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1 Given two strings of characters u 1... mx x  and v 1... ny y  drawn from the alphabet  , ,a b c , we 

want to know the minimal cost of converting u to v, where chc 0  is the cost of changing a symbol, cins

0  is the cost of inserting a symbol, and cdel 0  is the cost of deleting a symbol, and the cost of 
applying a sequence of operations is the sum of the costs of the operations that comprise the sequence. 
For example, if 1ch ins delc c c    and u=abbaac and v=abcbc, then the cost of converting u to v is 3 

because of the sequence 

del ch chc c c
abbaac abbac abcac abcbc     . 

Write a dynamic programming algorithm to accept as input u, v, cch, cins and cdel and return the 
minimal cost of a sequence of operations to convert u to v. 
SOLUTION: For 0 i m  , 0 j n  , we let  ,i j  denote the minimal cost of a sequence of 

operations to convert 1... ix x  to 1... jy y . The answer to the problem is  ,m n . To start the process, we 

note that  0,0 0  ,  1,0 delc   and  0,1 insc  . For 1 1i m j n     , if xi=yj, then 

   , 1, 1i j i j    . Otherwise,         , min 1, 1 , 1, , , 1ch del insi j i j c i j c i j c           . 

The corresponding program to fill in array  0.. ,0..m n  is 

  0,0 0   

  1,0 delc   

  0,1 insc   

 for 1i   to m 
  for 1j   to n 

   if xi=yj then    , 1, 1i j i j     

            else         , min 1, 1 , 1, , , 1ch del insi j i j c i j c i j c            

 return  ,m n  

************************************************************************* 
2 An instance of the PARTITION PROBLEM is a set U  of integers, and the question is whether or not 
U can be partitioned into two sets T and U\T such that the sums of the integers in the two sets are 

equal. That is, does 
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  . For example, the instance  2,3,9,15,19U   admits the 

solution U={9,15}, and the instance  2,3,9,15,18U   does not admit a solution. Give a dynamic 

programming solution to the PARTITION PROBLEM, and analyze your solution.  
SOLUTION: The instance U  1,..., ns s  of the PARTITION PROBLEM admits a solution if and only if the 

instance v=w=  1,..., ns s , 1
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algorithm takes time in 
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************************************************************************* 
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3 Describe a  2O n  dynamic programming algorithm to find the length of the longest (not 

necessarily contiguous) increasing sequence of integers of A[1..n]. For example, if 

 11,17,5,8,6,4,7,7,12,3A  , then the answer would be 4 because of the subsequence  5,6,7,12 . 
SOLUTION:  For every i, we compute Length_of_longest[i], the length of the longest increasing 
subsequence in A[1..i] whose rightmost member is A[i].  The dynamic programming formulation is 

 
   

  
1

_ _ max 1, _ _ 1
j i

A j A i

Length of longest i Length of longest j
 


   

This translates to the program 
      _ _ 1 1Length of longest   

      for 2i   to n do 
              _ _ 1Length of longest i   

              for 1j   to i-1 do 

                     if    A j A i  and Length_of_longest[j]+1> Length_of_longest[i] 

                     then Length_of_longest[i]  Length_of_longest[j]+1 

       return   
1
max _ _

i n
Length of longest i

 
 

***************************************************************************** 
4 We are given A=  1,..., na a , where , 1ia i n    and n>3. We define a set S of elements of A 

to be independent if ,j la a S  implies that 1j i  . That is, adjacent elements of A do not belong to 

S. We seek to compute an independent set of A with maximum sum. For example, if A=(11, 2, 16, 18, 
3, 2), then S={11, 18, 2}. Find an algorithm polynomial in n (not in the individual values ai) to solve 
the problem. 
SOLUTION: Letting f(i), 1 i n  , denote the optimal value of a set Si for  1,..., iA a a  where Si must 

include ai, we derive a dynamic programming solution for this problem. First we note that for i>3, Si 

cannot include ai-1 and must include exactly one of ai-2 and ai-3. 
           11f a  

           22f a  

           1 33f a a     

          for 4i   to n do       max 2 , 3if i a f i f i     

          return     max 1 ,f n f n  

The time complexity of this algorithm is in  n . 

******************************************************************************** 
5 Consider the array  0.. ,0..V n W  computed by the dynamic programming algorithm to solve the 

0/1-KNAPSACK PROBLEM. Either prove or give a counter example to each of the following. 
a CONJECTURE 1: For any instance of the problem and any j, 0 j n  , and any x,y, 0 x y W   , 

   , ,V j x V j y . 

b CONJECTURE 2: For any instance of the problem and any j, k, 0 j k n   , and any x, 0 x W  , 

   , ,V j x V k x . 
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SOLUTIONS: a The question asks if each row of V is weakly monotonically increasing. As a basis for a 
proof by induction, we note that the top row, j=0, is all 0s and hence is weakly monotonically 
increasing. If row j-1 is weakly monotonically increasing, then we have to show that this implies that 

   , , 1V j x V j x   for all 1 x W  . But         , max 1, , 1,V j x V j x V j x w j v j        and 

        , 1 max 1, 1 , 1, 1V j x V j x V j x w j v j          . By the induction hypothesis, 

   1, 1, 1V j x V j x     and    1, 1, 1V j x w j V j x w j            . Hence    , , 1V j x V j x  . 

 
b The question asks if each column of V is weakly monotonically increasing. As a basis for a proof by 
induction, we note that the leftmost column, x=0, is all 0s and hence is weakly monotonically 
increasing. If column x-1 is weakly monotonically increasing, then we have to show that this implies 

that    , 1,V j x V j x   for all 1 j n  . But         , max 1, , 1,V j x V j x V j x w j v j        

and         , 1 max 1, 1 , 1, 1V j x V j x V j x w j v j          . By the induction hypothesis, 

   1, 1, 1V j x V j x     and    1, 1, 1V j x w j V j x w j            . Hence    , , 1V j x V j x  . 

