1» Given two strings of characters U= X...X and v=1Y,...y, drawn from the alphabet {a, b,C} , We
want to know the minimal cost of converting U to v, where Cc, >0 is the cost of changing a symbol, Cins

> 0 is the cost of inserting a symbol, and Cge1 > 0 is the cost of deleting a symbol, and the cost of
applying a sequence of operations is the sum of the costs of the operations that comprise the sequence.
For example, if ¢, =c, =c,, =1 and u=abbaac and v=abcbc, then the cost of converting u to v is 3
because of the sequence

abbaac — abbac — abcac — abcbc

Cdlel Cch Ceh
Write a dynamic programming algorithm to accept as input U, V, Ceh, Cins and Cgel and return the
minimal cost of a sequence of operations to convert U to V.

SOLUTION: For 0<i<m, 0< j<n, we let 5(i, j) denote the minimal cost of a sequence of
operations to convert X...X, to Y,...y,. The answer to the problem is & (m,n). To start the process, we
note that 5(0,0) =0, §(1,0)=c,, and 5(0,1)=c, . For ISi<mAl< j<n,if x=yj then

(i, j)=5(i-1,j—1). Otherwise, 5(i, j) =min (5 (i—1, j—1)+c,,5(i-1,j) +C,,.5 (i, j—1) +¢,.).

The corresponding program to fill in array o [0..m,0..n] is

5[0,0]«0
5[1,0]=c,,
5[0,1]=c,

fori<1tom
for j«1ton

if xi=y; then &1, j] « S[i—1,j 1]

else &[i, j] < min(5[i-1,j-1]+c,,0[i-1, j]+c,.0[i, j-1]+c,,)

ch? del 2 ins

return 5{m,n|
B R R R R R R S S S S S R S R R R R R R R R R R R R R R R R R R S S R R R R R R S R R R R R S R R R S R S R R R R S R R S S S S S S S S S b >
2 » An instance of the PARTITION PROBLEM is a set U of integers, and the question is whether or not
U can be partitioned into two sets T and U\T such that the sums of the integers in the two sets are
Ds
equal. That is, does ZS = z S= % For example, the instance U = {2,3,9,15,19} admits the

seT seU\T
solution U={9,15}, and the instance U = {2,3,9,15,18} does not admit a solution. Give a dynamic
programming solution to the PARTITION PROBLEM, and analyze your solution.
SOLUTION: The instance U = {Sl yeers Sn} of the PARTITION PROBLEM admits a solution if and only if the

>s

instance V=W=(s,,...,s,), W = IT of the KNAPSACK PROBLEM admits a packing of value W. The

algorithm takes time in ® (n Z si] .
I<i<n

sk sk sfe sk sfe sk sk sk sk sfe sk sfe sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sfeoske sk st sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeoske sk sk sk skeosk sk sk

1 Problems 8

3 » Describe a O (nz) dynamic programming algorithm to find the length of the longest (not

necessarily contiguous) increasing sequence of integers of A[1..n]. For example, if
A=(11,17,5,8,6,4,7,7,12,3), then the answer would be 4 because of the subsequence (5,6,7,12) .

SoLuTION: For every i, we compute Length_of _longest[i], the length of the longest increasing
subsequence in A[1..i] whose rightmost member is A[i]. The dynamic programming formulation is

Length _of _longest[i] = max {1,Length of _longest[j]+1}
A[j’]ﬁx'[i]

This translates to the program
Length _of _longest[1] «1
for i< 2 tondo
Length _of _longest|i] « 1
for j«1toi-1do
if A[j]<A[i] and Length_of_longest[j]+1> Length_of_longest[i]
then Length_of longest[i]« Length_of longest[j]+1
return max {Length_of _longest|i]}
AEAKXKAAKREAAKRAAXRAAKRAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdhhdhhdhhdhhhkhiihkhiiiiiix

4» We are given AZ(al,...,an) ,where a €Z", 1<i<n and n>3. We define a set S of elements of A

to be independent if' a,,a €S implies that | j- i| >1. That is, adjacent elements of A do not belong to

S. We seek to compute an independent set of A with maximum sum. For example, if A=(11, 2, 16, 18,
3, 2), then S={11, 18, 2}. Find an algorithm polynomial in n (not in the individual values ;) to solve
the problem.

