<u>Ex</u>: Estimating the size & shape of a search tree. Consider sequence of r.v.s, X_0, X_1, \dots , where X_l estimates # nodes @ level l. We want $E[X_i] = E[\# \text{ nodes } @ \text{ level } l]$. $SIZE = \sum_{i=1}^{n} X_i$, so *size* is a r.v.

Experiment: $X_0 := 1$

l := 0current_node \leftarrow root of tree neighbors \leftarrow children (current_node) while |neighbors | > 0 do $l \leftarrow l+1$ $X_l \leftarrow$ |neighbors |* X_{l-1} current_node \leftarrow random_select(neighbors) neighbors \leftarrow children (current_node) shape $\leftarrow (X_0, X_1, ...)$ SIZE $\leftarrow \sum_{0 \le l} X_l$

<u>CLAIM</u>: X_l is an unbiased estimator. (Proof by induction on l).

Ex: STABLE MARRIAGE *n* men, *n* women, *preferences*, *marriage*, *unstable marriage*, *stable marriage*

THEOREM: There always exists a stable marriage.

PROOF: Male Proposal Strategy (MPS), & no man runs off his list.

<u>Analysis</u>: worst-case n^2 proposals

average-case Consider Amnesiac Proposal Strategy (APS) where, upon rejection, man proposes to a random woman. Let $rv X_m - \#$ proposals of MPS

rv X_a - # proposals of *APS*

Clearly $\forall q \Pr[X_m > q] \leq \Pr[X_a > q]$ Trial k is success if k^{th} coupon not previously drawn.

X - # trials until $n^{\underline{th}}$ success.

rv $X_k - \#$ trials from $k^{\underline{th}}$ success $\rightarrow (k+1)^{\underline{st}}$ success.

$$X_a = \sum_{n-1 \ge k \ge 0} X_k$$
, $E[X_a] = n \sum_{n \ge k \ge 1} \frac{1}{k} = nH_n$.

DEF: A *cut* in graph is minimal set of edges whose removal increases # of components. *min-cut* is cut of minimum cardinality.

Karger & Stein, http://www.acm.org/pubs/contents/journals/jacm/1996-43/#4

<u>FIND MIN-CUT</u>: (Edge-)*contraction* from (multi)graph \Rightarrow multigraph identifies endpoints of an edge (keeping multiple edges, but removing loops).

Contract(G,2) {Contract *G* down to **output** of two vertices)

while |V(G)| > 2 edge-contract(random($e \in E(G)$))

return {edges between two vertices of G}

<u>Analysis</u>: There are *n*-2 edge-contractions.

Every surviving cut of contracted graph corresponds to a cut of the original graph of same value.

Let C be a min-cut. Every vertex has degree $\geq |C|$. G has at least n|C|/2 edges.

 $\begin{aligned} &\Pr(C \text{ survives contraction}) = \left(1 - \frac{|C|}{|E|}\right) \ge \left(1 - \frac{2}{n}\right). \text{ If } i \text{ previous edge-contractions, } n-2 \ge i \ge 1, \\ &\text{avoided } C, \text{ then } C \text{ is still min-cut, } G \text{ has } n-i+1 \text{ vertices and } \ge |C|(n-i+1)/2 \text{ edges, probability} \\ &\text{of edge-contraction } i \text{ avoiding } C \text{ is } \ge \left(1 - \frac{2}{n-i+1}\right). \\ &\Pr[C \text{ surviving}] \ge \prod_{n-2 \ge i \ge 1} \left(1 - \frac{2}{n-i+1}\right) = \frac{2}{n(n-1)} \ge \frac{2}{n^2}. \text{ Can be executed in time } O(n^2). \\ &\text{After } m \text{ executions, } \Pr[\text{error}] \le \left(1 - \frac{2}{n^2}\right)^m. \text{ After } (n^2 \ln n)/2 \text{ executions, } \Pr[\text{error}] \le 1/n. \end{aligned}$

A *k*-clause is a disjunction of *k* literals - $(x_2 \vee \overline{x_3} \vee x_3)$ is a 3-clause

A *k*-CNF is a conjunction of *k*-clauses - $(x_1 \lor \overline{x_2}) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_3})$ is a 2-CNF

An *interpretation* is a function ι : {variables} \rightarrow {true, false}. A *k*-*CNF F* is *satisfiable* if there is an interpretation ι which makes it true.

<u>THEOREM</u> (Papadimitriou): If *F* is a satisfiable 2-CNF with *n* variables, then there is an algorithm to find a satisfying interpretation in at most $2n^2$ steps with probability $\ge 1/2$. **<u>PROOF</u>**: Let t_0 be a satisfying assignment of *F*, and for any interpretation *t*, mark its position by the number of variables for which it disagrees with t_0 .

