
1 Problems 8

1 Given two strings of characters u 1... mx x and v 1... ny y drawn from the alphabet  , ,a b c , we

want to know the minimal cost of converting u to v, where chc 0 is the cost of changing a symbol, cins

0 is the cost of inserting a symbol, and cdel 0 is the cost of deleting a symbol, and the cost of
applying a sequence of operations is the sum of the costs of the operations that comprise the sequence.
For example, if 1ch ins delc c c   and u=abbaac and v=abcbc, then the cost of converting u to v is 3

because of the sequence

del ch chc c c
abbaac abbac abcac abcbc   .

Write a dynamic programming algorithm to accept as input u, v, cch, cins and cdel and return the
minimal cost of a sequence of operations to convert u to v.
SOLUTION: For 0 i m  , 0 j n  , we let  ,i j denote the minimal cost of a sequence of

operations to convert 1... ix x to 1... jy y . The answer to the problem is  ,m n . To start the process, we

note that  0,0 0  ,  1,0 delc  and  0,1 insc  . For 1 1i m j n     , if xi=yj, then

   , 1, 1i j i j    . Otherwise,         , min 1, 1 , 1, , , 1ch del insi j i j c i j c i j c           .

The corresponding program to fill in array  0.. ,0..m n is

  0,0 0 

  1,0 delc 

  0,1 insc 

 for 1i  to m
 for 1j  to n

 if xi=yj then    , 1, 1i j i j   

 else         , min 1, 1 , 1, , , 1ch del insi j i j c i j c i j c          

 return  ,m n

2 An instance of the PARTITION PROBLEM is a set U of integers, and the question is whether or not
U can be partitioned into two sets T and U\T such that the sums of the integers in the two sets are

equal. That is, does
\ 2

s U

s T s U T

s
s s 

 

 


  . For example, the instance  2,3,9,15,19U  admits the

solution U={9,15}, and the instance  2,3,9,15,18U  does not admit a solution. Give a dynamic

programming solution to the PARTITION PROBLEM, and analyze your solution.
SOLUTION: The instance U  1,..., ns s of the PARTITION PROBLEM admits a solution if and only if the

instance v=w=  1,..., ns s , 1

2

i
i n

s
W  


 of the KNAPSACK PROBLEM admits a packing of value W. The

algorithm takes time in
1

i
i n

n s
 

    .

2 Problems 8

3 Describe a  2O n dynamic programming algorithm to find the length of the longest (not

necessarily contiguous) increasing sequence of integers of A[1..n]. For example, if

 11,17,5,8,6,4,7,7,12,3A  , then the answer would be 4 because of the subsequence  5,6,7,12 .
SOLUTION: For every i, we compute Length_of_longest[i], the length of the longest increasing
subsequence in A[1..i] whose rightmost member is A[i]. The dynamic programming formulation is

 
   

  
1

_ _ max 1, _ _ 1
j i

A j A i

Length of longest i Length of longest j
 


 

This translates to the program
  _ _ 1 1Length of longest 

 for 2i  to n do
  _ _ 1Length of longest i 

 for 1j  to i-1 do

 if    A j A i and Length_of_longest[j]+1> Length_of_longest[i]

 then Length_of_longest[i] Length_of_longest[j]+1

 return   
1
max _ _

i n
Length of longest i

 

4 We are given A=  1,..., na a , where , 1ia i n   and n>3. We define a set S of elements of A

to be independent if ,j la a S implies that 1j i  . That is, adjacent elements of A do not belong to

S. We seek to compute an independent set of A with maximum sum. For example, if A=(11, 2, 16, 18,
3, 2), then S={11, 18, 2}. Find an algorithm polynomial in n (not in the individual values ai) to solve
the problem.
SOLUTION: Letting f(i), 1 i n  , denote the optimal value of a set Si for  1,..., iA a a where Si must

include ai, we derive a dynamic programming solution for this problem. First we note that for i>3, Si

cannot include ai-1 and must include exactly one of ai-2 and ai-3.
   11f a

   22f a

   1 33f a a 

 for 4i  to n do       max 2 , 3if i a f i f i   

 return     max 1 ,f n f n

The time complexity of this algorithm is in  n .

**
5 Consider the array  0.. ,0..V n W computed by the dynamic programming algorithm to solve the

0/1-KNAPSACK PROBLEM. Either prove or give a counter example to each of the following.
a CONJECTURE 1: For any instance of the problem and any j, 0 j n  , and any x,y, 0 x y W   ,

   , ,V j x V j y .

b CONJECTURE 2: For any instance of the problem and any j, k, 0 j k n   , and any x, 0 x W  ,

   , ,V j x V k x .

3 Problems 8

SOLUTIONS: a The question asks if each row of V is weakly monotonically increasing. As a basis for a
proof by induction, we note that the top row, j=0, is all 0s and hence is weakly monotonically
increasing. If row j-1 is weakly monotonically increasing, then we have to show that this implies that

   , , 1V j x V j x  for all 1 x W  . But         , max 1, , 1,V j x V j x V j x w j v j       and

        , 1 max 1, 1 , 1, 1V j x V j x V j x w j v j          . By the induction hypothesis,

   1, 1, 1V j x V j x    and    1, 1, 1V j x w j V j x w j            . Hence    , , 1V j x V j x  .

b The question asks if each column of V is weakly monotonically increasing. As a basis for a proof by
induction, we note that the leftmost column, x=0, is all 0s and hence is weakly monotonically
increasing. If column x-1 is weakly monotonically increasing, then we have to show that this implies

that    , 1,V j x V j x  for all 1 j n  . But         , max 1, , 1,V j x V j x V j x w j v j      

and         , 1 max 1, 1 , 1, 1V j x V j x V j x w j v j          . By the induction hypothesis,

   1, 1, 1V j x V j x    and    1, 1, 1V j x w j V j x w j            . Hence    , , 1V j x V j x  .

