1. (12 points) Tell whether each of the following is true or false for all regular expressions \(v \) and \(w \). For each identity you believe to be false, give examples for \(v \) and \(w \) for which it is false.

 a) \((v^*w^*)^* = (v \cup w)^* \)

 b) \(w(vw \cup w)^* v = vv^*w(vv^*w)^* \)

 c) \((v \cup w)^* = v^* \cup w^* \)
2. (30 points) Assume we are given NFA- λ $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ which accepts $L_1 = L(M_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ which accepts $L_2 = L(M_2)$.

 a) Must $(L_1 \cup L_2) L_2^*$ be regular? Justify your response.

 b) Describe precisely an NFA- λ to accept $L_1 L_2$.

3. (33 points) Consider the language \(L = b(ab)^* \).

a) Describe a regular grammar \(G \) to generate \(L \).

b) Show a derivation of \(babab \) using your grammar.

c) Show the derivation tree corresponding to your derivation in part b).
4 (25 points) Prove or give a counterexample to the following

Conjecture: For any regular grammar G and any $z \in L(G)$, any derivation of z is always a leftmost derivation and a rightmost derivation.
1. a) true
b) false If \(v = a \) and \(w = b \), then \(ba \in w(vw \cup w)^* \) but \(ba \notin v^* w(v^* w)^* \)
c) false If \(v = a \) and \(w = b \), then \(ba \in (v \cup w)^* \) but \(ba \notin v^* \cup w^* \)

2. (a) Because \(L_1 \) is accepted by a NFA- \(\lambda \) and \(L_2 \) is accepted by a DFA, then they must be regular. We also showed in class and in the text that the union and \(* \)-closure of regular languages must be regular, so \(L_1 \cup L_2 \) and \(L_2^* \) must be regular. Likewise, the concatenation of \(L_1 \cup L_2 \) and \(L_2^* \) must be regular.

b) \(L_1 L_2 \) is accepted by \(M_3 = (Q_1 \cup Q_2, \Sigma, \delta_3, q_{01}, F_2) \) where
\[
\begin{align*}
(\forall q \in Q_1)(\forall a \in \Sigma)\delta_3(q, a) & = \delta_1(q, a) \\
(\forall q \in F_1)\delta_3(q, \lambda) & = \delta_1(q, \lambda) \cup \{q_{02}\} \\
(\forall q \in Q_1 - F_1)\delta_3(q, \lambda) & = \delta_1(q, \lambda) \\
(\forall q \in Q_2)(\forall a \in \Sigma)\delta_3(q, a) & = \delta_2(q, a) \\
(\forall q \in F_2)\delta_3(q, \lambda) & = \delta_2(q, \lambda)
\end{align*}
\]

3. a) \(S \rightarrow bA \)
 \(A \rightarrow \lambda \mid aB \)
 \(B \rightarrow bA \)

b) \(S \Rightarrow bA \Rightarrow baB \Rightarrow babA \Rightarrow babab \Rightarrow babab \Rightarrow babab \)

c) \[
\begin{array}{c}
S \\
/ \ \\
b \ \\
/ \ \\
a \ B \\
/ \ \\
b \ A \\
/ \ \\
a \ B \\
/ \ \\
b \ A \\
/ \ \\
\lambda
\end{array}
\]

4. The CONJECTURE is true. Because \(G \) is regular, every sentential form in a derivation has at most one variable, which must be the leftmost and the rightmost variable.