SOLUTION: Letting f(i), 1 <i<n, denote the optimal value of a set S; for A = (al,...,ai) where S; must
include aj, we derive a dynamic programming solution for this problem. First we note that for i>3, S;
cannot include a;.; and must include exactly one of a;; and a;.s.

f(l)<a

f(2)«a,

f(3)«a+a

fori<4 tondo f (i)« a +max(f(i-2),f(i-3))

return max (f (n-1), f (n))
The time complexity of this algorithm is in ©(n).
sk sk sk sk sk sk sk ske skeosk sk sk sk skeosie skeoske sk sk sk st sk skeosk sk sk sk sk s skeosk sk skeoske stk skeosk sk skeoskoskeoskeoskokesk skeosk sk sk
5 » Consider the array V [O..n, 0..\N] computed by the dynamic programming algorithm to solve the

0/1-KNAPSACK PROBLEM. Either prove or give a counter example to each of the following.
a CONJECTURE 1: For any instance of the problem and any j, 0< j<n,and any x,y, 0< X<y <W ,

V[i.x]<V[i.y]-
b CONJECTURE 2: For any instance of the problem and any j, k, 0< j<k <n,and any X, 0< x<W ,
V[i.x]<V[kx].

2 Problems 8

SOLUTIONS: a The question asks if each row of V is weakly monotonically increasing. As a basis for a
proof by induction, we note that the top row, j=0, is all Os and hence is weakly monotonically
increasing. If row -1 is weakly monotonically increasing, then we have to show that this implies that

V[j,X]ZV[j,X—l] for all ISXSW.ButV[j,X]=maX(V[j—l,X],V[j—1,X—W[j]]+v[j]) and
V[j,X—l]=maX(V[j—1,X—1],V[j—1,X—1—W[j]]+v[j]).Bythe induction hypothesis,
V[i-Lx]=V[j-Lx-1] and V[j-Lx-w[j]]2V[j-Lx—=1-w[]j]]. Hence V[j,x]2V[]j,x-1].

b The question asks if each column of V is weakly monotonically increasing. As a basis for a proof by
induction, we note that the leftmost column, X=0, is all Os and hence is weakly monotonically
increasing. If column x-1 is weakly monotonically increasing, then we have to show that this implies

that V[j,x]=V [j—1,x] forall 1< j<n.But V[j,x]=max(V[j-1x].V[j-Lx-w[j]]+V[]])
and V[j,x=1]=max (V [j-1,x=1].V [j=Lx=1-w[j]]+V[]). By the induction hypothesis,
V[j-Lx]=V[j-Lx-1] and V| j-L,x-w[j]]2V[j-Lx—1-w[j]]. Hence V[j,x]2V[]j,x-1].

>k 3k s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sk s sk sk stk sk skoskeosk skok sk

6 » Show how to solve the 0/1-KNAPSACK PROBLEM and return both the value of an optimal solution
and the number of optimal solutions.
SoLUTION: Let V[j,X], 0<j<n,0<x<W, be value of optimal packing of knapsack of capacity X using only
objects < {1, e j} , and let N[j,x], 0<j<n,0<x<W, be the number of optimal packings of knapsack of
capacity X using only objects < {1, e j}
for j«<-0 tondo { V[j,0] < 0 » W=0, can’t carry any weight
N[j,0] < 1} » There's one empty packing
for x<~0 tondo { V[0,x] « 0 » j=0, can’t carry any objects
N [0,X] «<— 1} » There's one empty packing
for j«1tondo
for x<1toWdo

if (x-w[j]>=0)
then {V[j,x]<—max(V[j—l,x],V[j—1,x—w[j]]+v[j])
ifV{j-1x]=V[j-Lx-w[j]]+V[]]
then N[j,x]« N[j—Lx]+N[j—Lx-w[]]]
else if N[j-1,x]>N[j-1Lx-w[j]]+v[]j]
then N[j,x]« N[j—1,x]
else N[j,x]« N[j-1x-w[j]]
else { V[j.x] « V[j-1.x], N[j,x] « N[j-1x] }
return V[n,W],N[n,W]

sk sk sfe sk sfe sk sk sk sk sfe sk sk sk sk sk sk sfe sk sk sk sk sk sk sfe sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sfe sk sk skeosk sk skeoskosk sk sk

