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PREPROCESSING, LOWER BOUNDS 
THEOREM: Every pairwise-comparison based sorting algorithm must do  lgn n  swaps 

in the worst-case. 
PROOF: Can be modeled by binary decision tree, which must have !n  leaves. Any binary 
tree of m leaves must have height lg m , so there must be a path (sequence of comparisons) 
of length at least 
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THEOREM: Every pairwise-comparison based sorting algorithm must do  lgn n  swaps 

in the average-case. (Problem 8-1) 
SELECTIONSORT (EXERCISE 2.2-2) 
        for in downto 2 do     
           swap(A[i],MAX of A[1..i]) 
Analysis:  To find MAX of A[1..i], 1i   pairwise comparisons (worst(best,average)-case). Why? 
So:           2
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TreeSort: Having found MAX, we have (essentially) no help in finding 2ndMAX.  Arrange 
tests for MAX to facilitate test for 2ndMAX. 
SUBPROBLEM: Find MAX and 2ndMAX using pairwise comparisons. 
  Set up a tournament:  To find MAX of  3  1  4  1  5  9  2  6 

 
We know that 2ndMAX lost to MAX.  Only need check lgn losers (trace MAX to its leaf, (lgn), 
replace it by -∞, & re-run the lgn competitions involving MAX). 

 
So we get 6 is 2nd MAX.  Repeat... 
  Can find kth largest in n+klgn comparisons. 
Lower bound: Adversary Arguments:  What is worst-case complexity of Finding 2nd 
MAX elements of a set, that is, for any (binary) decision tree to Find  2nd MAX, what is 
height?  We know there is some tree with a leaf (best-case) at distance n-1.  
     if A[1]<A[2]   

then {BigA[2]; SecondA[1];} 



 

LN2‐Preprocess	 Page	2	
 

            else {BigA[1];  SecondA[2];} 
            for i3 to n do 
                 if Second<A[i] then if Big<A[i] then {SecondBig;Big A[i];} 
                                                  else SecondA[i] 
An adversary makes an algorithm look as bad as possible.  What is worst-case for the 
above?  Note that adversary (and reality) makes candidates known to be big win. 
  Prove that 2nd MAX must “know” MAX If not, adversary could flip input to make  
2nd MAX (which never lost) equal ∞. We know we need n-1 comparisons for MAX.  We 
want to maximize ignorance for algorithm after it knows MAX, i.e., maximize # of losers 
to Big. 
  At any point in computation, for each A[i], we define  
w(i) = if A[i] can't be max then 0 else |{j | we know A[j]≤A[i] }| 
   Initially, (i)w(i)=1; finally w(MAX)=n. 
   Adversary's Algorithm: 
    Algorithm says "compare A[i] to A[j]" 
    We say: if w(i)≥w(j) then A[i]>A[j]  {w(i )w(j)+w(i) ,w(j) 0} 
                                      else A[j]>A[i]  {w(j)w(j)+w(i) ,w(i )0} 
 Analysis of any algorithm's performance:  
    We know that 2nd MAX has lost a comparison to MAX.   
    Worst-case - what is smallest number of keys which lost to MAX? 
                      w(MAX) after comparison ≤ 2*w(MAX) before comparison 
       fewest # losers to MAX occurs when MAX doubles each time - lgn   
Adversary in action: n=5, sequential search 
 (A) L[1] wins all. Initially w=(1,1,1,1,1); finally w=(5,0,0,0,0). We know 

L[1]

L[2]   L[3]   L[4]   L[5]  
and we could assign weights accordingly. 
(B) 
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L[1]:L[2]

L[1]:L[3]

L[4]:L[5]

L[1]:L[5]

L[1]

L[2]

L[1]

L[2]  L[3]

>

>

<

>

L[1]

L[5]

L[4]

L[2]  L[3]  L[5]

L[4]

w=(1,1,1,1,1)

w=(2,0,1,1,1)

w=(3,0,0,1,1)

w=(3,0,0,0,2)

w=(5,0,0,0,0)

 
& there are 3 candidates for 2nd MAX. Note that values are assignable consistent with the 
ranking. 

4 Finding MAX and MIN 
An algorithm to find MAX-MIN using n-1 comparisons (in the best-case): 
  if  then Big A[2] 
                                 Little   A[1] 
                        else Big A[1] 
                                 Little  A[2] 
    for i3 to n do 
      if then  Big   A[i] 
        else if  then Little  A[i] 
Average case, assuming all elements distinct & all permutations of A equally likely.  

3
2

2nn H   pairwise comparisons. 

But, worst-case - 2n-3. 
       Assume n even 
Winners  
Losers
for k2 to n by 2 do 
   compare L[k] : L[k-1], put larger in Winners 
                                            smaller in Losers                     n/2 
return (max(Winners), min(Losers))                                 

 
2 n

2 1  
    Lower-bound on MAX-MIN  State-space approach. 
Divide L into 4 categories:                   cardinality 
 Beginners - neither known to be MAX nor MIN   b 
 Winners - may be MAX , definitely not MIN    w 
  Losers - may be MIN, definitely not MAX   l 
 Others - definitely neither MAX nor MIN   o 
Initially, (b,w,l,o)=(n,0,0,0); finally (b,w,l,o)=(0,1,1,n-2) 
Comparisons (b,w,l,o) 
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B:B  (b-2,w+1,l+1,o) 
B:W  (b-1,w,l+1,o) | (b-1,w,l,o+1)  adversary eliminates 2nd  
B:L  (b-1,w+1,l,o) | (b-1,w,l,o+1)  adversary eliminates 2nd  
B:O  (b-1,w+1,l,o) | (b-1,w,l+1,o)  adversary eliminates 2nd  
WW  (b,w-1,l,o+1)  
W:L  (b,w,l,o) | (b,w-1,l-1,o+2)  adversary eliminates 2nd  
W:O  (b,w,l,o) | (b,w-1,l,o+1)  adversary eliminates 2nd  
L:L  (b,w,l-1,o+1)   
L:O  (b,w,l,o) | (b,w,l-1,o+1)  adversary eliminates 2nd  
O:O      (b,w,l,o) 
 It takes 

  
 n

2  comparisons to empty B. Adversary can assure that nothing goes from 

BO.  It then takes n-2 to empty W and L.  Note that the lower bound yields an 
algorithm. 
 


