)

φ$ba:$b/author

$b

σ$bap=1

σ$ba=$a

φ$bt:$b/title

A

D

Join($ba=$a)

$a

$bt,$a

C
$bap:GB$b(Position$ba)

φ$ba:$b/author

$b

σ$bap=1

φ$bt:$b/title

A

D

B

∏

∏

∏

∏

∏

∏

Fig. 7. Propagation of map operator for the outer query block (Contd.).

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 311

Aut
ho

r's

pe
rs

on
al

co

py

Finally, the decorrelated XAT tree is shown in Fig. 8. The LHS of the Join operator retrieves a distinct
sequence of authors ordered by their last names. The RHS of the Join operator retrieves the sequence of
(book,author) ordered by the books’ year. Here the author is the first author of each book.

5. Order in XQuery processing

As mentioned before, XML is an ordered data model. The result of an XPath expression is a sequence of
elements matching the pattern, where the order of the elements is determined by the document order in the
input XML. Beyond the default document order, the XQuery expressions can have additional order semantics
on the sequences. The main extensions are (1) sorting the elements by certain attributes or sub-elements; (2)
making the order of the sequence in the for clause not significant by a value based distinction or the ‘‘unor-
dered’’ function; and (3) constructing the output document order (may be partial) among multiple level of ele-
ments in the result XML hierarchy. The XAT algebra is an order sensitive algebra and captures all these order
semantics in the intermediate XATTables.

5.1. Order in the XATTables

The XATTables can be treated as extended relational tables. Different with the relational tables, the order
among the tuples in the XATTables may be significant. Beyond ordering, the grouping property is also
important.

The complexity exists since (1) hierarchical XML intermediate results can be defined with multiple level
orderings; and (2) arbitrary XQuery expressions can also define partial orders. Two examples of partial order
in XML intermediate results are shown in Fig. 9. Here we use the XML schema graph to show the hierarchical
structures. In Fig. 9(i), the book nodes are not ordered under the root, while author nodes are ordered by the
name attribute for each book node. In Fig. 9(ii), the book nodes are ordered consistently with the default doc-
ument order in the input XML document. The price children of book nodes are not ordered, while author chil-
dren are ordered by their names locally.

All the order information in the intermediate result has to be captured in the XATTables. The order context
of an XATTable is denoted as [$col1O/G, $col2O/G , . . .]. Each item can be either an ordering denoted as $colO or
a grouping denoted as $colG. For simplicity, we only consider grouping on a single column in this paper. The
techniques can however be easily extended to grouping on multiple columns. The tuples of the XATTable are

Join($ba=$a)

$a

$bt,$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

$b

σ$bap=1

φ$bt:$b/title

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$by

φ$by:$b/year

Nest($res)

$res:Tagger(<result>,$abt)

GB$a(Nest($bt))

$abt:Cat($a,$bt)

$res

$s1:doc(“bib.xml”)

φ$a:$s1b/author

Orderby$al

φ$al:$a/last

Distinct($a)

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

∏

∏

∏

∏

Fig. 8. The XAT of example XQuery after decorrelation.

312 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

pyordered (or grouped) first according to $col1, with ties broken by $col2, and so on. For each $col, the ordering
$colO implies the grouping $colG but not vice versa. Such annotation is sufficient to represent any partial
orders in the XML intermediate results.

For example, suppose an XQuery first retrieves distinct books ($book) from the bib.xml, then retrieves all
the authors ($author) for each book and sorts the authors by their names ($name). The order context of the
XATTable after these operations is denoted as [$bookG, $nameO], where the $bookG is implied by the distinct
operation on books and the $nameO comes from the explicit sorting by $name.

5.2. Ordered semantics of the XAT operators

The XAT algebra is an order sensitive algebra. Depending on how the tuple order of the input XATTable is
changed by the operator and reflected in the output, the XAT operators can be divided into four categories:
order keeping, order generating, order destroying and order specific operators.

• Order-keeping operators include most of the operators, such as Select, Project and Tagger. These operators
inherit the order context of the input XATTable. For example, the tuple order among the input tuples of
the Select operator will be kept in the output XATTable. Project and Tagger operators will behave simi-
larly. Here the Project operator in XAT does not include the distinct semantics. If a column of the input
XATTable which is part of the input order context is projected out, the column is marked and not really
removed until the query plan cleanup after all query rewriting.

• Order-generating operators include the Orderby, Navigate and the Join operators. The Orderby operator
will sort the input tuples by certain column(s). The Navigate operator will extract the document order
of the elements of navigation and impose it into the respective orders of the tuples it generates. The Join
operator will merge the order from its two inputs into a new order. These three operators are now be dis-
cussed in more detail below.

