1 ▶ Given two strings of characters $u = x_1...x_m$ and $v = y_1...y_n$ drawn from the alphabet $\{a,b,c\}$, we want to know the minimal cost of converting u to v, where $c_{ch} > 0$ is the cost of changing a symbol, $c_{ins} > 0$ is the cost of inserting a symbol, and $c_{del} > 0$ is the cost of deleting a symbol, and the cost of applying a sequence of operations is the sum of the costs of the operations that comprise the sequence. For example, if $c_{ch} = c_{ins} = c_{del} = 1$ and u = abbaac and v = abcbc, then the cost of converting u to v is 3 because of the sequence

$$abbaac \mathop{\longrightarrow}\limits_{c_{del}} abbac \mathop{\longrightarrow}\limits_{c_{ch}} abcac \mathop{\longrightarrow}\limits_{c_{ch}} abcbc \quad .$$

Write a dynamic programming algorithm to accept as input u, v, c_{ch} , c_{ins} and c_{del} and return the minimal cost of a sequence of operations to convert u to v.

<u>SOLUTION</u>: For $0 \le i \le m$, $0 \le j \le n$, we let $\delta(i, j)$ denote the minimal cost of a sequence of

operations to convert $x_1...x_i$ to $y_1...y_i$. The answer to the problem is $\delta(m,n)$. To start the process, we

note that
$$\delta(0,0) = 0$$
, $\delta(1,0) = c_{del}$ and $\delta(0,1) = c_{ins}$. For $1 \le i \le m \land 1 \le j \le n$, if $x_i = y_j$, then

$$\mathcal{S}\left(i,j\right) = \mathcal{S}\left(i-1,j-1\right). \text{ Otherwise, } \mathcal{S}\left(i,j\right) = \min\left(\mathcal{S}\left(i-1,j-1\right) + c_{\scriptscriptstyle ch}, \mathcal{S}\left(i-1,j\right) + c_{\scriptscriptstyle del}, \mathcal{S}\left(i,j-1\right) + c_{\scriptscriptstyle ins}\right).$$

The corresponding program to fill in array $\delta[0..m, 0..n]$ is

$$\begin{split} \delta \left[0,0 \right] &\leftarrow 0 \\ \delta \left[1,0 \right] = c_{\scriptscriptstyle del} \\ \delta \left[0,1 \right] = c_{\scriptscriptstyle ins} \\ \text{for } i \leftarrow 1 \text{ to } m \\ &\quad \text{for } j \leftarrow 1 \text{ to } n \\ &\quad \text{if } x_i = y_j \text{ then } \delta \left[i,j \right] \leftarrow \delta \left[i-1,j-1 \right] \\ &\quad \text{else } \delta \left[i,j \right] \leftarrow \min \left(\delta \left[i-1,j-1 \right] + c_{\scriptscriptstyle ch}, \delta \left[i-1,j \right] + c_{\scriptscriptstyle del}, \delta \left[i,j-1 \right] + c_{\scriptscriptstyle ins} \right) \\ \text{return } \delta \left[m,n \right] \end{split}$$

L ~ J

2 \blacktriangleright An instance of the PARTITION PROBLEM is a set U of integers, and the question is whether or not U can be partitioned into two sets T and $U \setminus T$ such that the sums of the integers in the two sets are

equal. That is, does $\sum_{s \in T} s = \sum_{s \in U \setminus T} s = \frac{\sum_{s \in U} s}{2}$. For example, the instance $U = \{2, 3, 9, 15, 19\}$ admits the

solution $U=\{9,15\}$, and the instance $U=\{2,3,9,15,18\}$ does not admit a solution. Give a dynamic programming solution to the PARTITION PROBLEM, and analyze your solution.

SOLUTION: The instance $U = \{s_1, ..., s_n\}$ of the PARTITION PROBLEM admits a solution if and only if the

instance $v=w=(s_1,...,s_n)$, $W=\frac{\sum_{1\leq i\leq n}s_i}{2}$ of the KNAPSACK PROBLEM admits a packing of value W. The algorithm takes time in $\Theta\left(n\sum_{i=1}^n s_i\right)$.

