1. (6 points) The time taken to INSERTIONSORT an array is proportional to the number of inversions in the array. Assume that our sample space is the set of permutations of the n numbers, and assume that each permutation is equally likely (it is drawn from a uniform distribution over the set of permutations).

 a. What is the probability that A has $\frac{n(n-1)}{2}$ inversions?

 b. What is the probability that A has 0 inversions?

 c. What is the probability that A has exactly 1 inversion?

2. Consider the following code fragment to find the Biggest and Second biggest elements of an array $A[1..n]$ of distinct integers (assume that $n>1$):

   ```
   else {Big$\leftarrow A[1]$; Second$\leftarrow a[2]$;}
   for $i \leftarrow 3$ to $n$ do
     if Second$<A[i]$ then if Big$<A[i]$ then {Second$\leftarrow$ Big; Big$\leftarrow A[i]$;}
   else Second$\leftarrow A[i]$
   ```


 b. (6 points) Develop a recurrence for w_n, the number of worst-case instances (instances forcing the code fragment to execute the worst-case number of pairwise comparisons). Note that $w_2 = 2$ and $w_3 = 4$ (corresponding to the instances $(1,2,3), (2,1,3), (1,3,2)$ and $(3,1,2)$). Solve the recurrence.

 c. (3 points) What is the best-case number of pairwise comparisons executed by this code fragment? For arbitrary n, what input instances yield this best case number of comparisons?

 For parts d, e and f, assume the sample space is the set of all permutations of n distinct numbers and each input instance is equally likely. Verify your answers for $n=3$.
d. (5 points) What is the probability that an input instance causes the code fragment to use exactly the best-case number of pairwise comparisons?
e. (4 points) What is the probability that an input instance causes the code fragment to use the worst-case number of pairwise comparisons?
f. (8 points) What is the expected number of pairwise comparisons?

3. (10 points) Given the input \(A[1..n] \) and integer \(k, 1 \leq k \leq n \), we seek the \(k \text{-th} \) smallest member of \(A \). Consider the following "algorithm" to find the \(k \text{-th} \) smallest member of \(A[lo..hi] \):

1) Partition \(A[lo..hi] \) around some element \(x \) at \(A[pivot] \),
 satisfying \(lo \leq pivot \leq hi \), \(A[i] < x \) for \(lo \leq i < pivot \), and \(A[i] \geq x \) for \(pivot < i \leq hi \).
2) Comparing \(k, lo, hi, \) and \(pivot \) it can be determined if the
 \(k \text{-th} \) smallest member of \(A[lo..hi] \) lies in \(A[lo..pivot-1] \)
 or is equal to \(A[pivot] \) or lies in \(A[pivot+1..hi] \). Recurse to 1).
A) Program the above "algorithm".
B) Check that your program works on a small problem like
 \[
 A = \begin{bmatrix}
 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \end{bmatrix}
 \]
 by verifying that your program returns that the 3rd smallest member is 2
 and that the 8th smallest member is 9.
C) Profile your program to determine its average case run-time for
 finding the \(k \text{-th} \) smallest member of \(A[1..n] \) where the members of \(A \)
 are \(n \) randomly generated integers (drawn from a uniform distribution)
 and \(k \) is drawn from a uniform distribution over \{1,...,n\}.
 \textbf{Hint:} Your program will probably have average-case run time
 \(T(n) = c_1 n + c_2 \), where \(c_1 \) and \(c_2 \) are to be determined by you.

4. (8 points) Prove that \(\Omega(\lg n) \) comparisons are necessary to test if an element \(x \)
 belongs to an ordered list \((a_1, a_2, ..., a_n) \).
1. **a.** \(A \) has \(\frac{n(n-1)}{2} \) inversions when it is sorted in decreasing order. Since exactly 1 of the \(n! \) permutations is sorted in decreasing order, its probability is \(\frac{1}{n!} \).

b. \(A \) has 0 inversions when it is sorted in increasing order. Since exactly 1 of the \(n! \) permutations is sorted in increasing order, its probability is \(\frac{1}{n!} \).

c. If the elements of \(A \) are \(\{1, 2, \ldots, n\} \), then the \(n-1 \) permutations with exactly 1 inversion are \(\langle 2, 1, 3, 4, \ldots, n-1, n \rangle, \langle 1, 3, 2, 4, \ldots, n-1, n \rangle, \langle 1, 2, 4, 3, \ldots, n-1, n \rangle, \ldots, \langle 1, 2, 3, 4, \ldots, n, n-1 \rangle \).

