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EX: Estimating the size & shape of a search tree. Consider sequence of r.v.s, X0,X1,..., where Xl 

estimates # nodes @ level l. We want  lE X  E[# nodes @ level l].  SIZE = Xi
0 i
 , so size is a r.v. 

Experiment:  X0:=1 

                     l  :=0 
                     current_node  root of tree 
                     neighbors  children (current_node ) 
                     while |neighbors | > 0 do 
                           l   l +1 
                           Xl  |neighbors |*Xl -1 
                           current_node  random_select(neighbors ) 
                            neighbors  children (current_node ) 
                     shape   (X0,X1,...)   SIZE 

0
l

l

X

  

CLAIM: lX  is an unbiased estimator. (Proof by induction on l). 

******************************************************************* 
EX: STABLE MARRIAGE n men, n women, preferences, marriage, unstable marriage, stable 
marriage 
THEOREM: There always exists a stable marriage. 
PROOF: Male Proposal Strategy (MPS), & no man runs off his list. 
Analysis:  worst-case     2n  proposals 
 average-case   Consider Amnesiac Proposal Strategy (APS) where, upon rejection, man 
proposes to a random woman. Let  rv Xm - # proposals of MPS 
                        rv Xa - # proposals of APS 
Clearly    Pr Prm aq X q X q     Trial k is success if kth coupon not previously drawn.  

X - # trials until nth success.  
rv Xk – # trials from kth success  (k+1)st success. 

1 0
a k

n k

X X
  

   ,    
1

1
a n

n k

E X n nH
k 

  .   

********************************************************************* 
DEF: A cut in graph is minimal set of edges whose removal increases # of components. min-cut 
is cut of minimum cardinality. 
Karger & Stein, http://www.acm.org/pubs/contents/journals/jacm/1996-43/#4 
FIND MIN-CUT: (Edge-)contraction from (multi)graph  multigraph identifies endpoints of an 
edge (keeping multiple edges, but removing loops). 
       Contract(G,2)        {Contract G down to output of two vertices) 

 while   2V G   edge-contract(random(  e E G ))    

 return {edges between two vertices of G} 
Analysis: There are n-2 edge-contractions.  

Every surviving cut of contracted graph corresponds to a cut of the original graph of same 
value. 

Let C be a min-cut. Every vertex has degree C . G has at least n|C|/2 edges.  
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Pr(C survives contraction)
2

1 1
C

E n

           
.  If i previous edge-contractions, 2 1n i   , 

avoided C, then C is still min-cut, G has n-i+1 vertices and  1 / 2C n i    edges, probability 

of edge-contraction i avoiding C is 
2

1
1n i

     
.  

Pr[C surviving]
 2 1

2 2
1

1 1n i n i n n  

        2

2

n
 . Can be executed in time  2O n . 

After m executions, Pr[error] 2

2
1

m

n
    

. After  2 ln / 2n n  executions, Pr[error] 1/ n . 

********************************************************************** 
Ex: 2-SAT 
SAT    A variable is 1 2, ,...x x  

A literal  is a variable or its negation - ix , ix  

A k-clause is a disjunction of k literals -  2 3 3x x x   is a 3-clause 

A k-CNF is a conjunction of k-clauses -      1 2 2 3 1 3x x x x x x      is a 2-CNF 

An interpretation is a function : {variables}{true, false}. A k-CNF F is satisfiable if there 
is an interpretation   which makes it true. 
THEOREM (Papadimitriou): If F is a satisfiable 2-CNF with n variables, then there is an 
algorithm to find a satisfying interpretation in at most 22n  steps with probability 1/ 2 . 
PROOF: Let 0  be a satisfying assignment of F, and for any interpretation  , mark its position 

by the number of variables for which it disagrees with 0 . 

 
ALGORITHM: while   doesn’t satisfy F  
   randomly select an unsatisfied clause c of F 
   randomly select a literal xi of c 
   flip the value of xi in   
ANALYSIS: If the position of  is i, then the position of the new interpretation is i-1 or i+1. 
Let  t i  be expected # steps for interpretation at i to reach 0.  

