Analysis
Even if capacities are integral, may be real slow: initially, f(e)=0 for all ecE

Augmenting paths: s-a-b-t, s-b-a-t, s-a-b-t,... +1 every time
need 2M augmentations before flow of M reached.

There is a case with irrational capacities for which the algorithm neither terminates
nor converges.

ANALYSIS: If ¢: E — Z", then FF halts in at most max-flow augmentations, or time
O(|E| K‘), where x = max c(e).
Edmonds & Karp: Choose augmenting path with

» Max bottleneck capacity

« sufficiently large capacity (CAPACITY SCALING)

* SHORTEST # OF HOPS
CAPACITY SCALING:

G (A) := G with all edges of residual capacity or flow > A
foreach ecE f(e)«0
A <—maX(EIi(m =2i)/\(m SK))

while A>1
while 3 augmenting path P in G(A)

f < AUGMENT(f,P)

A<—A/2
return f
ANALYSIS: * returned f is maximum.

« Outer while repeats | g |+1 times.
» With flow f after a A-phase, max flow < | f | + A|E|
» Each augmentation in A -phase increases flow by > A

* Each A-phase admits < |E| augmentations.

* Each augmentation takes time in O (| E|) )

Thus CAPACITY SCALING runs in time O (| E|2 Ig zc) .

SHORTEST # OF HOPS

The level graph of G, G, is breadth first search graph of G with sideways and
back edges deleted. The level of vertex Vv is length of shortest path s — V.

Any shortest path s — Vv in G is a path of G;.
CLAIM: * Let P be shortest augmenting path of G, G' the residual graph after augmenting
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along P, and Q be shortest augmenting path of G', then |Q| > |P| .

» Augmenting along shortest paths, after < |E| augmentations the length of a

shortest path must increase strictly.
PROOF (of CLAIM): Any path using back or side edge of G; strictly longer than P. After any
augmentation, =1 edge is saturated (or gets 0 flow on backedge) & moves deeper into G;.

This can occur < |E| times.

ANALYSIS: < |E| * |V| augmentations, & using BFS each augmentation O (| E

THEOREM: (Edmonds & Karp) If augmenting paths sought by breadth-first search
(augmenting path with minimal number of arcs chosen), then Ford-Fulkerson halts after

SM augmentations.
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EX: Maximum Matching in Bipartite Graphs
If (undirected) graph G = (V,E) satisfies V = X UY, X nY =&, E < X xY , a matching
is M c E satisfies each v €V belongs to at most one e e M .

ALGORITHM: Construct network (V u{st},E u({s} X X)u({t} xY)) with capacities
(VeeE)c(e)=1 and (Ve e{s] x X U{t] xY)c(e) =1

Ford-Fulkerson returns max flow with all integral flows. (Ve € E) eeM o f (e) =
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EX: Menger's Theorem — The maximum number of edge disjoint paths joining 2 vertices
in a digraph = the minimaum number of edges whose removal separates the vertices.
PROOF: Label the vertices S & t, and assign capacity 1 to every edge. 3k edge disjoint

paths iff 3 flow f with | f| =k . MaxFlow-MinCut = 3 cut of capacity k iff k max flow.
EX: A network is:

-a digraph (V,E),

-capacity c:.E—>RT,

-demands d:V—>R
A circulation, f:E—>RT satisfies:

CAPACITY CONSTRAINT-(Ve eE)0 < f(e)< c(e)

FLOW CONSERVATION- WveV > f(u,v)-) f(v,u)=d(v)

QUESTION: Does there exist a circulation?
Necessary Condition for existence: » d(v)= > —d(v)

veV veV
d(v)>0 d(v)<0
Solution: » Add to V two vertices S,t ¢V

VeV d (V) <0 add to E edge sv with capacity —d(v)
» YveV d(v)>0 add to E edge vt with capacity d(v)
3 circulation iff the extended network has max flow |f|= >_ d(v)

veV
d(v)>0

EX: Circulation with demands and lower bounds. A network is:
-a digraph (V,E),
-capacity c:E—>RT,
-lower bounds 4 :E—RT,
-demands d:E—>R
A circulation, f:E—R™ satisfies:
CAPACITY CONSTRAINT-(Vee E)A(e)< f (e)<c(e)

FLOW CONSERVATION- WveV > f(u,v)-)Y f(v,u)=d(v)
QUESTION: Does there exist a circulation satisfying lower bounds?
(Idea: Model lower bound A (uv) as demand - /1(uv) from v and /1(uv) from u.)
Create network G' with capacities ¢'(e)=c(e)—A(e), Ve € E and demands

d'(u)=d(u)+ > A(uv)- > A(w).

uveE vueE

THEOREM: 3 circulation in G < 3 circulation in G'.
"PROOF": f is circulation in G < f — A is circulation in G'.

LN12 Page 3



