1. (20 points) Describe an algorithm to test if graph $G = (V, E)$ is a forest. Your algorithm should have time complexity in $O(|V|)$. Beware: $O(|V|) \neq O(|V| + |E|)$.
2. (25 points) Suppose you are given a graph $G = (V, E)$, $\sigma, \tau \in V$, and a weight function $w : V \cup E \to \mathbb{R}^+$. That is, there is a positive weight associated with each edge and each vertex of G. The length of a path is the sum of the weights of the vertices plus the sum of the weights of the edges of the path. Describe an algorithm with execution time in $O(|V|^2)$ to find a shortest path from σ to τ.

For graph

the shortest path from σ to τ is the path (σ,a,b,τ) of length

$$58 = w(\sigma) + w(\sigma a) + w(a) + w(ab) + w(b) + w(b \tau) + w(\tau).$$
3. (25 points) Suppose you want to compute the distances between all pairs of vertices in a sparse graph $G = (V, E)$, where sparse means that $|E| = O(|V|)$. That is, if $V = \{1, ..., n\}$, you want to compute the values of $n \times n$ array D, where $D[i, j]$ is the distance between vertex i and vertex j. You want to do this as efficiently as possibly. That is, you want to minimize the asymptotic time complexity. Would you use the FLOYD-WARSHALL ALGORITHM? Justify your response.
4. (30 points) An independent set of vertices in graph $G = (V, E)$ is a set $S \subseteq V$ such that there does not exist an edge $e \in E$ with both endpoints in S.

INDEPENDENT SET PROBLEM:
- Instance: Graph $G = (V, E)$, $k \in \mathbb{N}$
- Question: Does G admit an independent set of size k?

a Prove that the **INDEPENDENT SET PROBLEM** \in NP.

b **INDEPENDENT SET CONSTRUCTION PROBLEM:**
- Input: Graph $G = (V, E)$
- Output: A maximum independent set of G.
Prove that

INDEPENDENT SET CONSTRUCTION PROBLEM \leq_p INDEPENDENT SET PROBLEM
CS524
Solutions to Final Exam

1. Do a depth first search and quit, returning false as soon as a backedge is encountered (indicating the existence of a cycle). If no backedge is ever encountered, then return true. No more than $|V| - 1$ edges can ever be examined before a cycle must be encountered.

2. Replace each vertex $v \in V$ with a pair of vertices, v_{in} and v_{out}, and an edge between v_{in} and v_{out} of weight $w(v)$. There are no costs associated with vertices in the new graph. Edges incident to v are now incident to v_{in} and v_{out}. The shortest path from σ to τ in the original graph corresponds to the shortest path from σ_{in} to τ_{out} in the new graph, and it has the same cost. We find this path using Dijkstra's Algorithm, which has a complexity in $O\left(|V|^2\right)$.

3. No, you should not use the FLOYD-WARSHALL ALGORITHM. It uses time in $\Theta\left(|V|^3\right)$. Using breadth first search to find the shortest path from any fixed vertex to all other vertices uses time in $O\left(|V| + |E|\right) = O\left(|V|^2\right)$, because G is sparse. Repeating this process $|V|$ times (once for each row of the distance matrix) requires time in $O\left(|V|^3\right)$.

4. a A certificate for G admitting an independent set of size k is an independent set S, $|S| = k$.

 The fact that no $e \in E$ has both endpoints in S can be verified in time in $O\left(|V| + |E|\right)$.

 b Assume we have a program f to test if G admits an independent set of size k. We first determine K, the size of a largest independent set.

 for $k \leftarrow 1$ to $|V|$ do if $f(G, k)$ then $K \leftarrow k$

 We then remove vertices from G, without decreasing the size of a maximum independent set, until only a maximal independent set remains. Let $G - v$ denote the graph obtained by removing v, along with all incident edges, from V.

 for each $v \in V$ do if $f(G - v, K) = f(G, K)$ then $G \leftarrow G - v$

 return $V(G)$ (return the vertices of G)