An OrderBy operator sorting on $col1,$col2 , . . . will generate a new order context [$col1O, $col2O , . . .].
The order context of the input XATTable of the OrderBy operator may be overwritten, unless the input
order context is compatible with the new one. Here ‘‘compatible’’ means the complete (or prefix) of the
input XATTable is already included (or implied) by the new order context determined by the sorting.

The compatibility can be determined by checking if the input order context is the ‘‘prefix’’ of the gener-
ated order context of the OrderBy operator. For example, [$col1G, $col2G] is not compatible with the expli-
cit sorting on $col2. Thus the output order context will be [$col2O] only. That is, the ordering is stronger
than the grouping. But [$col1G, $col2G] is compatible with ordering on $col1 or on ($col1,$col2,$col3) with
the output order context then being [$col1O, $col2G] and [$col1O, $col2O, $col3O], respectively.

The Navigate operator extracts the document order and imposes it onto the output order context. The
Navigate operator forwards the input order context to its output XATTable. If the input order context,
including the trivial groupings, is not empty, the extracted document order will be attached to the end
of the input order context. Otherwise the output order context is empty. The trivial groupings can be
implied by the key constraints in the XATTable. Such key constraints can either be referred from the
value-based distinction function or the id-based distinction from XPath semantics. One special case of such
trivial grouping arises when the navigation is from the root of the XML document, since there is only one
tuple in the input XATTable (for the root node).

result

book

*

author

*Order by
author/name

(i) (ii)

result

book

*

author

*
Order by
author/name

price

*

Unordered
Default
Document Order

Unordered

Fig. 9. Examples of partial order in XML intermediate results.

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 313

Aut
ho

r's

pe
rs

on
al

co

py

Different permutations of the same set of Navigates may result in different order contexts. For example,
considering two Navigate operators from $a: $a/b and $a/c, if we perform $a/b before $a/c, then the final
order context will be [$aO, $bO, $cO]. If we perform the two Navigates in the opposite order, then the output
tuple order will be different, namely [$aO, $cO, $bO]. Such rewriting among Navigation operators will thus be
incorrect considering the order semantics.

Suppose OCL and OCR denote the order contexts of the left and right input XATTables of a Join oper-
ator. Then the output order context inherits the OCL. The OCR is attached to the output order context if the
OCL is not empty. Otherwise, OCR is discarded. Here all orderings and groupings properties in the left input
XATTable, even if trivial, need to be included in OCL for the empty test and order propagation. They may
not be trivial anymore in the output XATTable. For example, suppose the left input XATTable has a unique
identifier (key constraint) $col1, then $col1G is trivial since all groups consist of only one tuple. But it is no
longer trivial in the Join output since a 1 � m matching between the left and right input tuples may exist.

• Order-destroying operators include the Distinct operator and the Unordered operator, which represent the
distinct function and the unordered function, respectively. The value-based Distinct operator and the Unor-
dered operator will destroy the order of the input tuples. That is, the output tuple order is considered to be
not significant. Note that the Distinct operator will create a value based key constraint in the output
XATTable. It thus implies a trivial grouping property.

• Order-specific operators include the Groupby operator. Similar with the OrderBy operator, the order con-
text of the output XATTable of the GroupBy operator is determined by the compatibility of the input order
context with the grouping semantics. The compatibility checking needs to consider functional dependencies
in the input XATTable. For example, if the input tuples have been sorted on a column ($col1) and the
grouping is done on a column ($col2), where $col2! $col1, then the order context generated by the
GroupBy operator is compatible with the input order context. This order is preserved in the output.
$col1, $col2 above can also be multiple columns each.

For example, in Fig. 8 the Groupby operator preserves the order since $b! $by (there is one year for
each book), and the input of the Groupby operator is a sequence sorted by the books’ year. The Join oper-
ator produces a sequence of tuples with the major order of $al and minor order of $by. This ordered
sequence will be grouped by $a and all the book titles for each $a will be nested into a collection. Since
$a! $al (there is one last name for each author), this Groupby operator will also preserve the order of
the sequence.

6. Minimization of XAT query plan

In this section, we study how to remove redundant operations in the XAT tree. The goal is to rewrite it into
an equivalent but smaller query plan with s smaller number of operators.

In Fig. 8 a close inspection shows that the LHS and the RHS of the Join operator have similar XPath nav-
igations to the author node. But they use different Orderby operators: the authors in the LHS are ordered by
their last names and the RHS is ordered by the books’ year. Hence when we consider order semantics, the two
sequences do not match. To share the navigation computations among the two input branches of the Join
operator, we first need to rewrite the query plan by pushing down the navigations and pulling up the orderby
operators. Thus existing XPath matching and sharing algorithms can be applied.

Given the sharing of the XPath navigations takes place, then we find that since the Join is an equi-join on
the now shared XPath navigation ($b = $ba), and thus the Join can even be removed. Below we will discuss
these two types of rewritings in more detail.