3 ▶ Describe a $O(n^2)$ dynamic programming algorithm to find the length of the longest (not necessarily contiguous) increasing sequence of integers of A[1..n]. For example, if A = (11,17,5,8,6,4,7,7,12,3), then the answer would be 4 because of the subsequence (5,6,7,12). Solution: For every i, we compute $Length_of_longest[i]$, the length of the longest increasing subsequence in A[1..i] whose rightmost member is A[i]. The dynamic programming formulation is

$$Length_of_longest[i] = \max_{\substack{1 \leq j < i \\ A[j] < A[i]}} \left\{ 1, Length_of_longest[j] + 1 \right\}$$

This translates to the program

```
\begin{aligned} Length\_of\_longest[1] \leftarrow 1 \\ \textbf{for } i \leftarrow 2 & \textbf{to } n & \textbf{do} \\ Length\_of\_longest[i] \leftarrow 1 \\ \textbf{for } j \leftarrow 1 & \textbf{to } i\text{-}1 & \textbf{do} \\ & \textbf{if } A[j] < A[i] & \textbf{and } Length\_of\_longest[j] + 1 > Length\_of\_longest[i] \\ & \textbf{then } Length\_of\_longest[i] \leftarrow Length\_of\_longest[j] + 1 \\ \textbf{return } \max_{1 \le i \le n} \left\{ Length\_of\_longest[i] \right\} \end{aligned}
```

4 ▶ We are given $A = (a_1, ..., a_n)$, where $a_i \in \mathbb{Z}^+$, $1 \le i \le n$ and n > 3. We define a set S of elements of A to be *independent* if $a_j, a_i \in S$ implies that |j-i| > 1. That is, adjacent elements of A do not belong to S. We seek to compute an independent set of A with maximum sum. For example, if A = (11, 2, 16, 18, 3, 2), then $S = \{11, 18, 2\}$. Find an algorithm polynomial in n (not in the individual values a_i) to solve the problem.

<u>SOLUTION</u>: Letting f(i), $1 \le i \le n$, denote the optimal value of a set S_i for $A = (a_1, ..., a_i)$ where S_i must include a_i , we derive a dynamic programming solution for this problem. First we note that for i > 3, S_i cannot include a_{i-1} and must include exactly one of a_{i-2} and a_{i-3} .

```
f(1) \leftarrow a_1
f(2) \leftarrow a_2
f(3) \leftarrow a_1 + a_3
for i \leftarrow 4 to n do f(i) \leftarrow a_i + \max(f(i-2), f(i-3))
return \max(f(n-1), f(n))
```

The time complexity of this algorithm is in $\Theta(n)$.

5 Consider the array V[0..n,0..W] computed by the dynamic programming algorithm to solve the 0/1-KNAPSACK PROBLEM. Either prove or give a counter example to each of the following. a CONJECTURE 1: For any instance of the problem and any j, $0 \le j \le n$, and any x,y, $0 \le x < y \le W$, $V[j,x] \le V[j,y]$.

b Conjecture 2: For any instance of the problem and any $j, k, 0 \le j < k \le n$, and any $x, 0 \le x \le W$, $V[j,x] \le V[k,x]$.

