EX: To estimate the size of set S of labeled elements, sample with replacement from S from a uniform distribution until the first duplicate. If k elements have been drawn, then an unbiased estimator is $|S| = 2k^2 / \pi$.

Ex: Counting distinct words Flajolet & Martin, "Probabilistic Counting Algorithms for Database Applications", J. Comp. Syst. Sciences, 1985 Assume there are n (not necessarily distinct) words in a text, and you want to estimate the # of distinct words. Let there be a hashing function $h: \{words\} \rightarrow \{0,1\}^{5+\lg n}$. If s is a string of bits, let $\pi(x,b)$, $b \in \{0,1\}$, denote the index of the leftmost bit of x equal to b

signature $=s_1s_2...s_{5+lgn} = 00...0$

for each word x do $signature_{\pi(h(x),1)} \leftarrow 1$

$$\mathbf{return}\left(\frac{2^{\pi(signature,0)}}{1.574}\right)$$

If $\pi(signature, 0)=4$, then leftmost bits of signature =1110. If there are 16 distinct words on the tape, Pr{none of hash codings begins 0001}= $\left(\frac{15}{16}\right)^{16}$ =.356 ***** ******

Hash Coding - Chapter II Assume n balls uniformly independently distributed among $m \ge n$ bins. What is probability of no collisions?

$$\prod_{1 \le j \le n-1} \left(1 - \frac{j}{m} \right) \approx \prod_{1 \le j \le n-1} e^{-\frac{j}{m}} = e^{-\sum_{1 \le j \le n-1} \frac{j}{m}} = e^{-\frac{n(n-1)}{2m}} \approx e^{-\frac{n^2}{2m}}$$

where first approximation justified by $e^{-j/m} = \left(-\frac{j}{m}\right)^0 + \frac{\left(-j/m\right)^1}{1!} + \frac{\left(-j/m\right)^2}{2!} + \dots \approx 1 - \frac{j}{m}$ for $j \ll m$. For Birthday Paradox, $e^{-\frac{n^2}{2m}} \approx \frac{1}{2}$ implies $\frac{n^2}{2m} \approx \ln 2 \Rightarrow n = \sqrt{2m \ln 2}$ and

$$m=365 \Rightarrow n=22.49$$

A hash function $h: U \to [0...m-1]$ where $|U| \gg m$. A good h distributes sampled subset $S = \{a_1, ..., a_n\}$ of U uniformly among m buckets (bins).

<u>Ex</u>: (Probabilistic set membership) Want to test if $p \in S = \{a_1, ..., a_n\}$ $h: U \to \lceil 2^b \rceil$ Need $Pr{false negative}=0$ and low $Pr{false positive}$.

Preprocess $\{h(a_1),...,h(a_n)\}$.

for
$$i \leftarrow 1$$
 to 2^{b} do $A[i] \leftarrow 0$
for $i \leftarrow 1$ to n do $A[h(a_{i})] \leftarrow$

Given p, test if $\exists x \in S h(x) = h(p)$.

return A[h(x)]

ANALYSIS: Fix $x \in S$ $\Pr\{h(x) = h(p)\} = 2^{-b}$. $\Pr\{h(x) \neq h(p)\} = 1 - 2^{-b}$.

 $\Pr\{\text{false positive}\} \ge 1 - \left(1 - 2^{-b}\right)^n \ge 1 - e^{-n/2^b} \text{ If we want } \Pr\{\text{false positive}\} \le c \implies 1 - e^{-n/2^b} \ge 1 - c \implies b \ge \lg \frac{n}{\ln\left(1/(1-c)\right)} \text{ We need } \Omega(\lg n) \text{ bits.}$

<u>Ex</u>: Bloom Filters Boolean A[0..m-1] boolean, initialized to 0 *k* independent hash functions $h_1, ..., h_k : U \rightarrow [0, ..., m-1]$

for
$$i \leftarrow 1$$
 to n do
for $j \leftarrow 1$ to k do
 $A[h_j(a_i)] \leftarrow 1$
MEMBER? (p, A)
for $j \leftarrow 1$ to k do
if $A[h_j(a_i)] = 0$ then return $p \notin S$
return $p \in S$

Pr{false negative}=0. Pr{false positive} - $\forall j \; \Pr\{A[j]=0\} = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-kn/m}$

So Pr{false positive} =
$$\left(1 - \left(1 - \frac{1}{m}\right)^{k_n}\right)^k \approx \left(1 - e^{-kn/m}\right)^k$$
.

Choose larger or smaller k?

- · Larger $k \Rightarrow$ For $p \notin S$ more chances to find a 0 in A
- · Larger $k \Rightarrow$ more 0's in A

Want to choose k to minimize $(1-e^{-kn/m})^k$? Taking derivative, global minimum is

 $k = (\ln 2)(m/n) \implies$ So Pr{false positive}= $2^{-k} \approx 0.6185^{m/n}$, which falls exponentially with m/n.

FINDING AVERAGE GRADE n>2 friends want to compute average grade while conveying no knowledge about their grades, $s_1,...,s_n$. No player cheats; no trusted $(n+1)^{\underline{st}}$ party.

Choose
$$m > \text{largest possible } \sum_{n \ge i \ge 1} s_i$$

Each player *i* chooses $x_{i,1}, ..., x_{i,n-1} \sim U[0, m-1]$
Each player *i* chooses $x_{i,n}$ to satisfy $\sum_{n \ge k \ge 1} x_{i,k} = s_i \mod m$
Each player *i* distributes one of $\{x_{i,1}, ..., x_{i,n}\}$ (without replacement) to every
Each player *i* computes and announces sum of numbers held (mod *m*) (say *S*)

player

Each player *i* computes and announces sum of numbers held (mod *m*) (say *S_i*) Average grade = $\sum_{n \ge i \ge 1} s_i / n = \sum_{n \ge i \ge 1} S_i \pmod{m} / n$ <u>Claim</u>: For any set *T* of friends, |Y| < n-1, the only information they can infer about other grades is $\sum_{i \notin T} S_i$

<u>DEF</u>: Events *A*, *B* independent if $\Pr[A] = \Pr[A|B]$. *k*-wise independent. (Return to) <u>Claim</u>: $(\forall i)(\{x_{i1},...,x_{in}\} \text{ is } (n-1) - \text{wise independent})$