ALGORITHM: while ι doesn't satisfy F

randomly select an unsatisfied clause c of Frandomly select a literal x_i of c

flip the value of x_i in ι

<u>ANALYSIS</u>: If the position of i is i, then the position of the new interpretation is i-1 or i+1. Let t(i) be expected # steps for interpretation at i to reach 0.

$$t(0) = 0$$
$$t(n) = 1 + t(n-1)$$

Let $p_{i,j}$ - proability particle moves from position *i* to position $j \in \{i-1, i+1\}$

$$t(i) = p_{i,i-1}(1+t(i-1)) + p_{i,i+1}(1+t(i+1))$$

Because ≥ 1 literal in an unsatisfied clause disagrees with l_0 , $p_{i,i-1} \geq 1/2$.

Thus $t(i) \leq \frac{t(i-1)+t(i+1)}{2} + 1$ which admits the solution $t(n) \leq n^2$.

MARKOV'S INEQUALITY: For any rv X and $\lambda \in \Re$, $\Pr(X \ge \lambda) \le \frac{E[X]}{\lambda}$.

Letting $\lambda = 2n^2 \le 2t(n)$, $\Pr(X \ge 2n^2) \le \frac{n^2}{2n^2} = \frac{1}{2}$

true

Maple:

- The function **testeq** tests for equivalence probabilistically. It returns **false** if the expressions are not equal (or not equal to 0) and **true** otherwise for the class of expressions that **testeq** recognizes. The result **false** is always correct; the result **true** may be incorrect with very low probability.
- This function will succeed over expressions formed with rational constants, independent variables, and I, combined by arithmetic operations, exponentials, trigonometrics and a few others. It may also succeed with some expressions involving algebraic constants and functions and involving **Pi** as an argument of trigonometrics. If the expressions do not fall in this class, **testeq** returns **FAIL**. **testeq** may also return **FAIL** if it cannot find an appropriate modulus that works after seven trials.

<u>THEOREM</u> (Zippel, Schwartz): If $P(x_1, ..., x_n)$ is a nonzero polynomial of degree *d* over field *F* and $S \subseteq F$ and $(s_1, ..., s_n)$ is a random element of S^n , then

$$\Pr\left\{P\left(s_1,\ldots,s_n\right)=0\right\} \leq \frac{d}{|S|}.$$

ISOMORPHISM OF UNORDERED ROOTED TREES

Associate a polynomial with an unordered rooted tree by

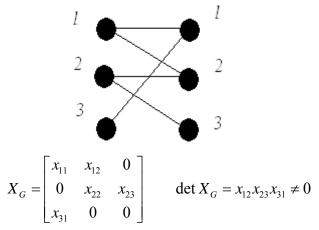
- If v is a leaf (has height 0), then $f_v = x_0$,
- If *v* has height *k* and children $v_1, ..., v_m$, then $f_v = (x_k f_{v_1})(x_k f_{v_2})...(x_k f_{v_m})$.

If tree has root r, then its polynomial is f_r . Trees with roots r_1 and r_2 are isomorphic iff

$$f_{r_1} - f_{r_2} = 0$$

PERFECT MATCHINGS IN BIPARTITE GRAPH $G = (\{1, ..., n\}, \{1, ..., n\}, E)$

Form array X_G with (i, j) entry = x_{ij} if $ij \in E$ and 0 otherwise.



To test if det $X_G = 0$ we choose some prime $p \ge 2n$ and randomly set $x_{ij} \leftarrow U(\mathbb{Z}_p)$. There are algorithms to test efficiently if det*X*=0 if entries of *X* are drawn form \mathbb{Z}

$$\Pr\left\{\det X_G \mid_{\mathbb{Z}^n} = 0\right\} = \begin{cases} 1, \text{ if } \det X_G = 0\\ <\frac{1}{2}, \text{ if } \det X_G \neq 0 \end{cases}$$

Chapt. 26 <u>Maximum (steady-state, single source, single sink)</u> Flow in Networks

A network is:

-a digraph (*V*,*E*), -*s*,*t* \in *V*, called *source* and *sink* -*capacity c*: $E \rightarrow \mathbf{R}^+$

A *flow*, $f: E \rightarrow \mathbf{R}^+$ satisfies:

CAPACITY CONSTRAINT- $(\forall e \in E) 0 \le f(e) \le c(e)$ **FLOW CONSERVATION**- $\sum_{v \in V} f(u,v) = \sum_{v \in V} f(v,u)$ for all $v \in V$ - $\{s,t\}$ The total flow of f is $|f| = \sum_{v \in V} f(s,v) = \sum_{v \in V} f(v,t)$. $f: E \to 0$ is a flow.

Given a network, find a maximum total flow.

<u>**GENERALIZATION</u>**: *Multiple sources/Multiple sinks* Given sources $\{s_1, ..., s_j\}$ and sinks $\{t_1, ..., t_k\}$, reduce to single source/single sink by adding a super source s^* and a super sink t^* and edges $\{s^*\} \times \{s_1, ..., s_j\} \cup \{t_1, ..., t_k\} \times \{t^*\}$ with ∞ capacities.</u>

<u>DEF</u>: For $S \subset V$ such that $s \in S$ and $t \in T = V - S$, the *cut* $(S,T) = \{uv \in E \mid (u \in S \land v \in T) \lor (v \in S \land u \in T)\}$. **<u>THEOREM</u>**: For every cut (S,T), the total flow is $|f| = \sum_{e \in (S,T)} f(e) - \sum_{e \in (T,S)} f(e)$.

