

LN2‐Preprocess	 Page	1	

PREPROCESSING, LOWER BOUNDS
THEOREM: Every pairwise-comparison based sorting algorithm must do  lgn n swaps

in the worst-case.
PROOF: Can be modeled by binary decision tree, which must have !n leaves. Any binary
tree of m leaves must have height lg m , so there must be a path (sequence of comparisons)
of length at least

           /2
lg ! lg 1 ...1 lg 1 ... / 2 lg / 2 lg 1 lg

2
n n

n n n n n n n n n n        .

THEOREM: Every pairwise-comparison based sorting algorithm must do  lgn n swaps

in the average-case. (Problem 8-1)
SELECTIONSORT (EXERCISE 2.2-2)
 for in downto 2 do
 swap(A[i],MAX of A[1..i])
Analysis: To find MAX of A[1..i], 1i  pairwise comparisons (worst(best,average)-case). Why?
So:      2

. .(. .)(. .)
2 1 1

1a c w c b c
i n i n

T n i i n
    

    

TreeSort: Having found MAX, we have (essentially) no help in finding 2ndMAX. Arrange
tests for MAX to facilitate test for 2ndMAX.
SUBPROBLEM: Find MAX and 2ndMAX using pairwise comparisons.
 Set up a tournament: To find MAX of 3 1 4 1 5 9 2 6

We know that 2ndMAX lost to MAX. Only need check lgn losers (trace MAX to its leaf, (lgn),
replace it by -∞, & re-run the lgn competitions involving MAX).

So we get 6 is 2nd MAX. Repeat...
 Can find kth largest in n+klgn comparisons.
Lower bound: Adversary Arguments: What is worst-case complexity of Finding 2nd
MAX elements of a set, that is, for any (binary) decision tree to Find 2nd MAX, what is
height? We know there is some tree with a leaf (best-case) at distance n-1.
 if A[1]<A[2]

then {BigA[2]; SecondA[1];}

LN2‐Preprocess	 Page	2	

 else {BigA[1]; SecondA[2];}
 for i3 to n do
 if Second<A[i] then if Big<A[i] then {SecondBig;Big A[i];}
 else SecondA[i]
An adversary makes an algorithm look as bad as possible. What is worst-case for the
above? Note that adversary (and reality) makes candidates known to be big win.
 Prove that 2nd MAX must “know” MAX If not, adversary could flip input to make
2nd MAX (which never lost) equal ∞. We know we need n-1 comparisons for MAX. We
want to maximize ignorance for algorithm after it knows MAX, i.e., maximize # of losers
to Big.
 At any point in computation, for each A[i], we define
w(i) = if A[i] can't be max then 0 else |{j | we know A[j]≤A[i] }|
 Initially, (i)w(i)=1; finally w(MAX)=n.
 Adversary's Algorithm:
 Algorithm says "compare A[i] to A[j]"
 We say: if w(i)≥w(j) then A[i]>A[j] {w(i)w(j)+w(i) ,w(j) 0}
 else A[j]>A[i] {w(j)w(j)+w(i) ,w(i)0}
 Analysis of any algorithm's performance:
 We know that 2nd MAX has lost a comparison to MAX.
 Worst-case - what is smallest number of keys which lost to MAX?
 w(MAX) after comparison ≤ 2*w(MAX) before comparison
 fewest # losers to MAX occurs when MAX doubles each time - lgn
Adversary in action: n=5, sequential search
 (A) L[1] wins all. Initially w=(1,1,1,1,1); finally w=(5,0,0,0,0). We know

L[1]

L[2] L[3] L[4] L[5]
and we could assign weights accordingly.
(B)

LN2‐Preprocess	 Page	3	

L[1]:L[2]

L[1]:L[3]

L[4]:L[5]

L[1]:L[5]

L[1]

L[2]

L[1]

L[2] L[3]

>

>

<

>

L[1]

L[5]

L[4]

L[2] L[3] L[5]

L[4]

w=(1,1,1,1,1)

w=(2,0,1,1,1)

w=(3,0,0,1,1)

w=(3,0,0,0,2)

w=(5,0,0,0,0)

& there are 3 candidates for 2nd MAX. Note that values are assignable consistent with the
ranking.

4 Finding MAX and MIN
An algorithm to find MAX-MIN using n-1 comparisons (in the best-case):
 if then Big A[2]
 Little  A[1]
 else Big A[1]
 Little A[2]
 for i3 to n do
 if then Big  A[i]
 else if then Little A[i]
Average case, assuming all elements distinct & all permutations of A equally likely.

3
2

2nn H  pairwise comparisons.

But, worst-case - 2n-3.
 Assume n even
Winners
Losers
for k2 to n by 2 do
 compare L[k] : L[k-1], put larger in Winners
 smaller in Losers n/2
return (max(Winners), min(Losers))

2 n

2 1 
 Lower-bound on MAX-MIN State-space approach.
Divide L into 4 categories: cardinality
 Beginners - neither known to be MAX nor MIN b
 Winners - may be MAX , definitely not MIN w
 Losers - may be MIN, definitely not MAX l
 Others - definitely neither MAX nor MIN o
Initially, (b,w,l,o)=(n,0,0,0); finally (b,w,l,o)=(0,1,1,n-2)
Comparisons (b,w,l,o)

LN2‐Preprocess	 Page	4	

B:B (b-2,w+1,l+1,o)
B:W (b-1,w,l+1,o) | (b-1,w,l,o+1) adversary eliminates 2nd
B:L (b-1,w+1,l,o) | (b-1,w,l,o+1) adversary eliminates 2nd
B:O (b-1,w+1,l,o) | (b-1,w,l+1,o) adversary eliminates 2nd
WW (b,w-1,l,o+1)
W:L (b,w,l,o) | (b,w-1,l-1,o+2) adversary eliminates 2nd
W:O (b,w,l,o) | (b,w-1,l,o+1) adversary eliminates 2nd
L:L (b,w,l-1,o+1)
L:O (b,w,l,o) | (b,w,l-1,o+1) adversary eliminates 2nd
O:O (b,w,l,o)
 It takes

 n

2  comparisons to empty B. Adversary can assure that nothing goes from

BO. It then takes n-2 to empty W and L. Note that the lower bound yields an
algorithm.

