1. (25 points) Using Θ-notation, find a simplest solution to the recurrences

a) $T(n) = 9T(n/3) + n^2$

b) $T(n) = 9T(n/3) + n^2 \sqrt{n}$
2. (20 points) The efficiency of QUICKSORT depends upon the distance between \(n/2 \) and a random number, \(pivot, \ pivot \in \{1, 2, \ldots, n\} \), where we assume that \(n \) is evenly divisible by 4. Define \(pivot \) to be \(good \) if \(.25 \leq pivot < .75n\), and suppose that \(pivot \) will be randomly chosen (from a uniform distribution) over \([1, n]\). Assuming that the successive values of \(pivot \) are independent, what is the expected number of values which must be sampled until a \(good \) value is drawn?
3. (30 points) Consider the problem of testing for MEMBERSHIP of an element x in an array $A[1..n]$, where the benchmark operation is testing for equality, $x = A[i]$, where $1 \leq i \leq n$. For example, when $n=5$ and $A = (22, -3, 15, 22, 85)$, then the algorithm should return false when $x=6$ and true when $x=15$.

a) Prove that an upper bound on the worst-case complexity of testing for MEMBERSHIP is $O(n)$.

b) Prove that a lower bound on the worst-case complexity of testing for MEMBERSHIP is $\Omega(n)$.
4. (25 points) An algorithm for HASH CODING samples bins until an empty bin is found. In order to analyze the algorithm, assume that there are \(m \geq 1 \) bins, and \(n \) of the bins are OCCUPIED, where \(m > n \geq 0 \). Assume that

- the algorithm probes bins from a uniform distribution over \(\{1, \ldots, m\} \),
- the probes are determined independently,
- the algorithm can detect if a bin is OCCUPIED,
- the algorithm never probes a bin that a previous probe determined was OCCUPIED,
- the algorithm continues probing until it finds a bin which is not OCCUPIED.

For example, if \(m = 10 \), and bins 2, 3, 4, 8 and 9 are OCCUPIED, then probe sequence 2, 9, 3, 1 is a sequence of length 4 until it finds an empty bin. Find an expression (it need not be closed form), as a function of \(m \) and \(n \), of the expected length of a probe sequence until an empty bin is found.
1. \(a \) Using the Master Theorem, \(a = 9, b = 3 \) and \(f(n) = n^2 \). So \(\log_b a = \log_3 9 = 2 \), and \(f(n) = n^2 = \Theta(n^2) \), yielding (by the second case, with \(k = 0 \)) that \(T(n) = \Theta(n^2 \log n) \).

\(b \) Using the Master Theorem, \(a = 9, b = 3 \) and \(f(n) = n^2 \sqrt{n} = n^{2.5} \). So \(\log_b a = \log_3 9 = 2 \), and \(f(n) = n^{2.5} = \Omega(n^{2.5 + \epsilon}) \) for any \(\epsilon < 0.5 \), yielding (by the third case) that \(T(n) = \Theta(n^{2.5}) \).

2. The probability that \(\text{pivot} \) satisfies \(.25 \leq \text{pivot} < .75n \) is \(\frac{1}{2} \). Defining this event to be \textbf{success}, we sample values of \(\text{pivot} \) independently until \textbf{success}. The number of trials until \textbf{success} is geometrically distributed, and the expected value of this random variable is

\[
\sum_{k \geq 1} k \cdot \Pr\{\text{failure}\}^{k-1}\Pr\{\text{success}\} = \sum_{k \geq 1} k \cdot \left(\frac{1}{2}\right)^k = 2.
\]

3. \(a \) To get the \(O(n) \) upper bound, we demonstrate a linear time algorithm to solve the problem.

\begin{verbatim}
MEMBERSHIP(x,A)
 for i ← 1 to n do
 if x = A[i] then return true
 return false
\end{verbatim}

\(b \) To get the \(\Omega(n) \) lower bound, we assume that there is an algorithm to solve the problem using fewer than a linear number of tests for equality. For some element \(x \) and list \(A \) which doesn’t include \(x \), the purported algorithm uses fewer than \(n \) tests for equality in returning \textbf{false}. During this execution, the algorithm did not examine at least one element of \(A \), say \(A[i'] \). We now construct a new instance of the problem, with input \(x \) and \(B[1..n] \) where

\[
B[i] = \begin{cases}
A[i], & \text{if } i \neq i' \\
x, & \text{if } i = i'
\end{cases}
\]

We note that the algorithm must return \textbf{false} on input \(x \) and \(B \) since it receives the same answers to its queries, though \(x \) is a member of \(B \). By this contradiction, the assumption of the existence of a sublinear algorithm to test for \text{MEMBERSHIP} must be wrong.

4. If \(k-1 \geq 0 \) probes have been made, \(k \geq 1 \), then we note that for probe \(k \), all previous \(k-1 \) probes were of \text{OCCUPIED} bins. So the probability that the \(k^{\text{th}} \) bin probed will be \text{OCCUPIED} is \(\frac{n-k+1}{m-k+1} \). The probability that the algorithm will quit on probe \(k \) is the probability that the first \(k-1 \) probes all hit \text{OCCUPIED} bins times the probability that the \(k^{\text{th}} \) bin probed is
not OCCUPIED, or \(\frac{n}{m} \frac{n-1}{m-1} \ldots \frac{n-k+2}{m-k+2} \left(1 - \frac{n-k+1}{m-k+1} \right) \). So the expected number of probes is
\[
\sum_{k \geq 1} \frac{n}{m} \frac{n-1}{m-1} \ldots \frac{n-k+2}{m-k+2} \left(1 - \frac{n-k+1}{m-k+1} \right)^k.
\]