CS524 HW#4

DUE: Monday, November 14

1. (4 points) Suppose you want to satisfy many clauses of an instance of 3-SAT. Show that for any instance of 3-SAT there is an interpretation that satisfies at least 7/8 of the clauses. That is, if the instance has *m* 3-clauses, then there is an interpretation that satisfies $\lceil 7m/8 \rceil$ of them.

2. (20 points) Assume that *n* people want to schedule intervals of time to use a computer, where the computer can not be shared at any time among two or more people. Thus, the people's requests are $\rho = \{(s_1, f_1), ..., (s_n, f_n)\}$, $s_i < f_i$, $1 \le i \le n$. Intuitively, if $(s_i, f_i) = (10, 22)$, this means that person *i* wants to use the computer for the time interval running from time $s_i=10$ to time $f_i=22$. As in life, we assume that people's wants/needs are inflexible; they are not willing to negotiate. Requests (s_i, f_i) and (s_j, f_j) are *compatible* if $f_i \le s_j$ or $f_j \le s_i$, and a set of requests is *feasible* if they are pairwise compatible. An *optimal schedule* is a maximum feasible subset of ρ .

a Consider the following algorithm:

Greedy1

 $\Gamma \leftarrow \emptyset$

while there are requests in ρ which are compatible with each request in Γ do

Select (s_i, f_i) which is compatible with each request in Γ and minimizes $f_i - s_i$ $\Gamma \leftarrow \Gamma \cup \{(s_i, f_i)\}$

 $\rho \leftarrow \rho - \{(s_i, f_i)\}$

Clearly this algorithm computes a feasible set of requests Γ . Either prove that GREEDY1 always produces an optimal schedule, or show that it can fail.

b Consider the following algorithm:

Greedy2

 $\Gamma \! \leftarrow \! \varnothing$

while there are requests in ρ which are compatible with each request in Γ do

Select (s_i, f_i) which is compatible with each request in Γ and minimizes s_i

 $\Gamma \leftarrow \Gamma \cup \{(s_i, f_i)\}$ $\rho \leftarrow \rho - \{(s_i, f_i)\}$

Clearly this algorithm computes a feasible set of requests Γ . Either prove that GREEDY2 always produces an optimal schedule, or show that it can fail.

c Consider the following algorithm:

Greedy3 $\Gamma \leftarrow \emptyset$

while there are requests in ρ which are compatible with each request in Γ do

Select (s_i, f_i) which is compatible with each request in Γ and minimizes f_i

$$\Gamma \leftarrow \Gamma \cup \{(s_i, f_i)\}$$
$$\rho \leftarrow \rho - \{(s_i, f_i)\}$$

Clearly this algorithm computes a feasible set of requests Γ . Either prove that GREEDY3 always produces an optimal schedule, or show that it can fail.

In real life scheduling problems, some jobs are more important than others. In the *optimal* weighted scheduling problem, the input is $\rho_w = \{(w_1, s_1, f_1), ..., (w_n, s_n, f_n)\}, w_i \ge 0$ for all $1 \le i \le n$, and an optimal schedule is a feasible schedule

 $\Gamma_{w} = \left\{ \left(w_{i_{1}}, s_{i_{1}}, f_{i_{1}} \right), \dots, \left(w_{i_{j}}, s_{i_{j}}, f_{i_{j}} \right) \right\} \text{ which maximizes } \sum_{1 \le k \le j} w_{i_{k}} \text{ over all feasible schedules.}$

That is, it is a feasible schedule which maximizes the sum of the weights of the scheduled requests. You may assume that $f_1 \le f_2 \le ... \le f_n$.

d Describe a linear (in *n*) time algorithm to compute a solution to the *optimal weighted* scheduling problem.

