PREPROCESSING, LOWER BOUNDS

THEOREM: Every pairwise-comparison based sorting algorithm must do $\Omega(n \lg n)$ swaps in the worst-case.

PROOF: Can be modeled by binary decision tree, which must have $\ge n!$ leaves. Any binary tree of *m* leaves must have height $\lg m$, so there must be a path (sequence of comparisons) of length at least

$$\lg n! = \lg n(n-1)...1 \ge \lg n(n-1)...(n/2) \ge \lg (n/2)^{n/2} = \frac{n}{2}(\lg n-1) \in \Omega(n \lg n).$$

THEOREM: Every pairwise-comparison based sorting algorithm must do $\Omega(n \lg n)$ swaps

in the average-case. (**Problem** *8-1*) SELECTIONSORT (EXERCISE 2.2-2)

for $i \leftarrow n$ downto 2 do

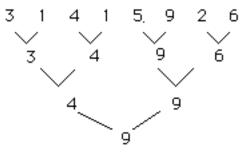
swap(A[i], MAX of A[1..i])

<u>Analysis</u>: To find MAX of A[1..i], $\geq i-1$ pairwise comparisons (worst(best, average)-case). Why? So: $T_{a.c.(w.c.)(b.c.)}(n) = \sum_{2 \leq i \leq n} (i-1) = \sum_{1 \leq i \leq n-1} i \in \Theta(n^2)$

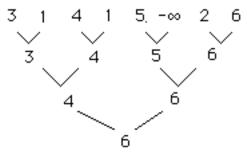
<u>TreeSort:</u> Having found MAX, we have (essentially) no help in finding $2^{\underline{nd}}$ MAX. Arrange tests for MAX to facilitate test for $2^{\underline{nd}}$ MAX.

<u>SUBPROBLEM</u>: Find MAX and 2^{nd} MAX using pairwise comparisons.

Set up a tournament: To find MAX of 3 1 4 1 5 9 2 6



We know that 2^{nd} MAX lost to MAX. Only need check lgn losers (trace MAX to its leaf, (lgn), replace it by $-\infty$, & re-run the lgn competitions involving MAX).



So we get 6 is $2^{\underline{nd}}$ MAX. Repeat...

Can find k^{th} largest in $n+k\lg n$ comparisons.

<u>Lower bound: Adversary Arguments</u>: What is worst-case complexity of *Find*ing 2^{nd} MAX elements of a set, that is, for any (binary) decision tree to *Find* 2^{nd} MAX, what is height? We know there is some tree with a leaf (best-case) at distance *n*-1.

if $A[1] \le A[2]$ then { $Big \leftarrow A[2]$; Second $\leftarrow A[1]$; } else { $Big \leftarrow A[1]$; $Second \leftarrow A[2]$;} for $i \leftarrow 3$ to n do if Second < A[i] then if Big < A[i] then { $Second \leftarrow Big; Big \leftarrow A[i];$ } else $Second \leftarrow A[i]$

An adversary makes an algorithm look as bad as possible. What is worst-case for the above? <u>Note</u> that adversary (and reality) makes candidates known to be big win.

▶ Prove that $2^{\underline{nd}}$ MAX must "know" MAX ⇒If not, adversary could flip input to make $2^{\underline{nd}}$ MAX (which never lost) equal ∞. We know we need *n*-1 comparisons for MAX. We want to maximize ignorance for algorithm after it knows MAX, i.e., maximize # of losers to *Big*.

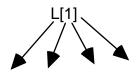
At any point in computation, for each A[i], we define

 $w(i) = \text{if } A[i] \text{ can't be max then } 0 \text{ else } |\{j \mid \text{we know } A[j] \le A[i] \}|$

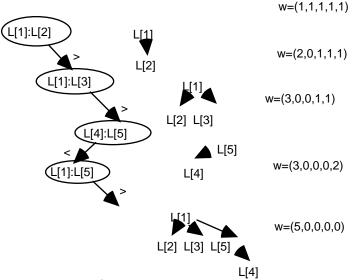
Initially, $(\forall i)w(i)=1$; finally w(MAX)=n.