6.1. Finding the minimal order context

The XAT tree may include operators having various ordering properties. To perform algebraic rewriting
while correctly maintaining the order semantics, we first propose a systematic way to determine the minimal
ordered semantics.

314 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

This process includes two steps: a bottom-up tree traversal recording the order context of the XATTable; and
a top-down tree traversal removing any overwritten order contexts. In the first step, the order context of the
XATTable is generated according to the ordering property of each operator. In the second step, all the order con-
text columns overwritten by upper operators (and thus not essential) will be removed. After this process, every
intermediate XATTable will be associated with an ordered sequence, denoting the order context. The result order
context associated with the XATTables after the process describes the minimal ordered semantics in the XAT tree.
These order contexts must be kept during the algebraic rewriting to assure correctness with respect to order.

We show these two steps using the previous XAT tree in Fig. 10, that is, with the partial XAT tree that is
sufficient for the purpose of explaining the main concepts above.

Note that during the first step, the Distinct operator in the LHS of the Join generates a value-based key con-
straint on $a. The order context $aG is trivial for the output XATTable of the Distinct operator, but it is not
trivial for the following Navigation operator. In the example query plan, there are two implicit functional depen-
dencies: $a! $al and $b! $by. Otherwise the two Orderby clauses in the example XQuery expressions would
be ambiguous. Since $b! $by, the Groupby operator grouping on $b will preserve the sorted order from $by.

In the second step, we perform a top-down tree traversal of the XAT tree. The order context of every input
XATTable will be truncated from tail to head in a step-by-step fashion. Such truncation will be stopped when a
different output order context is being generated. In the case that the output order context is empty, the input
order context is also set to empty. The remaining order context of the input XATTable will be the minimal
order context. For example, for the Orderby operator in the LHS of the Join operator, we have

���!½$aG;$alO�
Orderby$al���!

½$alO�) �!½$aG �
Orderby$al �!

½$alO�) �!½� Orderby$al �!
½$alO �

The minimal input order context of the Orderby operator will be truncated to [].

6.2. Orderby pull up

Correct query rewriting under ordered semantics must guarantee that the order context of the result XAT-
Table will not change after rewriting. To achieve this, we first define the correct rewriting of XAT trees below.

Definition 2. For an XAT tree, suppose the minimal order context of the output XATTable of the root of the
tree is C. If C remains unchanged after a given rewriting inside the tree, we call such a rewriting an order-

preserving rewriting.

Join($ba=$a)

$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

$b

σ$bap=1

Orderby$al

φ$al:$a/last

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$by

φ$by:$b/year

[$aG]

[$aG,$alO]

[$alO]

[]

[$bO]

[$bO
, $byO]

[$byO]

[$byO]

[$byO
, $baO]

[$byO]

[$alO, $byO]

[$alO] [$byO]
Join($ba=$a)

$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

$b

σ$bap=1

Orderby$al

φ$al:$a/last

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$by

φ$by:$b/year

[]

[$alO]

[]

[]

[]

[$byO]

[$byO]

[$byO]

[$byO]

[$alO] [$byO]

[]

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

[]

[$s1bO]

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

[]

[]

[]

[]

[]

[$s1bO, $aO]

[$s1bO, $aO]

[$s1bO, $aO]

[$alO, $byO]

Bottom Up
Top Down

∏ ∏

∏∏

Fig. 10. The process of finding the minimal order context.

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 315

Aut
ho

r's

pe
rs

on
al

co

py

We first intuitively describe the cases that we may encounter concerning order-sensitive rewriting. Intuitively,
pulling up the Orderby operator over an order-keeping operator is always allowed. Pulling it over an order-gen-
erating operator is prohibited, since the upper Orderby operator can overwrite the lower Orderby operators. For
the order-destroying operators, the lower Orderby operator can be removed. For the order-specific Groupby
operator, we need to check the tuple order and the grouping column in order to make a correct rewrite.

In general, this now leads us to the following four rewriting rules for the pulling up of the Orderby operator.

Rule 1. An Orderby operator and its associated Navigation operator (if any), which retrieves the column to be

sorted on, can be pulled up together over an order-keeping operator.

Proof. Without loss of generality, we need to show that the following rewriting does not change the ordered
semantics. ($col can also represent multiple columns.)

Orderby$col ! OrderKeeping) OrderKeeping ! Orderby$col.

Considering the minimal order context of the intermediate XATTables, we have

�!OC1
Orderby$col�!

OC2
OrderKeeping�!OC2

;

where OCi denotes the order contexts. According to the ordering property of the Orderby operator, OC1 :¼ []
or OC1 = OC2. Otherwise OC1 will not be the minimal order context. Thus we have either

�!½� Orderby$col�!
OC2

OrderKeeping�!OC2) �!½� OrderKeeping�!½� Orderby$col�!
OC2

or

�!OC2
Orderby$col�!

