Analysis

Even if capacities are integral, may be real slow: initially, f(e)=0 for all $e \in E$

Augmenting paths: *s-a-b-t*, *s-b-a-t*, *s-a-b-t*,... +1 every time need 2*M* augmentations before flow of *M* reached.

There is a case with irrational capacities for which the algorithm neither terminates nor converges.

<u>ANALYSIS</u>: If $c: E \to \mathbb{Z}^+$, then FF halts in at most max-flow augmentations, or time $O(|E|\kappa)$, where $\kappa := \max_{e\in F} c(e)$.

Edmonds & Karp: Choose augmenting path with

• Max bottleneck capacity

• sufficiently large capacity (CAPACITY SCALING)

• SHORTEST # OF HOPS

CAPACITY SCALING:

 $G(\Delta) := G$ with all edges of residual capacity or flow $\geq \Delta$

for each $e \in E$ $f(e) \leftarrow 0$

$$\Delta \leftarrow \max_{m} \left(\exists i \left(m = 2^{i} \right) \land \left(m \le \kappa \right) \right)$$

while $\Delta \ge 1$

while \exists augmenting path *P* in $G(\Delta)$

$$f \leftarrow \text{AUGMENT}(f, P)$$

$$\Delta \leftarrow \Delta / 2$$

return f

<u>ANALYSIS</u>: • returned *f* is maximum.

- Outer while repeats $|\lg \kappa| + 1$ times.
- With flow *f* after a Δ -phase, max flow $\leq |f| + \Delta |E|$
- Each augmentation in Δ -phase increases flow by $\geq \Delta$
- Each Δ -phase admits $\leq |E|$ augmentations.
- Each augmentation takes time in O(|E|).

Thus CAPACITY SCALING runs in time $O(|E|^2 \lg \kappa)$.

SHORTEST # OF HOPS

The *level graph of G*, G_l , is breadth first search graph of *G* with sideways and back edges deleted. The *level* of vertex *v* is length of shortest path $s \rightarrow v$.

Any shortest path $s \rightarrow v$ in *G* is a path of G_l .

<u>CLAIM</u>: • Let P be shortest augmenting path of G, G' the residual graph after augmenting

along *P*, and *Q* be shortest augmenting path of *G*', then $|Q| \ge |P|$.

• Augmenting along shortest paths, after $\leq |E|$ augmentations the length of a

shortest path must increase strictly.

PROOF (of CLAIM): Any path using back or side edge of G_l strictly longer than P. After any augmentation, ≥ 1 edge is saturated (or gets 0 flow on backedge) & moves deeper into G_l . This can occur $\leq |E|$ times.

<u>ANALYSIS</u>: $\exists \leq |E| * |V|$ augmentations, & using BFS each augmentation O(|E|), so $O(|E|^2 |V|)$.

<u>THEOREM</u>: (Edmonds & Karp) If augmenting paths sought by breadth-first search (augmenting path with minimal number of arcs chosen), then Ford-Fulkerson halts after $\leq \frac{|V|^*|E|}{2}$ augmentations.

State of the Art:

<u>Ex</u>: *Maximum Matching in Bipartite Graphs*

If (undirected) graph G = (V, E) satisfies $V = X \cup Y, X \cap Y = \emptyset, E \subseteq X \times Y$, a *matching* is $M \subseteq E$ satisfies each $v \in V$ belongs to at most one $e \in M$.

<u>ALGORITHM</u>: Construct network $(V \cup \{s,t\}, E \cup (\{s\} \times X) \cup (\{t\} \times Y))$ with capacities $(\forall e \in E) c(e) = 1$ and $(\forall e \in \{s\} \times X \cup \{t\} \times Y) c(e) = 1$ Ford-Fulkerson returns max flow with all integral flows. $(\forall e \in E) e \in M \Leftrightarrow f(e) = 1$ **Ex**: Menger's Theorem – The maximum number of edge disjoint paths joining 2 vertices in a digraph = the minimaum number of edges whose removal separates the vertices. <u>PROOF</u>: Label the vertices *s* & *t*, and assign capacity 1 to every edge. $\exists k$ edge disjoint paths iff \exists flow *f* with |f| = k. MaxFlow-MinCut $\Rightarrow \exists$ cut of capacity *k* iff *k* max flow.

Ex: A network is: -a digraph (V,E), -capacity c:E \rightarrow **R**⁺, -demands d:V \rightarrow **R** A circulation, f:E \rightarrow **R**⁺ satisfies: **CAPACITY CONSTRAINT**- $(\forall e \in E) 0 \leq f(e) \leq c(e)$ **FLOW CONSERVATION**- $\forall v \in V \sum_{u} f(u,v) - \sum_{u} f(v,u) = d(v)$ QUESTION: Does there exist a circulation? Necessary Condition for existence: $\sum_{v} d(v) = \sum_{v} -d(v)$

Necessary Condition for existence: $\sum_{\substack{v \in V \\ d(v) > 0}} d(v) = \sum_{\substack{v \in V \\ d(v) < 0}} -d(v)$

Solution:

• Add to *V* two vertices $s, t \notin V$

- $\forall v \in V \ d(v) < 0$ add to *E* edge *sv* with capacity -d(v)
- $\forall v \in V \ d(v) > 0$ add to *E* edge *vt* with capacity d(v)

 $\exists \text{ circulation iff the extended network has max flow } |f| = \sum_{\substack{v \in V \\ d(v) > 0}} d(v)$

<u>Ex</u>: Circulation with demands and lower bounds. A *network* is:

-a digraph (V,E), -capacity c:E \rightarrow **R**⁺, -lower bounds λ :E \rightarrow **R**⁺, -demands d:E \rightarrow **R**

A *circulation*, $f:E \rightarrow \mathbf{R}^+$ satisfies:

CAPACITY CONSTRAINT-
$$(\forall e \in E)\lambda(e) \leq f(e) \leq c(e)$$

FLOW CONSERVATION- $\forall v \in V \sum_{u} f(u,v) - \sum_{u} f(v,u) = d(v)$

QUESTION: Does there exist a circulation satisfying lower bounds? (Idea: Model lower bound $\lambda(uv)$ as demand $-\lambda(uv)$ from v and $\lambda(uv)$ from u.)

Create network G' with capacities $c'(e) = c(e) - \lambda(e)$, $\forall e \in E$ and demands

$$d'(u) = d(u) + \sum_{uv \in E} \lambda(uv) - \sum_{vu \in E} \lambda(vu).$$

<u>THEOREM</u>: \exists circulation in $G \Leftrightarrow \exists$ circulation in G'. <u>"PROOF"</u>: *f* is circulation in $G \Leftrightarrow f - \lambda$ is circulation in *G*'.