Adversary's Algorithm:

Algorithm says "compare A[i] to A[j]" We say: if $w(i) \ge w(j)$ then $A[i] > A[j] \{w(i) \leftarrow w(j) + w(i), w(j) \leftarrow 0\}$ else $A[j] > A[i] \{w(j) \leftarrow w(j) + w(i), w(i) \leftarrow 0\}$ <u>Analysis</u> of any algorithm's performance: We know that $2^{\underline{nd}}$ MAX has lost a comparison to MAX. Worst-case - what is smallest number of keys which lost to MAX? w(MAX) after comparison $\le 2*w(MAX)$ before comparison fewest # losers to MAX occurs when MAX doubles each time - lgn <u>Adversary in action</u>: n=5, sequential search (A) L[1] wins all. Initially w=(1,1,1,1,1); finally w=(5,0,0,0,0). We know



L[2] L[3] L[4] L[5] and we could assign weights accordingly. **(B)**



& there are 3 candidates for $2^{\underline{nd}}$ MAX. Note that values are assignable consistent with the ranking.

4 Finding MAX and MIN An algorithm to find *MAX-MIN* using *n*-1 comparisons (in the best-case): if $A[1] \leq A[2]$ then $Big \leftarrow A[2]$ *Little* $\leftarrow A[1]$ else $Big \leftarrow A[1]$ *Little* $\leftarrow A[2]$ for $i \leftarrow 3$ to n do if Big < A[i] then $Big \leftarrow A[i]$ else if *Little* >A[i] then *Little* $\leftarrow A[i]$ P Average case, assuming all elements distinct & all permutations of A equally likely. $2n - H_n - \frac{3}{2}$ pairwise comparisons. But, worst-case - 2n-3. Assume *n* even Winners $\leftarrow \emptyset$ $Losers \leftarrow \emptyset$ for $k \leftarrow 2$ to n by 2 do compare L[k] : L[k-1], put larger in Winners smaller in Losers n/2 $2(\frac{n}{2}-1)$ return (max(Winners), min(Losers)) Lower-bound on MAX-MIN State-space approach. Divide L into 4 categories: cardinality Beginners - neither known to be MAX nor MIN b Winners - may be MAX, definitely not MIN w Losers - may be MIN, definitely not MAX l Others - definitely neither MAX nor MIN 0 Initially, (b,w,l,o) = (n,0,0,0); finally (b,w,l,o) = (0,1,1,n-2)Comparisons $(b, w, l, o) \rightarrow$

B:B	(b-2,w+1,l+1,o)
B:W	$(b-1,w,l+1,o) \mid (b-1,w,l,o+1)$ adversary eliminates $2\underline{nd}$
B:L	$(b-1,w+1,l,o) \mid (b-1,w,l,o+1)$ adversary eliminates $2\underline{nd}$
<i>B</i> : <i>O</i>	$(b-1,w+1,l,o) \mid (b-1,w,l+1,o)$ adversary eliminates $2\underline{nd}$
WW	(b,w-1,l,o+1)
W:L	$(b,w,l,o) \mid (b,w-1,l-1,o+2)$ adversary eliminates 2^{nd}
W:O	$(b,w,l,o) \mid (b,w-1,l,o+1)$ adversary eliminates 2^{nd}
L:L	(b,w,l-1,o+1)
L:O	$(b,w,l,o) \mid (b,w,l-1,o+1)$ adversary eliminates 2^{nd}
0:0	(b,w,l,o)
$T_{4,4-1} \sim \nabla \Gamma_{1}$	

It takes $\geq \lfloor \frac{n}{2} \rfloor$ comparisons to empty *B*. Adversary can assure that nothing goes from $B \rightarrow O$. It then takes *n*-2 to empty *W* and *L*. Note that the lower bound yields an algorithm.