OC2
OrderKeeping�!OC2) �!OC2

OrderKeeping�!OC2
Orderby$col�!

OC2

In both cases, the final output order context OC2 is unchanged. h

Rule 2. Consider pulling up the Orderby operator above a binary Join operator $o.

• If the LHS of $o is ordered by $l and the RHS of $o is not ordered, then the Orderby operator can be pulled up.
• If the RHS of $o is ordered by $r but the LHS of $o is not ordered, then the Orderby operator cannot be pulled up.

• If the LHS of $o is ordered by $l and the RHS is ordered by $r, then both Orderby operators in the LHS and

RHS can be pulled up and merged into one single Orderby operator. This new operator sorts the XATTable

using $l as the major order and $r as the minor order.

We illustrate the three cases of Rule 2 using the Join operator in Fig. 11.

Join

[$l]

[$l] []
Orderby$l

Join

[$l]

[] []

Orderby$l

[]Case 1

Join

[]

[] [$r]

Orderby$r

Join

[$r]

[] []

Orderby$r

[]Case 2

×

Join

[$l, $r]

[$l] [$r]
Orderby$l Orderby$r

Join

[$l, $r]

[] []

Orderby$l,$r

[]Case 3

Fig. 11. The three cases of Rule 2 on pulling up Orderby over Join.

316 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

Proof. We only show the proof of the first case. The proofs of the other two cases are similar. We need to
show that the following rewriting does not change the ordered semantics.

ðOrderby$col ! Join Þ) ð! Join Þ ! Orderby$col

Considering the minimal order context of the intermediate XATTables, we have

ð�!OC1
Orderby$col�!

OC2
Join ½� Þ�!OC2

.

Similar to the proof of Rule 1, we have OC1 :¼ [] or OC1 = OC2. So

ð�!½� Orderby$col�!
OC2

Join ½� Þ�!OC2) ð�!½� Join ½� Þ�!½� Orderby$col�!
OC2

or

ð�!OC2
Orderby$col�!

OC2
Join ½� Þ�!OC2) ð�!OC2

Join ½� Þ�!OC2
Orderby$col�!

OC2
.

In both cases, the final output order context OC2 is unchanged. h

Rule 3. An Orderby operator can be removed if there is an order-destroying operator above it immediately.

This rule is straightforward and we omit the proof here.

Rule 4. An Orderby operator that sorts on $b can be pulled above a Groupby operator that groups on $a if

$a! $b.

Proof. Given that $a! $b, the order context [$bO] is compatible with [$bO, $aG]. The Groupby operator will not
destroy the input order context. Similarly the order context [$aG] is compatible with [$bO, $aG]. Then we have

�!½� Orderby$b�!
½$bO�

Groupby$a ���!
½$bO;$aG�) �!½� Groupby$a�!

½$aG�
Orderby$b ���!

½$bO ;$aG�
: �

Proposition 1. A series of algebraic query rewritings using Rules 1–4 in XAT trees form a rewriting that is order

preserving.

This proposition can be proved by induction on the rewriting steps.
In Fig. 12, the Orderby in the LHS of the Join can be pulled up above the Project, since the Project is a

unary order-keeping operator. The Orderby in the RHS can also be pulled up above the Project, Groupby

Join($ba=$a)

$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

$b

σ$bap=1

Orderby$al

φ$al:$a/last

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$by

φ$by:$b/year

(1)
(2)

Join($ba=$a)

$a

$bap:GB$b(Position$ba)

φ$ba:$b/author

$b,$ba

σ$bap=1

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

Orderby$al,$by

φ$al:$a/last

E

(1)

φ$by:$b/year

[$alO, $byO]

[]

[]

[]

[]
[]

[]

[]

[]

[]

[]

[]

[]

[]

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

[]

[]

[]

∏

∏

∏

∏

Fig. 12. Orderby pull up.

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 317

Aut
ho

r's

pe
rs

on
al

co

py

and Select. For the Groupby operator, since the Orderby operator sorts the tuples by $by, which is function-
ally dependent on the grouping column $b, the tuple order before and after the pulling up of the Orderby oper-
ator are identical. The LHS and the RHS Orderby operators can be pulled up above the Join and be merged
into one single Orderby operator that sorts tuples by $al (major), and by $by (minor).

After pulling up the Orderby operators, the XQuery minimization problem is reduced from the ordered
sequence matching problem to the well studied XPath matching under set semantics. To ‘‘gather’’ all the
XPath expressions, we push down all the navigations to the bottom of the XAT tree. During this pushing,
the Project operator needs to be changed accordingly as shown in Fig. 12.