<u>PROOF</u>: (by induction on |S|). Basis: trivial. Assume for |S|-1. Pick $v \in S - \{s\}$. In moving v to S in cut $(S - \{v\}, T \cup \{v\})$, decrease flow across cut by $\sum_{u \in S - \{v\}} f(uv) + \sum_{u \in T} f(uv)$ and increase

flow across cut by $\sum_{u \in S - \{v\}} f(vu) + \sum_{u \in T} f(vu)$, and by flow conservation this change is 0.

<u>DEF</u>: For any $S \subset V$ such that $s \in S$ and $t \in T$, the *capacity of the cut* determined by *S* is $c(S) = \sum_{e \in S, T} c(e)$.

<u>THEOREM</u>: For every flow *f* and every $S \subset V$, $|f| \leq c(S)$.

PROOF:
$$|f| = \sum_{e \in (S,T)} f(e) - \sum_{e \in (T,S)} f(e) \le \sum_{e \in (S,T)} f(e) \le \sum_{e \in (S,T)} c(e) = c(S).$$

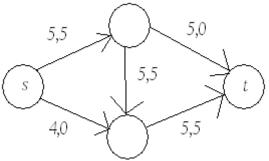
COROLLARY: If f and S satisfy the previous equation with equality, then f is maximum (*max*-*flow*) and the cut defined by S is minimum (*min-cut*).

<u>NOTE</u>: Can't enumerate cuts to find max flow, because there are $2^{|V|-2}$ of them.

DEF: An *augmenting path* relative to flow f is a sequence of edges from s to t such that for each edge e on the path:

-if *e* points from *s* to *t*, then $f(e) \le c(e)$, (forward edge)

-if *e* points from *t* to *s*, then f(e) > 0. (*back edge*) Greed fails –



<u>ALG</u>: -Start with a legal flow *f*, such as f(e)=0 for all $e \in E$.

-while there exists an augmenting path relative to f

push as much extra flow as possible through the path

How do we find an augmenting path? How much extra flow can be pushed through an augmenting path?

LABELING ALGORITHM:

-label s {every $v \in V$ for which we can find augmenting path $s \rightarrow v$ is labeled; if t labeled, then done.} -forward labeling of v by edge $u \xrightarrow{e} v$ applicable if -u labeled, -v not labeled, -c(e)>f(e) -v gets label e, $\Delta(e) \leftarrow c(e) - f(e)$ -backward labeling of v by edge $u \xleftarrow{e} v$ applicable if -u labeled, -v not labeled, -v not labeled, -f(e)>0

-*v* gets label *e*, $\Delta(e) \leftarrow f(e)$

FORD & FULKERSON ALG:

-Start with a legal flow *f*, such as f(e)=0 for all $e \in E$.

- (**) -mark *s* labeled, all $v \in V$ -{*s*} unlabeled.
 - -while an unlabeled vertex v can be labeled
 - -label v
 - **-if** *v*=*t*

let the augmenting path be $s = v_0 \stackrel{e_1}{-} v_1 \stackrel{e_2}{-} v_2 \stackrel{e_3}{-} \dots - v_{l-1} \stackrel{e_l}{-} v_l = t$ let $\Delta = \min_{1 \le k \le l} \Delta(e_k)$ **if** e_k forward (i.e., $v_{k-1} \stackrel{e_k}{\rightarrow} v_k$) **then** $f(e_k) \leftarrow f(e_k) + \Delta$ e_k **if** e_k backward (i.e., $v_{k-1} \leftarrow v_k$) **then** $f(e_k) \leftarrow f(e_k) - \Delta$ **goto** (**)

-quit {*f* is a maximum flow}

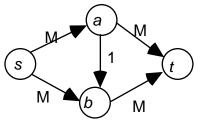
THEOREM: Algorithm identifies a min-cut (hence a max flow). That is, the following are equivalent for flow f in G:

- f is a max flow,
- G admits cut (S,T) with c(S,T) = |f|,
- G does not admit an augmenting path relative to f.

<u>PROOF</u>: Let *S* be set of labeled vertices when algorithm quits. $s \in S$ and $t \in V-S=T$. Consider the cut defined by *S*. $(\forall e \in (S,T)) f(e) = c(e)$. $(\forall e \in (T,S)) f(e) = 0$.

• If initial flow integral & all capacities integral, algorithm never introduces fractions. -Analysis

Even if capacities are integral, may be real slow: initially, f(e)=0 for all $e \in E$



Augmenting paths: *s-a-b-t*, *s-b-a-t*, *s-a-b-t*,... +1 every time need 2*M* augmentations before flow of *M* reached.

There is a case with irrational capacities for which the algorithm neither terminates nor converges.