PREPROCESSING, LOWER BOUNDS
THEOREM: Every pairwise-comparison based sorting algorithm must do Q(n Ig n) swaps

in the worst-case.

PROOF: Can be modeled by binary decision tree, which must have > n! leaves. Any binary
tree of m leaves must have height Igm, so there must be a path (sequence of comparisons)
of length at least

lgn!=lgn(n-1)..1>1gn(n-1)..(n/2)>1g(n/2)" :g(lgn—l) eQ(nlgn).

THEOREM: Every pairwise-comparison based sorting algorithm must do Q(n Ig n) swaps

in the average-case. (Problem §-/
SELECTIONSORT (EXERCISE 2.2-2)
for i< n downto 2 do
swap(A[i],MAX of A[1..1])
Analysis: To find MAX of A[1..i], >1—1 pairwise comparisons (worst(best,average)-case). Why?
SO: Ta.c.(w.c.)(b.o) (n) = Z (I _1) = Z I €®(n2)
2<i<n I<i<n-1
TreeSort: Having found MAX, we have (essentially) no help in finding 2"MAX. Arrange
tests for MAX to facilitate test for 222MAX.
SUBPROBLEM: Find MAX and 2™MAX using pairwise comparisons.

Set up a tournament: To find MAXof 3 1415926

21 4 1 5 9 2 6

v v v v
I | = =)

N 7
4 =
Hg,ﬂ’

We know that 2"MAX lost to MAX. Only need check Ign losers (trace MAX to its leaf, (1gn),
replace it by -0, & re-run the Ign competitions involving MAX).

21 4 1 3 -ee 2 0
v v v R
3 < 2 G

v T
& a]
h‘“aﬁf

So we get 6 is 2" MAX. Repeat...
Can find kth largest in n+klgn comparisons.
Lower bound: Adversary Arguments: What is worst-case complexity of Finding 2%
MAX elements of a set, that is, for any (binary) decision tree to Find 2" MAX, what is
height? We know there is some tree with a leaf (best-case) at distance n-1.
if A[1]<A[2]
then {Big«A[2]; Second«A[1];}

LN2-Preprocess Page 1

else {Big«—A[1]; Second<«A[2];}
for i<-3 tondo
if Second<A[i] then if Big<A[i] then {Second<«Big;Big« A[i];}
else Second«A[i]
An adversary makes an algorithm look as bad as possible. What is worst-case for the
above? Note that adversary (and reality) makes candidates known to be big win.

» Prove that 2" MAX must “know” MAX =If not, adversary could flip input to make
2" MAX (which never lost) equal co. We know we need n-1 comparisons for MAX. We
want to maximize ignorance for algorithm after it knows MAX, i.e., maximize # of losers
to Big.

At any point in computation, for each A[i], we define
w(i) = if A[i] can't be max then 0 else |{j | we know A[j]<A[i] }|

Initially, (Vi)w(i)=1; finally w(MAX)=n.

Adversary's Algorithm:

Algorithm says "compare A[i] to A[j]"

We say: if w(i)>w(j) then A[i]>A[j] {w(i)< w(j)+w(i) ,w(j) <0}

else A[JI>A[1] {w(j)<«w(j)+w(i) ,w(i)« 0}
Analysis of any al§orithm's performance:
We know that 2™ MAX has lost a comparison to MAX.
Worst-case - what is smallest number of keys which lost to MAX?
W(MAX) after comparison < 2*W(MAX) before comparison
fewest # losers to MAX occurs when MAX doubles each time - Ign
Adversary in action: N=5, sequential search
(A) L[1] wins all. Initially w=(1,1,1,1,1); finally w=(5,0,0,0,0). We know

L[1]

AN

L[2] L[3] L[4] L[5]
and we could assign weights accordingly.

(B)

LN2-Preprocess Page 2

w=(1,1,1,1,1)

L
w w=(2,0,1,1,1)
L[2]

1
B]\ w=(3,0,0,1,1)

L[2] L[3]

A LBl

LI w=(3,0,0,0,2)

gk\‘ w=(5,0,0,0,0)
L[2] L[3] L[5] 'y
L[4]
& there are 3 candidates for 2™ MAX. Note that values are assignable consistent with the
ranking.
4 Finding MAX and MIN
An algorithm to find MAX-MIN using n-1 comparisons (in the best-case):
if A[1]<A4[2] then Big < A[2]
Little « A[1]
else Big <« A[1]
Little«— A[2]

fori<—3tondo
if Big < A[i] then Big « AJi]
else if Lirile >A[{] then Little«— A[i]
® Average case, assuming all elements distinct & all permutations of A equally likely.

3 .. .
2n—H, —— pairwise comparisons.

But, worst-case - 2n-3.
Assume n even
Winners« &
Losers« &
for ke—2 ton by 2 do
compare L[K] : L[k-1], put larger in Winners
smaller in Losers n/2
return (max(Winners), min(Losers)) 2(% — 1)

Lower-bound on MAX-MIN State-space approach.

Divide L into 4 categories: cardinality
Beginners - neither known to be MAX nor MIN b
Winners - may be MAX , definitely not MIN w
Losers - may be MIN, definitely not MAX I
Others - definitely neither MAX nor MIN 0

Initially, (b,w,l,0)=(n,0,0,0); finally (b,w,l,0)=(0,1,1,n-2)

Comparisons (b,w,l,0) >

LN2-Preprocess Page 3

B:B (b-2,w+1,I+1,0)

B:W (b-1,w,1+1,0) | - wshe+H adversary eliminates 20d
B:L (b-1,w+1,1,0) | b-wle+1) adversary eliminates 20d
B:O (b-1,w+1,1,0) | b-wl+150) adversary eliminates 20d
Ww (b,w-1,1,0+1)

W:L (b,w,1,0) | éb;w-11-1;6+2) adversary eliminates 20d
W:0O (b,w,1,0) | b;w—Le+1) adversary eliminates 20d

L:L (b,w,I-1,0+1)

L:O (b,w,1,0) | do;wsl-1;0+1) adversary eliminates 20d
0:0 (b,w,l,0)

It takes > r§—| comparisons to empty B. Adversary can assure that nothing goes from

B—O. It then takes n-2 to empty W and L. Note that the lower bound yields an
algorithm.

e —————————
LN2-Preprocess Page 4