  0 0t   

    1 1t n t n    

Let ,i jp  - proability particle moves from position i to position  1, 1j i i    

        , 1 , 11 1 1 1i i i it i p t i p t i        

Because 1  literal in an unsatisfied clause disagrees with 0 , , 1 1/ 2i ip   . 

Thus      1 1
1

2

t i t i
t i

  
   which admits the solution   2t n n .  
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MARKOV’S INEQUALITY: For any rv X and   ,    
Pr

E X
X 


  . 

Letting  22 2n t n   ,  
2

2

2

1
Pr 2

2 2

n
X n

n
     

   EX: Polynomial = 0? 
> a := (sin(x)^2 - cos(x)*tan(x)) * (sin(x)^2 + 
cos(x)*tan(x))^2; 

 := a ( )( )sin x 2 ( )cos x ( )tan x ( )( )sin x 2 ( )cos x ( )tan x
2
 

b := 1/4*sin(2*x)^2 - 1/2*sin(2*x)*cos(x) - 2*cos(x)^2 
       + 1/2*sin(2*x)*cos(x)^3 + 3*cos(x)^4 - cos(x)^6; 

 := b     
1
4

( )sin 2 x 2 1
2

( )sin 2 x ( )cos x 2 ( )cos x 2 1
2

( )sin 2 x ( )cos x 3 3 ( )cos x 4 ( )cos x 6  

testeq( a = b ); 
true  

Maple: 

 The function testeq tests for equivalence probabilistically. It returns false if the 
expressions are not equal (or not equal to 0) and true otherwise for the class of expressions that 
testeq recognizes. The result false is always correct; the result true may be incorrect with very 
low probability.  

 This function will succeed over expressions formed with rational constants, 
independent variables, and I, combined by arithmetic operations, exponentials, trigonometrics 
and a few others. It may also succeed with some expressions involving algebraic constants and 
functions and involving Pi as an argument of trigonometrics. If the expressions do not fall in 
this class, testeq returns FAIL. testeq may also return FAIL if it cannot find an appropriate 
modulus that works after seven trials.  

THEOREM (Zippel, Schwartz): If  1,..., nP x x  is a nonzero polynomial of degree d over field F 

and S F  and  1,..., ns s  is a random element of nS  , then 

  1Pr ,..., 0n

d
P s s

S
  . 

ISOMORPHISM OF UNORDERED ROOTED TREES 
Associate a polynomial with an unordered rooted tree by  
 • If v is a leaf (has height 0), then 0vf x , 

 • If v has height k and children 1,..., mv v , then     
1 2

...
mv k v k v k vf x f x f x f    . 

If tree has root r, then its polynomial is fr. Trees with roots 1r  and 2r  are isomorphic iff  

1 2
0r rf f   

PERFECT MATCHINGS IN BIPARTITE GRAPH     1,..., , 1,..., ,G n n E  

Form array GX  with  ,i j  entry = ijx  if ij E  and 0 otherwise. 
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   
  

       12 23 31det 0GX x x x   

To test if det 0GX   we choose some prime p>2n and randomly set ijx  pU  . There are 

algorithms to test efficiently if detX=0 if entries of X are drawn form   

  1

2

1, if det 0
Pr det | 0

, if det 0
n

G

G

G

X
X

X


  
 


  . 

******************************************************************** 
Chapt. 26 Maximum (steady-state, single source, single sink) Flow in Networks 
A network is: 
 -a digraph (V,E),  
 -s,tV, called source and sink 
 -capacity c:ER+ 

A flow, f:ER+ satisfies: 
 CAPACITY CONSTRAINT- e E 0  f e  c e  
 FLOW CONSERVATION-  f u ,v 

u
  f v,u 

u
  for all vV-{s,t} 

The total flow of f is f  f s,v 
vV
  f v,t 

vV
 .    f : E 0 is a flow. 

