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Analysis 
                Even if capacities are integral, may be real slow: initially, f(e)=0 for all eE 
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Augmenting paths: s-a-b-t, s-b-a-t, s-a-b-t,...  +1 every time 
need 2M augmentations before flow of M reached. 
     There is a case with irrational capacities for which the algorithm neither terminates 
nor converges. 
ANALYSIS: If :c E  , then FF halts in at most max-flow augmentations, or time 

 O E  , where  : max
e E

c e


 . 

Edmonds & Karp: Choose augmenting path with 
 • Max bottleneck capacity 
 • sufficiently large capacity (CAPACITY SCALING) 
 • SHORTEST # OF HOPS 
CAPACITY SCALING: 
  G   := G with all edges of residual capacity or flow    

 for each   0e E f e   

     max 2i

m
i m m       

 while 1   
   while   augmenting path P in  G   

   f AUGMENT(f,P) 
  / 2   
 return f 
ANALYSIS:  • returned f is maximum. 
  • Outer while repeats lg 1     times. 

  • With flow f after a  -phase,  max flow f E    

  • Each augmentation in  -phase increases flow by    
  • Each  -phase admits E  augmentations. 

  • Each augmentation takes time in  O E . 

Thus CAPACITY SCALING runs in time  2
lgO E  . 

SHORTEST # OF HOPS   
 The level graph of G, Gl, is breadth first search graph of G with sideways and 
back edges deleted. The level of vertex v is length of shortest path s v . 
 Any shortest path s v  in G is a path of Gl.  
CLAIM: • Let P be shortest augmenting path of G, G' the residual graph after augmenting  
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  along P, and Q be shortest augmenting path of G', then Q P . 

 • Augmenting along shortest paths, after E  augmentations the length of a 

  shortest path must increase strictly. 
PROOF (of CLAIM): Any path using back or side edge of Gl strictly longer than P. After any 
augmentation, 1  edge is saturated (or gets 0 flow on backedge) & moves deeper into Gl. 
This can occur E  times. 

ANALYSIS: *E V  augmentations, & using BFS each augmentation  O E ,  so  2
O E V . 

THEOREM: (Edmonds & Karp) If augmenting paths sought by breadth-first search 
(augmenting path with minimal number of arcs chosen), then Ford-Fulkerson halts after 

≤
*

2

V E
 augmentations. 

State of the Art: 

 Dantzig '51    Simplex LP    2
O E V   

 Ford Fulkerson '55  Augmenting Path  O E V   

 Edmonds Karp '70  Shortest Path   2
O E V  

 Dinitz '70   Shortest Path   2
O E V  

 Edmonds Karp Dinitiz '72 Capacity Scaling  2
lgO E   

 Dinitz Gabow '73  Capacity Scaling  lgO E V   

 Karzanov '74   Preflow Push   3
O V  

 Sleator Tarjan '83  Dynamic trees   lgO E V V  

 Goldberg Tarjan '86  FIFO Preflow Push 
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 Goldberg Rao '97  Length function 
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EX: Maximum Matching in Bipartite Graphs 
If (undirected) graph  ,G V E  satisfies , ,V X Y X Y E X Y      , a matching 

is M E  satisfies each v V  belongs to at most one e M . 

ALGORITHM: Construct network         , ,V s t E s X t Y      with capacities 

    1e E c e    and        1e s X t Y c e        

Ford-Fulkerson returns max flow with all integral flows.     1e E e M f e      
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EX: Menger's Theorem – The maximum number of edge disjoint paths joining 2 vertices 
in a digraph = the minimaum number of edges whose removal separates the vertices. 
PROOF: Label the vertices s & t, and assign capacity 1 to every edge. k  edge disjoint 
paths iff   flow f with f k . MaxFlow-MinCut   cut of capacity k iff k max flow. 

EX: A network is: 
 -a digraph (V,E),  
 -capacity c:ER+, 
 -demands d:VR  
A circulation, f:ER+ satisfies: 
 CAPACITY CONSTRAINT- e E 0  f e  c e  
 FLOW CONSERVATION-  v V       , ,

u u

f u v f v u d v     

QUESTION: Does there exist a circulation? 
Necessary Condition for existence:  

 

 
 0 0

v V v V
d v d v

d v d v
 

 

    

Solution:  • Add to V two vertices ,s t V  

  •   0v V d v    add to E edge sv with capacity –d(v) 

  •   0v V d v    add to E edge vt with capacity d(v) 

  circulation iff the extended network has max flow  
  0

v V
d v

f d v




   

EX: Circulation with demands and lower bounds. A network is: 
 -a digraph (V,E),  
 -capacity c:ER+, 
 -lower bounds  :ER+, 
 -demands d:ER  
A circulation, f:ER+ satisfies: 

 CAPACITY CONSTRAINT-        e E e f e c e     

 FLOW CONSERVATION-  v V       , ,
u u

f u v f v u d v     

QUESTION: Does there exist a circulation satisfying lower bounds? 
(Idea: Model lower bound  uv  as demand -  uv  from v and  uv  from u.) 

Create network G' with capacities      ' ,c e c e e e E     and demands 

       '
uv E vu E

d u d u uv vu 
 

    .  

THEOREM:   circulation in G    circulation in G'. 
"PROOF": f is circulation in G f    is circulation in G'. 