6.3. XPath matching and redundancy removal

In the example XAT tree, after pulling up the Orderby operators, the order context becomes null for the
two branches below the Join operator. Then the optimization problem is reduced to the optimization under
unorder semantics. Various query plans can be generated and the optimal can be picked.

By utilizing existing XPath matching algorithms [2], we find that the $a in the LHS of the Join operator and
the $ba in the RHS both come from the same XPath expression bib.xml/book/author. We can remove such
redundant navigation using the following rewriting rule.

Rule 5. Consider an equi-join operator with $a = $b with $a introduced from the LHS and $b from the RHS of

the operator. We can remove the equi-join and the LHS if the following conditions hold:

• $b � $a under set semantics, and

• $a is a set with no duplicates.

The proof of Rule 5 is straightforward and we omit the proof here.
In Fig. 13, every author in $ba appears in $a; the schema of the LHS has only one column $a; and $a has no

duplicates after the Distinct operator. Therefore the equi-join operator and in fact the complete LHS branch
can be removed according to Rule 5. The final query plan is shown in Fig. 14.

Join($ba=$a)

$a

φ$ba:$b/author

Distinct($a)

$s2:doc(“bib.xml”)

φ$b:$s2/book

E

φ$a:$b/author

$s2:doc(“bib.xml”)

φ$b:$s2/book

E

Orderby$al,$by

φ$al:$a/last

φ$by:$b/year

Orderby$al,$by

φ$al:$a/last

φ$by:$b/year

$s1:doc(“bib.xml”)

φ$a:$s1b/author

$ap:GB$s1b(Position$a)

σ$ap=1

φ$s1b:$s1/book

∏

Fig. 13. Removing redundant Joins and Navigations.

318 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

7. Experimental study

We have conducted experiments to illustrate the performance gains achievable by our approach. We have
implemented the magic branch decorrelation and minimization algorithm in the RainbowCore project, a Java-
based native XQuery engine using the XAT algebra developed at WPI [26]. Our experiments shown in this
section focus on nested XQueries containing order related predicates and clauses that can be minimized after
our order context processing. The benefit of such minimization shown in the experiments comes from the
saving of repeated computations. Such benefit varies with the amount of computations that can be saved.

In this section, we show the following three performance measurements: (1) the comparison of the execu-
tion time before and after the query decorrelation. This illustrates the potential benefit achieved by query dec-
orrelation. (2) The comparison of the execution time before and after the query minimization. The varying
benefit of the query minimization is shown by different XQueries. (3) The comparison of the query optimiza-
tion time versus the query execution time. This illustrates the query decorrelation and minimization time is
rather small compared to the execution time.

The input XML files are generated according to the schema of the ‘‘bib.xml’’ in the W3C XQuery Use Cases
XMP [21]. The number of books in the XML file varies in the experiments. The number of authors per book
ranges from 0 to 5, with uniform distribution. Each distinct author can be in the author list of 0 to 5 books. In
other words, each author will appear 2.5 times on average in the XML file. The input XML files are stored as
plain text files on the disk. We do not employ any pre-processed index on the XML files in these experiments.
Furthermore, all the experiments are done in main memory using a simple iterative execution.

These experiments were performed on a 1.2GHz PC with 512MB of RAM running Windows 2000 using
Java SDK 1.4.2.

7.1. Performance analysis: Q1

Our first experimental results based on the example XQuery described in Section 1 are shown in Fig. 15. We
compare the query execution times of three query plans: the original query plan with the nested sub-query
shown in Fig. 4; the decorrelated query plan shown in Fig. 8; and the optimized query plan after removing
redundant navigations and Joins depicted in Fig. 14. We have varied the input XML documents to have dif-
ferent numbers of book elements, as shown on the x-axis.

We can see that the decorrelation step gives significant performance gains. One of the reasons is that in our
experiment we do not employ any storage manager, so the navigations will be launched directly to the file for
every instance of the LHS of the Map operators. After decorrelation, this repeated navigation in the sub-query

$bap:GB$b(Position$a)

$b,$a

σ$bap=1

φ$a:$b/author

$s2:doc(“bib.xml”)

φ$b:$s2/book

$bt,$a

φ$bt:$b/title

Nest($res)

$res:Tagger(<result>,$abt)

GB$a(Nest($bt))

$abt:Cat($a,$bt)

$res

Orderby$al,$by

φ$al:$a/last

φ$by:$b/year

∏

∏

∏

Fig. 14. The optimized XAT of the example XQuery Q1.

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 319

Aut
ho

r's

pe
rs

on
al

co

py
will be saved. Thus the total I/O costs will decrease dramatically. The XAT minimization also brings signif-
icant performance improvements in the order of 30–40%. This is due to the successful removal of the redun-
dant Navigations and the costly Join operations. The performance gain of the XAT minimization is shown
more clearly in Fig. 16 by focusing on the results before and after minimization.

