1. (5 points) This result will be used when we get to NP-Completeness. Design an algorithm to guess an unknown positive integer n using $O(\log n)$ benchmark operations, where a benchmark operation is a comparison of the form
- $k > n$?
- $k = n$?
- $k < n$?

The values of k will be determined by your algorithm. Another way to view this problem is to assume that there’s an oracle who knows the value of n. The oracle will not tell you n’s value, but given any k she will reply correctly to any of the benchmark operations. You may only ask the oracle at most $O(\log n)$ questions.

2. (1 point) Give a closed-form, as a function of n and m, for $\sum_{n \leq k \leq m} k$ where $n \geq m \geq 0$.

3. (6 points) Prove or give a counter-example to each of the following:

A) **Conjecture**: If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n)))$.

B) **Conjecture**: If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\min(g_1(n), g_2(n)))$.

C) **Conjecture**: If $f_1(n) \in \Theta(g_1(n))$ and $f_2(n) \in \Theta(g_2(n))$, then $f_1(n) + f_2(n) \in \Theta(\max(g_1(n), g_2(n)))$.
4. (4 points) If a problem \(P \) has worst-case time complexity \(\Omega(n \lg n) \) and worst-case time complexity \(O(n^2) \) and algorithm \(A \) solves problem \(P \), which of the following are possible?

\[\begin{align*}
 a & \quad \text{A has best-case time complexity } \Theta(n). \\
 b & \quad \text{A has worst-case time complexity } \Theta(n^{\sqrt{n}}). \\
 c & \quad \text{A has average-case time complexity } \Theta(n^3). \\
 d & \quad \text{A has worst-case time complexity } \Theta(n).
\end{align*} \]

5. (16 points) Do Problem 4.1 on pg. 85 of our text.
CS525DA
HW#1 SOLUTIONS

1. \[k \leftarrow 1 \]
 \[\text{while } k < n \text{ do} \]
 \[k \leftarrow 2k \]
 \[*/ k \leq n \leq k */ \]
 \[\text{return } \text{Binary_Search}(k/2, k) \]

 \[\text{Binary_Search}(lo, hi) \]
 \[k \leftarrow \left\lfloor (lo + hi) / 2 \right\rfloor \]
 \[\text{if } k = n \text{ then return } k \]
 \[\text{if } n > k \text{ then return } \text{Binary_Search}(k+1, hi) \]
 \[\text{return } \text{Binary_Search}(lo, k-1) \]

 For the initial loop, we note that 1 will be doubled \(\lfloor \lg n \rfloor \) times until it equals or exceeds \(n \).

 Then \(\text{Binary_Search} \) will be executed \(O(\lg n) \) times.

2. \[\sum_{n \geq 2 \leq m} k = \sum_{n \geq 2 \leq m} k - \sum_{m-1 \leq k \geq 0} k = \frac{n(n+1)}{2} - \frac{m(m-1)}{2} \]

3. A) The CONJECTURE is true. Because \(f_1(n) \in O\left(g_1(n) \right) \) and \(f_2(n) \in O\left(g_2(n) \right) \), there exist \(c_1, n_1, c_2 \) and \(n_2 \) such that \(f_1(n) < c_1 g_1(n) \) for all \(n > n_1 \), and \(f_2(n) < c_2 g_2(n) \) for all \(n > n_2 \).

 Choosing \(c^* = 2 \max \left(c_1, c_2 \right) \) and \(n^* = \max \left(n_1, n_2 \right) \) it follows that

 \[f_1(n) + f_2(n) < c_1 g_1(n) + c_2 g_2(n) \leq \max \left(c_1, c_2 \right) \left(g_1(n) + g_2(n) \right) \]

 B) The CONJECTURE is false. Let \(f_1(n) = g_1(n) = n \) and \(f_2(n) = g_2(n) = n^2 \). Then

 \[f_1(n) + f_2(n) = n^2 + n \text{ and } \min \left(g_1(n), g_2(n) \right) = \min \left(n, n^2 \right) = n. \text{ But } n^2 + n \notin O(n). \]

