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PREPROCESSING, LOWER BOUNDS 
THEOREM: Every pairwise-comparison based sorting algorithm must do  lgn n  swaps 

in the worst-case. 
PROOF: Can be modeled by binary decision tree, which must have !n  leaves. Any binary 
tree of m leaves must have height lg m , so there must be a path (sequence of comparisons) 
of length at least 
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THEOREM: Every pairwise-comparison based sorting algorithm must do  lgn n  swaps 

in the average-case. (Problem 8-1) 
SELECTIONSORT (EXERCISE 2.2-2) 
        for in downto 2 do     
           swap(A[i],MAX of A[1..i]) 
Analysis:  To find MAX of A[1..i], 1i   pairwise comparisons (worst(best,average)-case). Why? 
So:           2
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TreeSort: Having found MAX, we have (essentially) no help in finding 2ndMAX.  Arrange 
tests for MAX to facilitate test for 2ndMAX. 
SUBPROBLEM: Find MAX and 2ndMAX using pairwise comparisons. 
  Set up a tournament:  To find MAX of  3  1  4  1  5  9  2  6 

 
We know that 2ndMAX lost to MAX.  Only need check lgn losers (trace MAX to its leaf, (lgn), 
replace it by -∞, & re-run the lgn competitions involving MAX). 

 
So we get 6 is 2nd MAX.  Repeat... 
  Can find kth largest in n+klgn comparisons. 
Lower bound: Adversary Arguments:  What is worst-case complexity of Finding 2nd 
MAX elements of a set, that is, for any (binary) decision tree to Find  2nd MAX, what is 
height?  We know there is some tree with a leaf (best-case) at distance n-1.  
     if A[1]<A[2]   

then {BigA[2]; SecondA[1];} 
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            else {BigA[1];  SecondA[2];} 
            for i3 to n do 
                 if Second<A[i] then if Big<A[i] then {SecondBig;Big A[i];} 
                                                  else SecondA[i] 
An adversary makes an algorithm look as bad as possible.  What is worst-case for the 
above?  Note that adversary (and reality) makes candidates known to be big win. 
  Prove that 2nd MAX must “know” MAX If not, adversary could flip input to make  
2nd MAX (which never lost) equal ∞. We know we need n-1 comparisons for MAX.  We 
want to maximize ignorance for algorithm after it knows MAX, i.e., maximize # of losers 
to Big. 
  At any point in computation, for each A[i], we define  
w(i) = if A[i] can't be max then 0 else |{j | we know A[j]≤A[i] }| 
   Initially, (i)w(i)=1; finally w(MAX)=n. 
   Adversary's Algorithm: 
    Algorithm says "compare A[i] to A[j]" 
    We say: if w(i)≥w(j) then A[i]>A[j]  {w(i )w(j)+w(i) ,w(j) 0} 
                                      else A[j]>A[i]  {w(j)w(j)+w(i) ,w(i )0} 
 Analysis of any algorithm's performance:  
    We know that 2nd MAX has lost a comparison to MAX.   
    Worst-case - what is smallest number of keys which lost to MAX? 
                      w(MAX) after comparison ≤ 2*w(MAX) before comparison 
       fewest # losers to MAX occurs when MAX doubles each time - lgn   
Adversary in action: n=5, sequential search 
 (A) L[1] wins all. Initially w=(1,1,1,1,1); finally w=(5,0,0,0,0). We know 

L[1]

L[2]   L[3]   L[4]   L[5]  
and we could assign weights accordingly. 
(B) 
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L[1]:L[2]

L[1]:L[3]

L[4]:L[5]

L[1]:L[5]

L[1]

L[2]

L[1]

L[2]  L[3]

>

>
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>

L[1]

L[5]

L[4]

L[2]  L[3]  L[5]

L[4]

w=(1,1,1,1,1)

w=(2,0,1,1,1)

w=(3,0,0,1,1)

w=(3,0,0,0,2)

w=(5,0,0,0,0)

 
& there are 3 candidates for 2nd MAX. Note that values are assignable consistent with the 
ranking. 

4 Finding MAX and MIN 
An algorithm to find MAX-MIN using n-1 comparisons (in the best-case): 
  if  then Big A[2] 
                                 Little   A[1] 
                        else Big A[1] 
                                 Little  A[2] 
    for i3 to n do 
      if then  Big   A[i] 
        else if  then Little  A[i] 
Average case, assuming all elements distinct & all permutations of A equally likely.  

3
2

2nn H   pairwise comparisons. 

But, worst-case - 2n-3. 
       Assume n even 
Winners  
Losers
for k2 to n by 2 do 
   compare L[k] : L[k-1], put larger in Winners 
                                            smaller in Losers                     n/2 
return (max(Winners), min(Losers))                                 

 
2 n

2 1  
    Lower-bound on MAX-MIN  State-space approach. 
Divide L into 4 categories:                   cardinality 
 Beginners - neither known to be MAX nor MIN   b 
 Winners - may be MAX , definitely not MIN    w 
  Losers - may be MIN, definitely not MAX   l 
 Others - definitely neither MAX nor MIN   o 
Initially, (b,w,l,o)=(n,0,0,0); finally (b,w,l,o)=(0,1,1,n-2) 
Comparisons (b,w,l,o) 
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B:B  (b-2,w+1,l+1,o) 
B:W  (b-1,w,l+1,o) | (b-1,w,l,o+1)  adversary eliminates 2nd  
B:L  (b-1,w+1,l,o) | (b-1,w,l,o+1)  adversary eliminates 2nd  
B:O  (b-1,w+1,l,o) | (b-1,w,l+1,o)  adversary eliminates 2nd  
WW  (b,w-1,l,o+1)  
W:L  (b,w,l,o) | (b,w-1,l-1,o+2)  adversary eliminates 2nd  
W:O  (b,w,l,o) | (b,w-1,l,o+1)  adversary eliminates 2nd  
L:L  (b,w,l-1,o+1)   
L:O  (b,w,l,o) | (b,w,l-1,o+1)  adversary eliminates 2nd  
O:O      (b,w,l,o) 
 It takes 

  
 n

2  comparisons to empty B. Adversary can assure that nothing goes from 

BO.  It then takes n-2 to empty W and L.  Note that the lower bound yields an 
algorithm. 
 