SOLUTIONS: \boldsymbol{a} The question asks if each row of V is weakly monotonically increasing. As a basis for a proof by induction, we note that the top row, j=0, is all 0s and hence is weakly monotonically increasing. If row j-1 is weakly monotonically increasing, then we have to show that this implies that $V\left[j,x\right] \geq V\left[j,x-1\right]$ for all $1 \leq x \leq W$. But $V\left[j,x\right] = \max\left(V\left[j-1,x\right],V\left[j-1,x-w\left[j\right]\right]+v\left[j\right]\right)$ and $V\left[j,x-1\right] = \max\left(V\left[j-1,x-1\right],V\left[j-1,x-1-w\left[j\right]\right]+v\left[j\right]\right)$. By the induction hypothesis, $V\left[j-1,x\right] \geq V\left[j-1,x-1\right]$ and $V\left[j-1,x-w\left[j\right]\right] \geq V\left[j-1,x-1-w\left[j\right]\right]$. Hence $V\left[j,x\right] \geq V\left[j,x-1\right]$.

b The question asks if each column of V is weakly monotonically increasing. As a basis for a proof by induction, we note that the leftmost column, x=0, is all 0s and hence is weakly monotonically increasing. If column x-1 is weakly monotonically increasing, then we have to show that this implies that $V[j,x] \ge V[j-1,x]$ for all $1 \le j \le n$. But $V[j,x] = \max \left(V[j-1,x],V[j-1,x-w[j]]+v[j]\right)$ and $V[j,x-1] = \max \left(V[j-1,x-1],V[j-1,x-1-w[j]]+v[j]\right)$. By the induction hypothesis, $V[j-1,x] \ge V[j-1,x-1]$ and $V[j-1,x-w[j]] \ge V[j-1,x-1-w[j]]$. Hence $V[j,x] \ge V[j,x-1]$.

6 ▶ Show how to solve the 0/1-KNAPSACK PROBLEM and return both the value of an optimal solution and the number of optimal solutions.

<u>SOLUTION</u>: Let V[j,x], $0 \le j \le n, 0 \le x \le W$, be value of optimal packing of knapsack of capacity x using only objects $\subseteq \{1, ..., j\}$, and let N[j,x], $0 \le j \le n, 0 \le x \le W$, be the number of optimal packings of knapsack of capacity x using only objects $\subseteq \{1, ..., j\}$

```
for i \leftarrow 0 to n do {
                            V[j,0] \leftarrow 0
                                            \blacktriangleright W=0, can't carry any weight
                    N[i,0] \leftarrow 1 There's one empty packing
for x \leftarrow 0 to n do { V[0,x] \leftarrow 0 \rightarrow j=0, can't carry any objects
                    N[0,x] \leftarrow 1 There's one empty packing
for i \leftarrow 1 to n do
  for x \leftarrow 1 to W do
    if (x - w[i] >= 0)
    then \{V[j,x] \leftarrow \max(V[j-1,x],V[j-1,x-w[j]] + v[j])
       if V[j-1,x] = V[j-1,x-w[j]] + v[j]
         then N[j,x] \leftarrow N[j-1,x] + N[j-1,x-w[j]]
        else if N[j-1,x] > N[j-1,x-w[j]] + v[j]
            then N[j,x] \leftarrow N[j-1,x]
            else N[j,x] \leftarrow N[j-1,x-w[j]]
    else { V[j,x] \leftarrow V[j-1,x], N[j,x] \leftarrow N[j-1,x] }
    return V[n,W], N[n,W]
*************************
```

7 A typical dynamic programming algorithm provides the cost of a solution or establishes the existence of a solution without actually constructing the solution. To see how to construct a solution by using an efficient mechanism which tests for the existence of a solution, solve the following:

You are given a boolean function *BlackBox* of two inputs:

```
-a list of integers x_1, ..., x_n,
```

-an integer q,

and you are told that, in time O(1), BlackBox will return true if there is some subset of $x_1,...,x_n$ whose sum is q and false otherwise. Design an algorithm (a program is not needed) with the same input which will return an actual subset of $x_1,...,x_n$ whose sum is q, if such a subset exists, or else it should return "failure".

For example, BlackBox((23,27,41,72,-4,6), 29) would return "true", but your algorithm with the same input would return (27,-4,6) or (23,6). Your algorithm may call BlackBox as often as it wishes and it should work in time O(n).

