Exam Name

1. a A Hamilton path of a graph is a path that goes through every vertex of the graph. A Hamiltonian
cycle of a graph is a cycle that goes through every vertex of the graph. Show that the problem of
deciding if a graph has a Hamilton path is polynomially reducible to the problem of deciding if a graph

has a Hamiltonian cycle.

1. b Is the problem of finding a longest path in a graph polynomially reducible to the problem of finding
a shortest path? Justify your answer.

2. Consider the problem which accepts as input a binary array (all values of A are 0 or 1) and integer k
and decides whether the array contains at least k entries of 1 such that no pair of these k 1’s appear on
the same row or on the same column. For example, if the array is

o +— O
o O -

1
0
1

= O O

and k=3, the answer is true because of the bold entries (1,2), (2,1) and (3,4). Is this problem NP-
complete? Justify your answer.

SOLUTIONS

1. a Take any instance G = (V, E) of the spanning path problem. Construct a new graph

G = (V U{W} , E*) where E is E plus an edge between w and every V €V . G has a spanning path if

and only if G has a Hamilton cycle, and the spanning path of G is obtained from the Hamilton cycle of G
by removing w and both edges incident with it.

b The problem of finding a shortest path belongs to P - it admits a polynomial time algorithm to solve it.
Agraph G = (V, E) has a path of length |V| if and only if it has a Hamilton Path, and the problem of
testing if a graph has a Hamilton Path problem is NP-complete. If the problem of finding a longest path

in a graph were polynomially reducible to the problem of finding a shortest path, this would imply that
the problem of finding a shortest path is NP-complete, which it almost certainly is not.

2. The problem is almost certainly not NP-complete because it is equivalent to finding a maximum
matching in a bipartite graph, which can be solved using a polynomial time algorithm to find a maximal
flow in a network. To show this reduction, we label the rows of array A to be X and the columns Y. We
add a source s and a terminus t. The edges of our network are

{(X, y)| A[X, y] :1} u{(s, X)| Xe X } u{(y,t)l y EY} . All edges have capacity 1. A admits k entries

of 1 if and only if the network admits a flow of value at least k, which can be determined in polynomial

time.

