1. (10 points) A bureaucracy has \(m \) people and needs \(n \) committees. For each person \(p_i, 1 \leq i \leq m \), we have a list of committees on which \(p_i \) is capable of serving and a number \(x_i \in \mathbb{Z}^{\geq 0} \) of committees on which \(p_i \) is willing to serve. For each committee \(c_j, 1 \leq j \leq n \), we have a number \(y_j \in \mathbb{Z}^+ \) of members needed on \(c_j \). Describe a polynomial time algorithm to determine if an assignment of people to committees is possible under the given constraints, and to find a feasible assignment if one exists.
2. (20 points) Given array $A[1..n]$ of distinct integers, describe an algorithm of complexity $O(n^2)$ to find the length of a longest (not necessarily contiguous) increasing sequence of integers of A. For example, if $A=(11, 17, 5, 8, 6, 4, 7, 12, 3)$, then the answer would be 4 because of the subsequence 5, 6, 7, 12.
3. (5 points) Is the following conjecture true or false? If it is false, give a counterexample. That is, give a network, a flow, and two cuts with unequal flows.

Conjecture: For any network and any flow, the flows through all cuts are equal.

4. (20 points) Suppose you are given a network $G=(V,E)$, $\sigma, \tau \in V$, $c: E \to \mathbb{Z}^+$, and max flow $f: E \to \mathbb{Z}^+$. You are also given an $uv \in E$. Find a max flow in the network $G^*=(V,E)$, $\sigma, \tau \in V$, $c^*: E \to \mathbb{Z}^+$ such that $c^*(e) = \begin{cases} c(e), & \text{if } e \neq uv \\ c(e) - 1, & \text{if } e = uv \end{cases}$. Describe an algorithm to find a max flow in G^*. Your algorithm should work in worst-case time in $O(m+n)$.

5. (25 points) Given digraph G represented by $n \times n$ adjacency array A, where

$$A[i,j] = \begin{cases} 1, & \text{if edge } ej \in E \\ 0, & \text{if edge } ej \notin E \end{cases}$$

and integer $k \geq 2$, design an algorithm to compute $n \times n$ array B such that $B[i,j]$ contains the number of paths of even length from i to j such that the length is less than or equal to k. Your algorithm should work in time in $O(kn^3)$.
6. (20 points) (Probabilistic Counting) Consider the following algorithm to estimate the size of a set S. Assume that you know integers $0 < k, l \leq |S|$.

Sample (without replacement from a uniform distribution) and mark k elements of S
Replace the k elements
Sample (with replacement from a uniform distribution) l elements of S
Let m be the number of marked elements from the second sample

Describe an unbiased estimator for $|S|$, and show that your estimator is unbiased.
1. We form a flow network with vertices \(\{ p_1, \ldots, p_m, c_1, \ldots, c_n, \sigma, \tau \} \) and edges
\(\{ \sigma p_i \mid 1 \leq i \leq m \} \cup \{ c_j \tau \mid 1 \leq j \leq n \} \cup \{ p, c_j \mid p_i \text{ can serve on } c_j \} \). The capacity of edge \(\sigma p_i \) is \(x_i \) and the capacity of edge \(c_j \tau \) is \(y_j \). The capacities of all other edges is 1. A max flow \(f \) is a feasible assignment if \(|f| = \sum_{i,j \in \mathcal{M}} y_j \leq \sum_{i \in \mathcal{M}} x_i \).

2. \(\text{Length of Longest}[1] \leftarrow 1 \)
 for \(i \leftarrow 2 \) to \(n \) do
 \(\text{Length of Longest}[i] \leftarrow 1 + \max \{ \text{Length of Longest}[j] \mid \frac{i}{j} < \frac{i}{j} \leq \frac{i}{j} \} \)
 return \(\max_{i \in \mathcal{I}} \{ \text{Length of longest}[i] \} \)

3. The CONJECTURE is true.

4. We first determine a feasible flow, \(f^* \), which is feasible in \(G^* \), and then we try to find an augmenting path relative to \(f^* \).

 if \(f(uv) < c(uv) \) then return \(f \)

 Use dfs to find a path \(\pi_0 \) with positive flow on each edge from \(\sigma \) to \(u \)

 Use dfs to find a path \(\pi_1 \) with positive flow on each edge from \(v \) to \(\tau \)

 for each edge \(e \in \pi_0 \cup \pi_1 \) do \(f(e) \leftarrow f(e) - 1 \)

 Construct \(H = (V, E') \) with capacities \(c^* \) such that \(\forall e \in E' \ c^*(e) = c(e) - f(e) \)

 Use dfs to find a path \(\pi \) (if it exists) from \(\sigma \) to \(\tau \) consisting only of edges with positive values of \(c^* \)

 return \(f^*(e) = \begin{cases} f(e) + 1, & \text{if } e \in \pi \\ f(e), & \text{otherwise} \end{cases} \)

5. \(A^2 \leftarrow AA \)
 \(B \leftarrow A^2 \)
 for \(l \leftarrow 4 \) to \(k \) by \(2 \) do
 \(B \leftarrow B + BA^2 \)
 return \(B \)
6. Since this sampling of the l elements selected in the second sample is with replacement, the probability of each sampled element being marked is $k / |S|$. The number of marked elements is binomially distributed, with the expected number of marked elements being

$$\sum_{l \leq j \leq l} \binom{l}{j} \left(\frac{k}{|S|} \right)^j \left(1 - \frac{k}{|S|} \right)^{l-j} = \frac{k}{|S|} = E[m].$$

So we infer $|S| = \frac{lk}{m}$.