3 Problems 8

7 » A typical dynamic programming algorithm provides the cost of a solution or establishes the
existence of a solution without actually constructing the solution. To see how to construct a solution
by using an efficient mechanism which tests for the existence of a solution, solve the following:

You are given a boolean function BlackBox of two inputs:

-a list of integers X ,..., X,

-an integer @,
and you are told that, in time O(1), BlackBox will return true if there is some subset of X,,..., X, whose
sum is (and false otherwise. Design an algorithm (a program is not needed) with the same input
which will return an actual subset of X,,...,X, whose sum is @, if such a subset exists, or else it should
return "failure".

For example, BlackBox((23,27,41,72,-4,6), 29) would return "true", but your algorithm with the
same input would return (27,-4,6) or (23,6). Your algorithm may call BlackBox as often as it wishes
and it should work in time O(n).

SOLUTION:

S <« (X1,X2,...Xn)

if notBlackBox (S, q) then return ("failure") O(1)

for i< 1 tondo n times

S « S -Xj
if notBlackBox (S, q) > we really need X; ; put it back
S « S +¥j;

returnS; o)
Since the body of the loop is executed in O(1) time, the time to execute the loop (and the program) is
O(n).

sk sk sk s sk
8 » Let a country's currency be coins worth C;¢, C2¢,..., Ch¢. We seek an algorithm which accepts as
input (C,,...,C,;X) and which gives as output a minimal number of coins, drawn from (c,,...,C,), such
that the sum of the values of the coins is x¢. So, for example, for (1,5,10,25,50;156) the answer would
be (50,50,50,5,1).
a One algorithm is
GREED(C,...,C,, X)
if x>0 then {let ¢; be max(c,....,C,) such that ¢, <X
give C;
GREED(C,,...,C,, X—C,)
GREED works for (1,5,10,25,50;x) for any x. Give an instance of the problem, (c,,...,C,;X), for which
GREED does not work.
b Give an algorithm which works for any (Cl,..., C.; X) . The time complexity of your algorithm should
bein O (nx))
SOLUTION: a For (1,4,6; 8) GREED will return (6,1,1) although the answer is (4,4).

4 Problems 8

b For 0<m<x we let K‘(m) denote the minimum number of coins to give m¢. If this minimum
number of coins includes a Ci¢ coin, then, by the Optimality Principle, we use /c(m —C,) coins to give

(m-Ci)¢.
x(m) :1+gliisrnl{’((m_ci)}
In the dynamic programming formulation, it is understood that K(m) =0i1f m<O0.
for m«1 toxdo
K[m] <
for i«1 tondo
if m>c; then «(m) =min(x(m),1+x(m—-c))

PRINTANSWER (k., X)

PRINTANSWER (&, M)
if m>0 then
<1
repeat
if m>ci Ax[m]=1+x[m-c]
then {Print ¢;
return PRINTANSWER (x,m—c,) }

else i «—i+1
skskskskskosksksksksksksksksksk sk sksk sksk sk sk sk sk sksk sk sk sk sk sk sk sksk sksk sk sk sk sk sk sk sk sk sk sk sk sk sksk sk sk sk sk sk sk sksk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok

9 » An independent set of vertices of a graph G = (V, E) is a set of vertices such that there does not

exist an edge between any pair of vertices of the set. As stated in Problem 34-1 on page 1018 of our
text, finding a maximum independent set of a graph is very difficult. However, many problems which
are difficult in graphs become easier if we restrict the graph to be a tree. Describe an algorithm, with

time complexity in O(m+n), to find a maximum independent set in a tree. So
p y p

MAXINDEPENDENTSET(r) would return {a,b,d,e, f,h,i} on

ORONONO
O © O

offc

SoLUTION: For each node V in the tree, we compute z(v) , the maximum number of independent nodes
in the tree rooted at v. We compute (V) from the bottom up in the tree, so that when computing (V)

we have already computed l(W) for all children and grandchildren w of v. We note that if visin a

5 Problems 8

maximum independent set of the tree rooted at v, then none of its children is in the maximum
independent set. The dynamic programming recurrence is

z(v) = max z z(W), 1+ z l(W)

children w of v grandchildren w of v

6 Problems 8