C.S.524 Solution for H.W. #4

1. With each of the *m* 3-clauses we associate a random variable X_i , $1 \le i \le m$ which is 1 if an interpretation satisfies the *i*th clause and 0 otherwise. For a random interpretation (which chooses values 0 or 1 with equal probability for each variable), the expected value of X_i is 7/8. We note that $\operatorname{rv} X = \sum_{1 \le i \le m} X_i$ is the number of 3-clauses which are satisfied by

an interpretation. By Linearity of Expectation,

$$E[X] = E\left[\sum_{1 \le i \le m} X_i\right] = \sum_{1 \le i \le m} E[X_i] = \sum_{1 \le i \le m} 7/8 = 7m/8$$
, and there must be some

interpretation which satisfies at least this many clauses. Because a clause is either satisfied or not satisfied, there must be an interpretation which satisfies at least $\lceil 7m/8 \rceil$ 3-clauses.

2. *a* GREEDY1 fails on $\rho = \{(0,5), (4,6), (5,10)\}$. It produces the schedule $\{(4, 6)\}$, but the optimal schedule is $\{(0, 5), (5, 10)\}$.

b GREEDY2 fails on $\rho = \{(0,10), (1,2), (3,4)\}$. It produces the schedule $\{(0, 10)\}$, but the optimal schedule is $\{(1, 2), (3, 4)\}$.

c GREEDY3 always succeeds. To see this, let $\Gamma = \{(s_{i_1}, f_{i_1}), ..., (s_{i_i}, f_{i_i})\}\)$ be the schedule constructed by GREEDY3, and assume that it's ordered by the finish times, that is, $f_{i_k} \leq f_{i_{k+1}}\)$ for $1 \leq k < l$. Let $\Pi = \{(s_{j_1}, f_{j_1}), ..., (s_{j_m}, f_{j_m})\}\)$ be any other set of intervals ordered by the finish times. We prove two claims.

CLAIM 1: $f_{i_r} \leq f_{i_r}$ for $1 \leq r \leq l$.

PROOF OF CLAIM1: The CLAIM is clearly true for r=1. Assume that $f_{i_{r-1}} \leq f_{j_{r-1}}$. When $(s_{i_{r-1}}, f_{i_{r-1}})$ is added to Γ , both (s_{i_r}, f_{i_r}) and (s_{j_r}, f_{j_r}) are still in Γ . Since GREEDY3 chooses (s_{i_r}, f_{i_r}) to add to Γ , it follows that $f_{i_r} \leq f_{j_r}$, establishing the CLAIM. CLAIM 2: Γ is optimal.

PROOF OF CLAIM 2: Assume Γ is not optimal. Then m > l. By CLAIM 1, $f_{i_l} \leq f_{j_l}$. But because Π is feasible, $f_{j_l} \leq s_{j_{l+1}}$. But this is impossible because GREEDY 3 would have added $(s_{j_{l+1}}, f_{j_{l+1}})$ to Γ , which yields a contradiction.

d For $\rho_w = \{(w_1, s_1, f_1), ..., (w_n, s_n, f_n)\}$, we let $\Phi(\rho_w)$ denote the maximum $\sum_{1 \le k \le j} w_{i_k}$ over all feasible schedules, and we let $\Delta(\rho_w)$ denote ρ_w with (w_n, s_n, f_n) removed as well as all triples (w_i, s_i, f_i) such that $f_i > s_n$, that is, all triples (w_i, s_i, f_i) which are not compatible with (w_n, s_n, f_n) . To derive $\Phi(\rho_w)$, we note that either (w_n, s_n, f_n) is included in an optimal schedule, in which case $\Phi(\rho_w) = w_n + \Phi(\Delta(\rho_w))$ or it is **not**, in which case $\Phi(\rho_w) = \Phi(\rho_w - \{(w_n, s_n, f_n)\})$.

$$\Phi(\rho_w) = \begin{cases} 0, & \text{if } \rho_w = \emptyset \\ \max\left(w_n + \Phi(\Delta(\rho_w)), \Phi(\rho_w - \{(w_n, s_n, f_n)\})\right), & \text{otherwise} \end{cases}$$

As a program, having precomputed $\Delta(i)$ for all *i*,

$$\Phi[0] \leftarrow 0$$

for $i \leftarrow 1$ to n do
$$\Phi[i] \leftarrow \max\left(w_n + \Phi[\Delta(i)], \Phi[i-1]\right)$$