************************************************************************* 

6Show how to solve the 0/1-KNAPSACK PROBLEM and return both the value of an optimal solution 
and the number of optimal solutions. 
SOLUTION: Let V[j,x], 0≤j≤n,0≤x≤W , be value of optimal packing of knapsack of capacity x using only 

objects  1, , j  , and let N[j,x], 0≤j≤n,0≤x≤W , be the number of optimal packings of knapsack of 

capacity x using only objects  1, , j   
 for 0j   to n do { V [j,0]   0     W=0, can’t carry any weight 
   N [j,0]   1}  There's one empty packing 
 for 0x   to n do {  V [0,x]   0  j=0, can’t carry any objects 
   N [0,x]   1}  There's one empty packing 
 for 1j   to n do  
    for 1x   to W do 
       if  (x - w[j] >= 0)     

       then {         , max 1, , 1,V j x V j x V j x w j v j        

     if      1, 1,V j x V j x w j v j         

                then      , 1, 1,N j x N j x N j x w j        

     else if      1, 1,N j x N j x w j v j        

            then    , 1,N j x N j x   

            else    , 1,N j x N j x w j      

       else { V[j,x]   V[j-1,x],    , 1,N j x N j x   } 

       return    , , ,V n W N n W  

*********************************************************************** 
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7A typical dynamic programming algorithm provides the cost of a solution or establishes the 
existence of a solution without actually constructing the solution.  To see how to construct a solution 
by using an efficient mechanism which tests for the existence of a solution, solve the following: 
  You are given a boolean function BlackBox of two inputs: 
   -a list of integers 1,..., nx x , 

   -an integer q, 
and you are told that, in time O(1), BlackBox will return true if there is some subset of 1,..., nx x  whose 

sum is q and false otherwise.  Design an algorithm (a program is not needed) with the same input 
which will return an actual subset of 1,..., nx x  whose sum is q, if such a subset exists, or else it should 

return "failure". 
  For example, BlackBox( (23,27,41,72,-4,6), 29) would return "true", but your algorithm with the 
same input would return (27,-4,6) or (23,6).  Your algorithm may call BlackBox as often as it wishes 
and it should work in time O(n). 
SOLUTION:  
     S    (x1,x2,...,xn) 

     if notBlackBox (S, q) then return ("failure")          O(1) 
     for 1i   to n do n  times 
        S    S  - xi  

           if notBlackBox (S, q)                                            we really need xi ; put it back  

                                                    S    S  + xi; 
      return S ;   O (1) 
Since the body of the loop is executed in O(1) time, the time to execute the loop (and the program) is 
O(n). 
********************************************************************** 
8 Let a country's currency be coins worth c1¢, c2¢,…, cn¢. We seek an algorithm which accepts as 
input  1,..., ;nc c x  and which gives as output a minimal number of coins, drawn from  1,..., nc c , such 

that the sum of the values of the coins is x¢. So, for example, for  1,5,10,25,50;156  the answer would 

be  50,50,50,5,1 . 

a One algorithm is 
 GREED  1,..., ,nc c x  

  if x>0 then {let ci be max  1,..., nc c  such that ic x  

             give ci 
                                              GREED  1,..., ,n ic c x c  

GREED works for  1,5,10,25,50;x  for any x. Give an instance of the problem,  1,..., ;nc c x , for which 

GREED does not work. 
b Give an algorithm which works for any  1,..., ;nc c x . The time complexity of your algorithm should 

be in  O nx . 

SOLUTION: a For  1,4,6; 8  GREED will return  6,1,1  although the answer is  4,4 . 
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b  For 0 m x   we let  m  denote the minimum number of coins to give m¢. If this minimum 

number of coins includes a ci¢ coin, then, by the Optimality Principle, we use  im c   coins to give 

(m-ci)¢.  
    

1
1 min i

i n
m m c 

 
    

In the dynamic programming formulation, it is understood that   0m   if 0m  . 

     for 1m   to x do 
             m   

             for 1i   to n do 
                   if m>ci then       min ,1 im m m c      

      PRINTANSWER  , x  

 
PRINTANSWER  ,m  

         if m>0 then 
        1i    
        repeat 
                    if m>ci    1 im m c       

                   then {Print ci 
                             return PRINTANSWER  , im c  } 

                         else 1i i   
*************************************************************************** 
9An independent set of vertices of a graph  ,G V E  is a set of vertices such that there does not 

exist an edge between any pair of vertices of the set. As stated in Problem 34-1 on page 1018 of our 
text, finding a maximum independent set of a graph is very difficult. However, many problems which 
are difficult in graphs become easier if we restrict the graph to be a tree. Describe an algorithm, with 
time complexity in  O m n , to find a maximum independent set in a tree. So 

MAXINDEPENDENTSET(r) would return   , , , , , ,a b d e f h i  on 

 
SOLUTION:  For each node v in the tree, we compute  v , the maximum number of independent nodes 

in the tree rooted at v. We compute  v  from the bottom up in the tree, so that when computing  v  

we have already computed  w  for all children and grandchildren w of v. We note that if v is in a 
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maximum independent set of the tree rooted at v, then none of its children is in the maximum 
independent set. The dynamic programming recurrence is 

     
children of grandchildren of

max , 1
w v w v

v w w  
 

  
 

   

 
 
       
 


