1. All productions are useless because each variable is nongenerating. The language the grammar generates is \emptyset.

2. C is not generating, so removing all productions containing C yields
 \[
 S \rightarrow a | aA | B \\
 A \rightarrow aB | \varepsilon \\
 B \rightarrow Aa \\
 D \rightarrow ddd
 \]
 D, c and d are not reachable, so the final grammar is
 \[
 S \rightarrow a | aA | B \\
 A \rightarrow aB | \varepsilon \\
 B \rightarrow Aa
 \]

3. Removing useless productions yields
 \[
 S \rightarrow aA \\
 A \rightarrow aaA | \varepsilon
 \]
 To remove ε-productions, we first compute Nullable=$\{A\}$, and then we derive
 \[
 S \rightarrow aA | a \\
 A \rightarrow aaA | aa
 \]
 There are no unit productions, so we are done.

4. The unit pairs are $(S,S), (S,B), (S,A), (B,B), (B,A), (A,A), (A,B)$. The new equivalent grammar without unit productions is
 \[
 S \rightarrow aA | ab | a | bc \\
 B \rightarrow ab | a | bc \\
 A \rightarrow a | bc | ab
 \]
 and, removing useless symbols,
 \[
 S \rightarrow aA | ab | a | bc \\
 A \rightarrow a | bc | ab
 \]