Describe an algorithm to accept as input a positive integer $\lambda \ge 3$ and an adjacency array E of a directed graph,

$$E[i, j] = \begin{cases} 1, & \text{if } v_i v_j \in E \\ 0, & \text{if } v_i v_j \notin E \end{cases}$$

which will return the number of cycles of length exactly λ in the graph. Your algorithm should work in time $O(\lambda n^3)$. So, for example, your algorithm would return 2 for λ =4 and digraph

Solution:
$$A \leftarrow I$$
 $O(n^2)$

$$NumCycles \leftarrow 0$$
 $O(1)$

for $i \leftarrow 1$ to n do

$$NumCycles \leftarrow NumCycles + A[i,i]$$
 $\Theta(n)$

return
$$NumCycles / \lambda$$
 $O(1)$

We note that each cycle is counted λ times, once for starting at each vertex on the cycle.