SOLUTION:

$$S \leftarrow (x_1, x_2, ..., x_n)$$
if not $BlackBox (S, q)$ **then return** ("failure")

 $O(1)$
for $i \leftarrow 1$ **to** n **do**
 $S \leftarrow S - x_i$
if not $BlackBox (S, q)$
 \Rightarrow we really need x_i ; put it back

 $S \leftarrow S + x_i$;

return S; O(1)

Since the body of the loop is executed in O(1) time, the time to execute the loop (and the program) is O(n).

8 Let a country's currency be coins worth $c_1 \not\in$, $c_2 \not\in$,..., $c_n \not\in$. We seek an algorithm which accepts as input $(c_1,...,c_n;x)$ and which gives as output a **minimal** number of coins, drawn from $(c_1,...,c_n)$, such that the sum of the values of the coins is $x \not\in$. So, for example, for (1,5,10,25,50;156) the answer would be (50,50,50,51,1).

a One algorithm is

GREED
$$(c_1,...,c_n,x)$$

if $x>0$ **then** {let c_i be max $(c_1,...,c_n)$ such that $c_i \le x$
give c_i
GREED $(c_1,...,c_n,x-c_i)$

GREED works for (1,5,10,25,50;x) for any x. Give an instance of the problem, $(c_1,...,c_n;x)$, for which GREED does not work.

b Give an algorithm which works for any $(c_1,...,c_n;x)$. The time complexity of your algorithm should be in O(nx).

SOLUTION: a For (1,4,6; 8) GREED will return (6,1,1) although the answer is (4,4).

b For $0 \le m \le x$ we let $\kappa(m)$ denote the minimum number of coins to give $m\phi$. If this minimum number of coins includes a $c_i\phi$ coin, then, by the Optimality Principle, we use $\kappa(m-c_i)$ coins to give $(m-c_i)\phi$.

$$\kappa(m) = 1 + \min_{1 \le i \le n} \left\{ \kappa(m - c_i) \right\}$$

In the dynamic programming formulation, it is understood that $\kappa(m) = 0$ if $m \le 0$.

```
for m \leftarrow 1 to x do
\kappa[m] \leftarrow \infty
for i \leftarrow 1 to n do
if m > c_i then \kappa(m) = \min(\kappa(m), 1 + \kappa(m - c_i))
PRINTANSWER(\kappa, x)
```

```
PRINTANSWER (\kappa, m)

if m > 0 then

i \leftarrow 1

repeat

if m > c_i \land \kappa[m] = 1 + \kappa[m - c_i]

then \{\text{Print } c_i \}

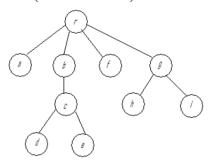
return \{\text{PRINTANSWER}(\kappa, m - c_i)\}

else i \leftarrow i + 1
```

9 An independent set of vertices of a graph G = (V, E) is a set of vertices such that there does not exist an edge between any pair of vertices of the set. As stated in **Problem 34-1** on page 1018 of our text. Finding a maximum independent set of a graph is very difficult. However, many making which

text, finding a maximum independent set of a graph is very difficult. However, many problems which are difficult in graphs become easier if we restrict the graph to be a tree. Describe an algorithm, with time complexity in O(m+n), to find a maximum independent set in a tree. So

MAXINDEPENDENTSET(r) would return $\{a,b,d,e,f,h,i\}$ on



SOLUTION: For each node v in the tree, we compute $\iota(v)$, the maximum number of independent nodes in the tree rooted at v. We compute $\iota(v)$ from the bottom up in the tree, so that when computing $\iota(v)$ we have already computed $\iota(w)$ for all children and grandchildren w of v. We note that if v is in a

maximum independent set of the tree rooted at v, then none of its children is in the maximum independent set. The dynamic programming recurrence is

$$t(v) = \max \left\{ \sum_{\text{children } w \text{ of } v} t(w), 1 + \sum_{\text{grandchildren } w \text{ of } v} t(w) \right\}$$