7.2. Performance analysis: Q2

In the following performance analysis, we will no longer show the execution of the query plan before the
decorrelation. Instead we focus on the comparison of the execution of the query plans before and after our
query minimizations.

The second experiment we conduct is based on the query Q2, which is a variation of the previous XQuery
Q1 by removing the position function in the inner query block.

for $a in distinct-values(doc("bib.xml")/book/author[1])

order by $a/last
return hresulti

{$a,
for $b in doc("bib.xml")/book

where $b/author = $a
order by $b/year
return $b/title

}
h/resulti

The authors used in the inner query can be any authors in the input XML file, which is different from Q1.
Thus any book whose author is the first author of at least one book will be returned in the inner query block.

0

 20

 40

 60

 80

 100

 200 400 600 800 1000

X
Q

ue
ry

 P
ro

ce
ss

in
g

T
im

e
(S

ec
)

Number of Book Elements of Input XML

Before Unnesting
After Unnesting

After Minimization

Fig. 15. Performance comparison of different query plans of Q1.

0

5

 10

 15

 20

 200 400 600 800 1000

X
Q

ue
ry

 P
ro

ce
ss

in
g

T
im

e
(S

ec
)

Number of Book Elements of Input XML

After Unnesting
After Minimization

Fig. 16. Performance gain of XAT minimization of Q1.

320 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

Recall Rule 5 after decorrelation of the query plan of Q2, the LHS and RHS of the Join operator cannot be
merged and the Join operator cannot be removed. However, the same navigations occurring in both the LHS
and RHS of the Join can be shared. The minimized query plan for Q2 is shown in Fig. 17.

After minimization, the query plan for Q2 merges the matching navigation and materializes the result of the
navigation for the Groupby and the Join operators. Similar with the first experiment, we have varied the input
XML documents to have different numbers of book elements. The results are shown in Fig. 18.

From Fig. 18, we can clearly see the effect of the XQuery minimization on query execution time. The min-
imization brings performance improvements in the order of 20–30% for Q2. The benefit of XQuery minimiza-
tion is a little smaller than that for Q1 since fewer operators are removed by the minimization.

The corresponding query optimization times including the decorrelation time and the minimization time for
Q2 are shown in Fig. 19. Both query decorrelation and minimization only take very small amount of time com-
pared to the actual query execution time, especially when the input XML files are large.

7.3. Performance analysis: Q3

The third experiment we conduct is based on Q3, which is a variation of the previous XQuery Q1 by drop-
ping both the position functions.

Join($a=$a)

$a

Distinct($a)

Orderby$al,$by

φ$al:$a/last

φ$by:$b/year

$s1:doc(“bib.xml”)

φ$a:$b/author

$ap:GB$b(Position$a)

σ$ap=1

φ$b:$s1/book

$bt,$a

φ$bt:$b/title

Nest($res)

$res:Tagger(<result>,$abt)

GB$a(Nest($bt))

$abt:Cat($a,$bt)

$res

∏

∏

∏

Fig. 17. The optimized XAT of the XQuery Q2.

0

 10

 20

 30

 40

 50

 200 400 600 800 1000

X
Q

ue
ry

 P
ro

ce
ss

in
g

T
im

e
(S

ec
)

Number of Book Elements of Input XML

Execution Time without Minimization
Execution Time with Minimization

Fig. 18. Performance comparison of different query plans of Q2.

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 321

Aut
ho

r's

pe
rs

on
al

co

py

for $a in distinct-values(doc("bib.xml")/book/author)

order by $a/last
return hresulti

{$a,
for $b in doc("bib.xml")/book

where $b/author = $a
order by $b/year
return $b/title

}
h/resulti

The variation of Q3 is used to test the effectiveness of the query minimization without the position function.
In this case, more tuples will be in the input table of the Join operator without the query minimization. Thus
the Join cost will be more significant and query minimization will result in a much better query plan in terms of
execution time. The minimized query plan for Q3 is shown in Fig. 20.

Similar with the other experiments, we have varied the input XML documents to have different numbers of
book elements. The results are shown in Fig. 21. The execution time without query minimization increases
quadratically with the size of the XML files. However, the execution time after the minimization increases lin-
early and much slower.

0

1

2

3

4

5

 200 400 600 800 1000

X
Q

ue
ry

 P
ro

ce
ss

in
g

T
im

e
(S

ec
)

Number of Book Elements of Input XML

Decorrelation Time
Decorrelation and Minimization Time

Fig. 19. Query optimization time of different query plans of Q2.

$b,$a

φ$a:$b/author

$s2:doc(“bib.xml”)

φ$b:$s2/book

$bt,$a

φ$bt:$b/title

Nest($res)

$res:Tagger(<result>,$abt)

GB$a(Nest($bt))

$abt:Cat($a,$bt)

$res

Orderby$al,$by

φ$al:$a/last

φ$by:$b/year

∏

∏

∏

Fig. 20. The optimized XAT of the XQuery Q3.