6Show how to solve the 0/1-KNAPSACK PROBLEM and return both the value of an optimal solution
and the number of optimal solutions.
SOLUTION: Let V[j,x], 0≤j≤n,0≤x≤W , be value of optimal packing of knapsack of capacity x using only

objects  1, , j  , and let N[j,x], 0≤j≤n,0≤x≤W , be the number of optimal packings of knapsack of

capacity x using only objects  1, , j 
 for 0j  to n do { V [j,0]  0  W=0, can’t carry any weight
 N [j,0]  1}  There's one empty packing
 for 0x  to n do { V [0,x]  0  j=0, can’t carry any objects
 N [0,x]  1}  There's one empty packing
 for 1j  to n do
 for 1x  to W do
 if (x - w[j] >= 0)

 then {         , max 1, , 1,V j x V j x V j x w j v j      

 if      1, 1,V j x V j x w j v j      

 then      , 1, 1,N j x N j x N j x w j      

 else if      1, 1,N j x N j x w j v j      

 then    , 1,N j x N j x 

 else    , 1,N j x N j x w j    

 else { V[j,x]  V[j-1,x],    , 1,N j x N j x  }

 return    , , ,V n W N n W

4 Problems 8

7A typical dynamic programming algorithm provides the cost of a solution or establishes the
existence of a solution without actually constructing the solution. To see how to construct a solution
by using an efficient mechanism which tests for the existence of a solution, solve the following:
 You are given a boolean function BlackBox of two inputs:
 -a list of integers 1,..., nx x ,

 -an integer q,
and you are told that, in time O(1), BlackBox will return true if there is some subset of 1,..., nx x whose

sum is q and false otherwise. Design an algorithm (a program is not needed) with the same input
which will return an actual subset of 1,..., nx x whose sum is q, if such a subset exists, or else it should

return "failure".
 For example, BlackBox((23,27,41,72,-4,6), 29) would return "true", but your algorithm with the
same input would return (27,-4,6) or (23,6). Your algorithm may call BlackBox as often as it wishes
and it should work in time O(n).
SOLUTION:
 S  (x1,x2,...,xn)

 if notBlackBox (S, q) then return ("failure") O(1)
 for 1i  to n do n times
 S  S - xi

 if notBlackBox (S, q) we really need xi ; put it back

 S  S + xi;
 return S ; O (1)
Since the body of the loop is executed in O(1) time, the time to execute the loop (and the program) is
O(n).
**
8 Let a country's currency be coins worth c1¢, c2¢,…, cn¢. We seek an algorithm which accepts as
input  1,..., ;nc c x and which gives as output a minimal number of coins, drawn from  1,..., nc c , such

that the sum of the values of the coins is x¢. So, for example, for  1,5,10,25,50;156 the answer would

be  50,50,50,5,1 .

a One algorithm is
 GREED  1,..., ,nc c x

 if x>0 then {let ci be max  1,..., nc c such that ic x

 give ci
 GREED  1,..., ,n ic c x c

GREED works for  1,5,10,25,50;x for any x. Give an instance of the problem,  1,..., ;nc c x , for which

GREED does not work.
b Give an algorithm which works for any  1,..., ;nc c x . The time complexity of your algorithm should

be in  O nx .

SOLUTION: a For  1,4,6; 8 GREED will return  6,1,1 although the answer is  4,4 .

5 Problems 8

b For 0 m x  we let  m denote the minimum number of coins to give m¢. If this minimum

number of coins includes a ci¢ coin, then, by the Optimality Principle, we use  im c  coins to give

(m-ci)¢.
    

1
1 min i

i n
m m c 

 
  

In the dynamic programming formulation, it is understood that   0m  if 0m  .

 for 1m  to x do
  m 

 for 1i  to n do
 if m>ci then       min ,1 im m m c    

 PRINTANSWER  , x

PRINTANSWER  ,m

 if m>0 then
 1i 
 repeat
 if m>ci    1 im m c    

 then {Print ci
 return PRINTANSWER  , im c  }

 else 1i i 

9An independent set of vertices of a graph  ,G V E is a set of vertices such that there does not

exist an edge between any pair of vertices of the set. As stated in Problem 34-1 on page 1018 of our
text, finding a maximum independent set of a graph is very difficult. However, many problems which
are difficult in graphs become easier if we restrict the graph to be a tree. Describe an algorithm, with
time complexity in  O m n , to find a maximum independent set in a tree. So

MAXINDEPENDENTSET(r) would return  , , , , , ,a b d e f h i on

SOLUTION: For each node v in the tree, we compute  v , the maximum number of independent nodes

in the tree rooted at v. We compute  v from the bottom up in the tree, so that when computing  v

we have already computed  w for all children and grandchildren w of v. We note that if v is in a

6 Problems 8

maximum independent set of the tree rooted at v, then none of its children is in the maximum
independent set. The dynamic programming recurrence is

     
children of grandchildren of

max , 1
w v w v

v w w  
 

  
 

 

