1. (8 points) Run the CKY algorithm on the grammar G

$$
S \rightarrow AB | a \\
A \rightarrow a \\
B \rightarrow AB | SA | b
$$

and the input string $z = aaba$. Show the final values of all the sets $T_{i,j}$. If z belongs to $L(G)$, then show a derivation tree.

2. (8 points) (Problem 4 in Homework 9 on pg. 310 of our text) Prove that an r.e. set is recursive if and only if there is an enumeration machine that enumerates it in increasing order. (Clarification: Increasing order means that if $k<l$, then all strings of length k are enumerated before all strings of length l, and all strings of the same length are enumerated in lexicographic order.)

3. (6 points) Let Λ denote the set of all DFAs which accept an infinite language. That is, $\Lambda = \{ M \mid M \text{ is a DFA and } |L(M)| = \infty \}$. Is Λ a recursive set? That is, is it decidable whether the language accepted by an arbitrary DFA is finite or infinite? If Λ is recursive, then you don't need to give an explicit program. You only need to describe an algorithm to decide on membership in Λ.
1. A derivation tree is:

```
   S
  /  \
 A  B
 /  \  |
S  A  a
/ \  |
A  B  a
|   |
a  b
```

2. Assume there is an enumeration machine M that lists L in increasing order. Then on input z, total TM M' just runs M and waits until either
 - it finds that M lists z, in which case M' accepts z by entering state t, or
 - M lists a string which is later in the order than z, in which case M' rejects z by entering state r.

One of the cases must happen after a finite number of steps, so M' is total. Assume there is a total Turing machine M that accepts L. We design M' to
 - list Σ^* in order y_0, y_1, \ldots.
 - for each y_i
 - if M' goes to t then print y_i on output tape

Since M is total, every y_i will be processed in a finite amount of time.

Assume there is a TM that enumerates L in increasing order. For any z, another TM M could witness the listing until either z is listed (in which case $z \in L$) or a y is listed and $|y| > |z|$ (in which case $z \notin L$). Since M is total, L is recursive.

3. Λ is recursive. $L(M)$ is infinite if and only if there is a loop accessible from a state on a path from the initial state of M to a final state of M. The algorithm to decide on membership in Λ is:
 - remove every state for which there is no path from the initial state of M
 - remove every state for which there is no path to a final state of M

$M \in \Lambda$ if and only if M contains a loop
Another way to solve the problem is to compute a regular expression describing $L(M)$. $L(M)$ is infinite if and only if the regular expression contains a \ast.