 C) The CONJECTURE is true. Because \(f_1(n) \in \Theta\left(g_1(n) \right) \) and \(f_2(n) \in \Theta\left(g_2(n) \right) \), there exist \(c_{1,1}, c_{1,2}, n_1, c_{2,1}, c_{2,2} \) and \(n_2 \) such that \(c_{1,1} g_1(n) < f_1(n) < c_{1,2} g_1(n) \) for all \(n > n_1 \), and

 \[c_{2,1} g_2(n) < f_2(n) < c_{2,2} g_2(n) \text{ for all } n > n_2. \text{ Choosing } c_{3,0} = \min \left(c_{1,1}, c_{2,1} \right) \text{ and } \]

 \[c_{3,1} = \max \left(c_{1,1}, c_{2,1} \right), \text{ we add the two inequalities to get } \]
So choosing \(c_1 = 2c_\omega \), \(c_2 = 2c_\omega \), and \(n^* = \max(n_i, n_j) \), it follows that
\[
 f_1(n) + f_2(n) \in \Theta(\max(g_1(n), g_2(n)))
\]

4.

\(a \) possible
\(b \) possible
\(c \) impossible
\(d \) impossible - violation of worst-case time complexity \(\Omega(n \log n) \)

5.

\(a = 2, b = 2, f(n) = n^3, n^{\log^a_b a} = n^{\log \log 3} = n, \quad \frac{f(n)}{n^{\log^a_b a}} = \frac{n^3}{n} = n^2 \) and case 3 of the Master Theorem applies, with \(T(n) = \Theta(n^2) \).

\(b = 1, b = 10/9, f(n) = n^2, n^{\log^a_b a} = n^{\log \log 9/10} = 1, \quad \frac{f(n)}{n^{\log^a_b a}} = \frac{n^2}{n} = n \) and case 3 of the Master Theorem applies, with \(T(n) = \Theta(n) \).

\(c = 16, b = 4, f(n) = n^2, n^{\log^a_b a} = n^{\log \log 16} = 16, \quad \frac{f(n)}{n^{\log^a_b a}} = \frac{n^2}{n^2} = 1 \) and case 2 of the Master Theorem applies, with \(T(n) = \Theta(n \log n) \).

\(d = 7, b = 3, f(n) = n^2, n^{\log^a_b a} = n^{\log \log 7} = 7, \quad \frac{f(n)}{n^{\log^a_b a}} = \frac{n^2}{n^7} = n^{2-\log_7} \). Since \(2 > \log_7 \), case 3 of the Master Theorem applies, with \(T(n) = \Theta(n^2) \).

\(e = 7, b = 2, f(n) = n^2, n^{\log^a_b a} = n^{\log \log 7} = 7, \quad \frac{f(n)}{n^{\log^a_b a}} = \frac{n^2}{n^7} = n^{2-\log_7} \). Since \(2 < \log_7 \), case 1 of the Master Theorem applies, with \(T(n) = \Theta(n^{1+}) \).

\(f = 2, b = 4, f(n) = \sqrt{n}, n^{\log^a_b a} = n^{\log \log 4} = \sqrt{n}, \quad \frac{f(n)}{n^{\log^a_b a}} = \frac{\sqrt{n}}{\sqrt{n}} = 1 \). Case 2 of the Master Theorem applies, with \(T(n) = \Theta(\sqrt{n \log n}) \).

\(g \). By unfolding,
\[
 T(n) = n + T(n-1) = n + (n-1) + T(n-2) = n + (n-1) + \ldots + 2 + T(1) = \sum_{k=1}^{n} k + \Theta(1)
\]
\[
 = \sum_{k=1}^{n} k - 1 + \Theta(1) = \frac{n(n+1)}{2} - 1 + \Theta(1) = \Theta(n^2).
\]
h. By unfolding, \(T(n) = 1 + T\left(n^{1/2}\right) = 1 + 1 + T\left(n^{1/4}\right) = 1 + 1 + 1 + T\left(n^{1/8}\right) = \ldots = k + T\left(n^{1/k}\right) \).

The iteration stops when \(n^{1/k} = 2 \). Taking the \(\lg \) of both sides, the iteration stops when
\[
\frac{1}{k} \lg n = \lg 2 = 1,
\]
or \(\lg n = 2^k \), or \(k = \lg \lg n \). Thus, \(T(n) = \lg \lg n \).