The probability of drawing one of these permutations is \(\frac{n-1}{n!} \).

2. **a.** \(A[1] < A[2] \) is always executed exactly one time, and \(\text{Second} < A[i] \) is always executed exactly \(n-2 \) times. The comparison \(\text{Big} < A[i] \) is executed \(n-2 \) times (every time through the \(\text{for} \)-loop) if \(A \) is sorted in increasing order. Hence the worst-case number of pairwise comparisons is \(2n-3 \).

b. For \(n > 2 \), there are \(w_{n-1} \) worst-case arrangements of the first \(n-1 \) numbers. For \(\text{Second} < A[n] \) to be satisfied, then either \(A[n] = n \) or \(A[n] = n-1 \). Hence,

\[
w_n = \begin{cases}
2, & \text{if } n = 2 \\
2w_{n-1}, & \text{if } n > 2
\end{cases}
\]

which has the closed form solution \(w_n = 2^{n-1} \).

c. Combined, \(A[1] < A[2] \) and \(\text{Second} < A[i] \) are always executed exactly \(n-1 \) times. In the best-case, \(\text{Second} < A[i] \) is always violated (so \(\text{Big} < A[i] \) is never executed), so the best-case number of pairwise comparisons is \(n-1 \). This happens exactly when \(A[1] \) and \(A[2] \) are the two largest elements of \(A \).

d. The fewest pairwise comparisons occur when \(A[1] \) and \(A[2] \) are the two largest elements of \(A \), which is exactly when \(A[1] \) is the largest element and \(A[2] \) is the second largest (with probability \(1/n(n-1) \)) or when \(A[2] \) is the largest element and \(A[1] \) is the second largest (with probability \(1/n(n-1) \)). These two events are mutually exclusive (hence we can add their probabilities) to yield the probability of a best-case number of pairwise comparisons to be \(\frac{2}{n(n-1)} \).

e. Of the \(n! \) input instances, there are \(2^{n-1} \) worst-case instances. Hence, the probability of an input instance being worst-case is \(\frac{2^{n-1}}{n!} \).
Let random variable X denote the number of pairwise comparisons, and let random variables X_k, $n \geq k \geq 3$, denote the number of pairwise comparisons involving $A[k]$. Note that for input instance s, $X_k(s) \in \{1, 2\}$, and $X = 1 + \sum_{n \geq k \geq 3} X_k$. The solution to the problem is $E[X] = E\left[1 + \sum_{n \geq k \geq 3} X_k\right] = 1 + E\left[\sum_{n \geq k \geq 3} X_k\right] = 1 + \sum_{n \geq k \geq 3} E[X_k]$. For $n \geq k \geq 3$, $E[X_k] = 1 \cdot \Pr\{X_k = 1\} + 2 \cdot \Pr\{X_k = 2\} = 1 \cdot \frac{k-2}{k} + 2 \cdot \frac{2}{k} = \frac{k+2}{k}$. Finally, $E[X] = 1 + \sum_{n \geq k \geq 3} \frac{k+2}{k} = 1 + \sum_{n \geq k \geq 3} 1 + 2 \sum_{n \geq k \geq 3} \frac{1}{k} = 1 + (n-2) + 2\left(\sum_{n \geq k \geq 1} \frac{1}{k} - \frac{3}{2}\right) = n + 2H_n - 4$.

4. Consider an adversary which responds to an algorithm’s query in the following manner: Let (a_1, a_2, \ldots, a_n) be the elements of (a_1, a_2, \ldots, a_n) which may equal x

- Initially $m=n$, finally $m \leq 1$
- When the algorithm asks to compare x to a_j, the adversary replies

 - if $\left|\{a_1, \ldots, a_{j-1}\}\right| > \left|\{a_{j+1}, \ldots, a_m\}\right|$ then $x < a_j$
 - else $x > a_j$

We note that with the adversary’s algorithm, m the size of the set of candidates to be equal to x, can not shrink too quickly. Initially $m=n$, finally $m \leq 1$, and with each query from the algorithm, the new size of m is at least $\frac{n}{2}$ of the old size of m. The algorithm will need at least $\lg n$ steps to reduce m from n to 1.