  Given a network, find a maximum total flow.  
GENERALIZATION: Multiple sources/Multiple sinks Given sources {s1,…,sj} and sinks 
{t1,…,tk}, reduce to single source/single sink by adding a super source s* and a super sink t* 

and edges        * *

1 1,..., ,...,j ks s s t t t    with ∞ capacities. 

DEF: For S V  such that sS and t=V-S, the cut (S,T)     |uv E u S v T v S u T         . 

THEOREM: For every cut (S,T), the total flow is  
 

 
 , ,e S T e T S

f f e f e
 

   . 

PROOF: (by induction on S ). Basis: trivial. Assume for 1S  . Pick  v S s  . In moving v 

to S in cut     ,S v T v  , decrease flow across cut by  
 

 
u S v u T

f uv f uv
  

   and increase 

flow across cut by  
 

 
u S v u T

f vu f vu
  

  , and by flow conservation this change is 0. 
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DEF: For any S V  such that sS and t, the capacity of the cut determined by S is  

   
 ,e S T

c S c e


  . 

THEOREM: For every flow f and every S V , |f|≤c(S). 
PROOF:  

 
 

 
 

 
 

 
 

, , , ,e S T e T S e S T e S T

f f e f e f e c e c S
   

        . 

COROLLARY: If f and S  satisfy the previous equation with equality, then f is maximum (max-
flow) and the cut defined by S is minimum (min-cut). 
NOTE: Can't enumerate cuts to find max flow, because there are 22V   of them. 
DEF: An augmenting path relative to flow f is a sequence of edges from s to t such that for each 
edge e on the path: 
 -if e points from s to t, then f(e)<c(e), (forward edge) 
 -if e points from t to s, then f(e)>0.    (back edge) 
Greed fails –  

 
ALG: -Start with a legal flow f, such as f(e)=0 for all eE. 
 -while there exists an augmenting path relative to f 
  push as much extra flow as possible through the path 
How do we find an augmenting path? How much extra flow can be pushed through an 
augmenting path?  
LABELING ALGORITHM:  
 -label s    {every vV for which we can find augmenting path sv is 
    labeled; if t labeled, then done.} 

 -forward labeling of v by edge 
e

u v  applicable if 
  -u labeled, 
  -v not labeled, 
  -c(e)>f(e) 
   -v gets label e,      e c e f e    

 -backward labeling of v by edge 
e

u v  applicable if 
  -u labeled, 
  -v not labeled, 
  -f(e)>0 
   -v gets label e,    e f e    
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FORD & FULKERSON ALG:  
    -Start with a legal flow f, such as f(e)=0 for all eE. 
(**) -mark s labeled, all vV-{s} unlabeled. 
 -while an unlabeled vertex v can be labeled 
  -label v 
  -if v=t  

   let the augmenting path be 
31 2

0 1 2 1

le ee e

l ls v v v v v t       

   let  
1
min kk l

e
 

    

   if ek forward (i.e., 1

ke

k kv v  ) then f(ek)  f(ek)+  

   if ek backward (i.e.,  vk 1
ek

vk ) then f(ek)  f(ek)- 
    goto (**) 
 -quit {f is a maximum flow} 
THEOREM: Algorithm identifies a min-cut (hence a max flow). That is, the following are 
equivalent for flow f in G: 
 • f is a max flow, 
 • G admits cut  ,S T  with  ,c S T f , 

 • G does not admit an augmenting path relative to f. 
PROOF: Let S be set of labeled vertices when algorithm quits. sS and tV-S=T. Consider the 

cut defined by S.       ,e S T f e c e   .     , 0e T S f e   . 

 If initial flow integral & all capacities integral, algorithm never introduces fractions. 
 -Analysis 
                Even if capacities are integral, may be real slow: initially, f(e)=0 for all eE 

s

a

t

b

 M

M

M

M

1

 
Augmenting paths: s-a-b-t, s-b-a-t, s-a-b-t,...  +1 every time 
need 2M augmentations before flow of M reached. 
     There is a case with irrational capacities for which the algorithm neither terminates nor 
converges. 
 


