
Assume you have access to a **decision** procedure LONGESTSIMPLECYCLE? (G, k) which decides in polynomial time if the longest simple cycle of graph G is of length k. For graph

LONGESTSIMPLECYCLE? (H, 4) would return false, and LONGESTSIMPLECYCLE? (H, 3) would return true. Write a polynomial time procedure to accept as input a graph G and either return a Hamilton Cycle of G (it must actually construct the cycle) or return false if a Hamilton Cycle does not exist.

<u>SOLUTION</u>: if LONGESTSIMPLECYCLE?(G, |V(G)|) = false then return false

/* We now know that G is Hamiltonian, so we have to compute a Hamilton cycle */

for each $e \in E$ if LongestSimpleCycle?(G-{e}, |V(G)|) = true

/* e is not critical */

then
$$E \leftarrow E - \{e\}$$

return E