1. (20 points) Is $L = \{ w \in \{0,1\}^* \mid |w| \text{ is divisible by } 3 \}$ regular? Justify your response.
2. (30 points) For each of L_0 and L_1, tell whether or not the language is regular. Justify your responses.

$L_0 = \text{the set of binary strings that contain at least two occurrences of 01}$

$L_1 = \text{the set of binary strings that contain fewer than two occurrences of 01}$.
3. (25 points) Consider the language \(L \) consisting of the set of strings of balanced parentheses over \(\Sigma = \{ (,) \} \). That is, a string \(w \) belongs to \(L \) if \(w \) contains just as many (‘s as)’s, and there is a pairing between the (‘s and the)’s such that each (is paired with a) to its right in \(w \). For example, \((()) \in L, \in L, ((())) \in L, () \in L, () \in L \) but \() (\in L \) and \((()) \notin L \). Is \(L \) regular? Justify your response.
(25 points) Design a context-free grammar for the language

\[L = \{0^n1^n0^{2m} | n \geq 0 \land m \geq 0\} = \{0^n1^n0^{2m} | n \geq 0 \land m \geq 0\} \]

For example, 0011000 \in L but 001110 \not\in L.
1. \(L_0 = \left((0+1)^* (0+1)^* (0+1)^* \right)^* \), so it is regular.

2. Both languages are regular. \(L_0 = (0+1)^* 0^1 (0+1)^* 0^1 (0+1)^* \) and because
 \(L_1 = \overline{L_0} = \{0,1\}^* - L_0 \) and regular languages are closed under complement, it follows that \(L_1 \) must be regular.

3. \(L \) is not regular. Assume \(L \) is regular, and let \(n \) be the integer provided by the Pumping Lemma. Let \(w = (\cdot)^n \). That is \(w \) is a string of \(n \) (\('\)\)'s followed by \(n \) (\('\)\)'s. \(w \) can be written \(xyz \) such that \(|xy| \leq n \) and \(|y| \geq 1 \). Thus, \(xy \) only spans (\('\)'s and \(y \) is a nonempty string of (\('\)'s. The Pumping Lemma forces \(\{ xy^k z | k \geq 0 \} \subseteq L \). But this is a contradiction since \(k \neq 1 \Rightarrow xy^k z \) does not have as many (\('\)\)'s as \(y \)\)'s. Thus, \(L \) is not regular.

4.

\[
\begin{align*}
S & \rightarrow AB \\
A & \rightarrow 0A1|\varepsilon \\
B & \rightarrow 1B00|\varepsilon
\end{align*}
\]