1 For weighted graph G = (V, E), let $\mu(G) = \max_{e \in F} \{w(e)\}$. For example, if G is

then $\mu(G) = 12$.

a Describe an efficient algorithm to accept as input a connected weighted graph G and yield as output a spanning subgraph G' of G to minimize $\mu(G')$. That is, G' should satisfy

$$\mu(G') = \min_{\text{spanning subgraph } H \text{ of } G} \left\{ \mu(H) \right\}.$$

b Prove that your algorithm works correctly.

c Describe an algorithm which accepts as input connected weighted graph G=(V, E) and $\omega \in \mathbb{R}^+$ and tests whether G admits a spanning tree G' such that $\mu(G') \leq \omega$. Your algorithm should work in worst-case time in O(m) = O(|E|).

SOLUTION: *a* A MST G' of G also minimizes $\mu(G')$ over all spanning trees of G. So Prim's algorithm or Kruskal's algorithm or any algorithm to compute a MST of G would solve our problem.

b Assume G' = (V, E') is a MST of G but G'' = (V, E'') is a spanning tree of G with $\mu(G') > \mu(G'')$. Choose some $e \in E'$ satisfying $w(e) > \mu(G'')$. There must be some edge e' from E'' in the principal cut of G' and e. Because $w(e) > \mu(G'')$, replacing e in E' yields a spanning tree of lower weight than G', contradicting that G' is a MST. Hence, G' must minimize $\mu(G')$ over all spanning trees of G.

С

 $E' \leftarrow \{e \in E | w(e) \le \omega\}$ O(m)Test if (V, E') is connected O(m)

2 \land A (|V|+15)-tree of a weighted graph is a subgraph with (|V|+15) edges which spans the graph. Note that it's not a tree. Describe an efficient algorithm construct a minimum weight (|V|+15)-tree of a connected graph.

SOLUTION: We construct an MST of the graph and add the 16 lightest edges of the graph which do not belong to the MST.

3 As we presented the minimum spanning tree problem, the Blue Rule and the Red Rule assumed that all edge weights are positive, $w: E \to \Re^+$. What happens if we relax this assumption?

In class we showed that if G is connected and $w: E \to \Re^+$ and we apply the Blue Rule and the Red Rule until they can't be applied anymore, then the red edges and the blue edges partition E and the blue edges are a minimum weight spanning subgraph of G.

For the rest of this problem, assume you are given a connected weighted graph G = (V, E) with $w: E \to \Re$.

a Show that applying the Blue Rule and the Red Rule until they can't be applied any more does not necessarily construct a set of blue edges which comprise a minimum weight spanning subgraph of G.

b Modify the Blue Rule and the Red Rule such that when we apply them until they can't be applied anymore, then the red edges and the blue edges partition E and the blue edges are a minimum weight spanning subgraph of G.

Solution: Application of the rules to the graph

yields the tree with edges $\{ab, bc\}$ of weight -14, but the minimum weight spanning subgraph has edges $\{ab, bc, ac\}$ of weight -18.

b. Blue Rule: For any edge *e*, color it *blue* if its weight is negative or if there is a cut for which every edge in the cut is *red* or uncolored and *e* has minimum weight of all edges in the cut. **Red Rule**: Color any edge *red* if its weight is positive and it belongs to a cycle with no *red* edges and it is the *uncolored* edge in the cycle of maximum weight.

4 ► Given a connected weighted graph G = (V, E) and edge $uv \in E$, describe an algorithm to test if there exists a MST of *G* which does not contain uv. The execution time of your algorithm should be in O(n+m) = O(|V|+|E|). Prove that your algorithm works.

SOLUTION:

for each $e \in E$ if $w(e) > w(uv)$ then remove e from E	O(m)
$E \leftarrow E - \{uv\}$	O(1)
if u and v belong to the same component of G	O(m)
then return "There exists an MST which doesn't contain uv"	O(1)

<u>PROOF</u>: If the new *E* spans a connected graph, then there exists a path from *u* to *v* of edges with weights $\leq w(uv)$. Thus if we adds *uv* to this path, we can apply the Red Rule to eliminate *uv* from consideration for inclusion in an MST of *G*.