322 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

7.4. Summary of the experiments

We define the performance improvement rate of the XQuery minimization as

ðexecution time without mini� execution time with miniÞ
execution time without mini

The average improvement rate of the minimization over Q1, Q2 and Q3 is summarized in Fig. 22.
Depending on the operators that the minimization can remove from the query plans, the XQuery minimi-

zation can achieve significant performance improvements. In some cases, such performance improvement can
be greater than 50% of the execution time.

8. Conclusions

In this paper we propose an algebraic rewriting technique for nested XQuery expressions containing explicit
orderby clauses. The proposed technique is based on the principles of magic decorrelation. Unlike prior work,
this technique enables the optimization of nested XQuery expressions not only with set but also with ordered
sequence semantics. We illustrate how our proposed technique is able not only to successfully tackle the same
XQuery logical optimization problem solved in the NEXT framework, but to go one step beyond and support
ordered semantics.

Our work extends previous work primarily in two aspects. First, to the best of our knowledge, we are the
first to provide a practical approach handling XQuery logical minimization with sequence semantics. Second,
our magic branch approach inherits the advantages of magic decorrelation, including the opening of the
opportunities for further optimizations. The experimental studies illustrate the effectiveness of the proposed
algorithm. As part of our future work, we plan to study the order inference of different operators in order-
sensitive query plans as well as optimization of the operators using it.

References

[1] A. Deutsch, V. Tannen, Containment of regular path expressions under integrity constraints, in: 8th Int. Workshop on Knowledge
Representation Meets Databases (KRDB), Rome, Italy, June 2001, pp. 1–11.

[2] A. Balmin, F. Ozcan, K.S. Beyer, R. Cochrane, H. Pirahesh, A framework for using materialized XPath views in XML query
processing, in: Proc. of the Int. Conf. on Very Large Data Bases (VLDB), 2004, pp. 60–71.

0

 10

 20

 30

 40

 50

 60

 70

 200 400 600 800 1000

X
Q

ue
ry

 P
ro

ce
ss

in
g

T
im

e
(S

ec
)

Number of Book Elements of Input XML

Execution Time without Minimization
Execution Time with Minimization

Fig. 21. Performance comparison of different query plans of Q3.

Ave. Impro. Rate 35.9013% 29.8444% 73.3869%

Fig. 22. Average performance improvement rate of different query after minimization.

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 323

Aut
ho

r's

pe
rs

on
al

co

py

[3] C. Beeri, Y. Tzaban, SAL: an algebra for semistructured data and XML, in: ACM SIGMOD Workshop on the Web and Databases
(WebDB), 1999, pp. 37–42.

[4] S. Cluet, G. Moerkotte, Nested queries in object bases, in: Proc. of the Int. Workshop on Database Programming Languages, 1993,
pp. 226–242.

[5] A. Deutsch, Y. Papakonstantinou, Y. Xu, The NEXT logical framework for XQuery, in: Proc. of the Int. Conf. on Very Large Data
Bases (VLDB), 2004, pp. 29–41.

[6] X. Dong, A.Y. Halevy, I. Tatarinov, Containment of nested XML queries, in: Proc. of the Int. Conf. on Very Large Data Bases
(VLDB), 2004, pp. 132–143.

[7] L. Fegaras, Query unnesting in object-oriented databases, in: Proc. of ACM SIGMOD Int. Conf. on Management of Data, 1998,
pp. 49–60.

[8] L. Fegaras, D. Levine, S. Bose, V. Chaluvadi, Query processing of streamed XML data, in Proc. of the Int. Conf. on Information and
Knowledge Management (CIKM), 2002, pp. 126–133.

[9] G. Miklau, D. Suciu, Containment and equivalence for an XPath fragment, in: Symposium on Principles of Database Systems
(PODS), Madison, Wisconsin, June 2002, pp. 65–76.

[10] G. Gottlob, C. Koch, R. Pichler, Efficient algorithms for processing XPath queries, in: Proc. of the Int. Conf. on Very Large Data
Bases (VLDB), 2002, pp. 95–106.

[11] G. Gottlob, C. Koch, R. Pichler, XPath query evaluation: improving time and space efficiency, in: Proc. of the Int. Conf. on Data
Engineering (ICDE), 2003, pp. 379–390.

[12] W. Kim, On optimizing an sql-like nested query, TODS 7 (3) (1982) 443–469.
[13] L.V.S. Lakshmanan, G. Ramesh, H. Wang, Z.J. Zhao, On testing satisfiability of tree pattern queries, in: Proc. of the Int. Conf. on

Very Large Data Bases (VLDB), 2004, pp. 120–131.
[14] A. Levy, A. Mendelzon, Y. Sagiv, D. Srivastava, Answering queries using views, in: PODS, San Jose, CA, June 1995, pp. 95–104.
[15] I. Manolescu, D. Florescu, D. Kossmann, Answering XML queries on heterogeneous data sources, in: Proc. of the Int. Conf. on Very

Large Data Bases (VLDB), 2001, pp. 241–250.
[16] N. May, S. Helmer, G. Moerkotte, Nested queries and quantifiers in an ordered context, in: Proc. of the Int. Conf. on Data

Engineering (ICDE), 2004, pp. 239–250.
[17] S. Paparizos, S. Al-Khalifa, H. Jagadish, L. Lakshmanan, A. Nierman, D. Srivastava, Y. Wu, Grouping in XML, in: EDBT

Workshops, 2002, pp. 128–147.
[18] C. Sartiani, A. Albano, Yet another query algebra for XML data, in: Proc. of Int. Database Engineering and Applications

Symposium (IDEAS), 2002, pp. 106–115.
[19] A. Schmidt, F. Waas, M.L. Kersten, M.J. Carey, I. Manolescu, R. Busse, XMark: a benchmark for XML data management, in: Proc.

of the Int. Conf. on Very Large Data Bases (VLDB), 2002, pp. 974–985.
[20] P. Seshadri, H. Pirahesh, T.Y.C. Leung, Complex query decorrelation, in: Proc. of the Int. Conf. on Data Engineering (ICDE), 1996,

pp. 450–458.
[21] W3C. XML query use cases, W3C working draft 02, May, 2003. Available from: <http://www.w3.org/TR/xquery-use-cases>.
[22] W3C. XML Path Language (XPath) Version 2.0. W3C Working draft. Available from: <http://www.w3.org/TR/xpath20>,

November 2003.
[23] W3C. XQuery 1.0: An XML Query Language. Available from: <http://www.w3.org/TR/xquery/>, May 2003.
[24] S. Wang, X. Zhang, E.A. Rundensteiner, M. Mani, in: Algebraic XQuery decorrelation with order sensitive operations, Technical

Report WPI-CS-TR-05-01, Worcester Polytechnic Institute, 2005.
[25] X. Zhang, K. Dimitrova, L. Wang, M. El-Sayed, B. Murphy, B. Pielech, M. Mulchandani, L. Ding, E.A. Rundensteiner, rainbow:

multi-XQuery optimization using materialized XML Views, in: ACM SIGMOD Demo, 2003, pp. 671.
[26] X. Zhang, M. Mulchandani, S. Christ, B. Murphy, E.A. Rundensteiner, rainbow: mapping-driven XQuery processing system, in:

Proc. of the ACM SIGMOD Conf. on Management of Data, 2002, pp. 614.
[27] X. Zhang, E.A. Rundensteiner, XAT: XML algebra for the rainbow system, Technical Report WPI-CS-TR-02-24, Worcester

Polytechnic Institute, July 2002.

Song Wang is a Ph.D. student in Worcester Polytechnic Institute. His research focuses on the area of XML Query
Processing and Stream Data Management.

324 S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325

Aut
ho

r's

pe
rs

on
al

co

py

Elke A. Rundensteiner is a Full Professor of the Department of Computer Science at the Worcester Polytechnic
Institute, after having been a faculty member at the University of Michigan, Ann Arbor. She has received a BS
degree (Vordiplom) from the J.W. Goethe University, Frankfurt, West Germany, an M.S. degree from Florida
State University, and a Ph.D. degree from the University of California, Irvine, all in Computer Science.

She is a well-known expert in databases and information systems, having spend 20 years of her career focussing
on the development of scalable data management technology in support of advanced applications including
manufacturing and automation, human genome and digital libraries. Her current research interests include data
integration and migration, XML and web data management, data warehousing for distributed systems, contin-
uous query processing, and large-scale information visualization. She has more than 200 publications in these and
related areas. Her research has been funded by government agencies including NSF and industry like IBM,
Verizon Labs, GTE, NEC, and others. She has been recipient of numerous honors and awards, including the NSF

Young Investigator grant. She is on program committees of prestigious conferences in the database field and editor of several journals,
including Associate Editor of the IEEE Transactions on Data and Knowledge Engineering Journal.

Murali Mani is currently an assistant Professor in Computer Science Department, at WPI. He has been at WPI
from August 2003. Before joining WPI, he finished his BTech in Computer Science and Engineering from IIT,
Madras in 1998, his MS in Computer Science from UCLA, in 2000, and his Ph.D. in Computer Science from
UCLA in 2003. His main area of interest is in database systems, especially utilizing modern technologies such as
XML, to increase the capabilities of database systems.

S. Wang et al. / Data & Knowledge Engineering 60 (2007) 303–325 325

