1. (12 points) Given an array \(T \) of \(n \) numbers, and given integer \(k \), \(n \geq k \geq 1 \), we seek the \(k^{th} \) smallest member of \(T \). Consider the following two algorithms:

ALGORITHM A:

```
HEAPSORT T
return T[k]
```

ALGORITHM B:

```
INSERTIONSORT T
return T[k]
```

Answer true or false to each of the following three statements:

(a) ALGORITHM A will solve the problem in worst-case time in \(O(n + k \log n) \).

(b) ALGORITHM B will solve the problem in worst-case time in \(O(n + k \log n) \).

(c) ALGORITHM B will solve the problem in best-case time in \(O(n + k \log n) \).
2. (25 points) Noting that the minimum spanning trees of the following two graphs are equal,

Ben makes the following claim:

Conjecture: For any graph $G=<N,A>$ with function $\text{length}: A \rightarrow R^+$, let $a \in A$ be an arc of maximum length (every other arc in A is shorter than a). Let H be formed from G by removing a. The minimum spanning tree of G must be equal to the minimum spanning tree of H. That is, we can remove the longest arc in any graph without changing its minimum spanning tree.

Prove or give a counterexample to Ben’s Conjecture.
3. (28 points) Suppose that you want to implement the abstract data type Priority Queue using an ordered linked list as a data structure, with standard linked list operations. That is, after executing:
 - construct(Q)
 - insert(18,Q)
 - insert(1,Q)
 - insert(28,Q)
 - insert(9,Q)

 The data structure holding Q would look like:

 ![Linked List Diagram]

 Using Θ–notation, what is the worst-case time to implement the following instructions? (For “insert” and “delete_min”, assume that Q contains n elements.)
 - construct(Q)
 - insert(x,Q)
 - delete_min(Q)
4. (35 points) State whether each of the following claims is true or false, and justify your response.

(a) \(\frac{n^2 + n}{2} \in O(6n) \)

(b) \(6n \in O\left(\frac{n^2 + n}{2} \right) \)
CS2223
Solutions to Midterm Exam

1. (a) false For \(k=1 \), the time constraint is \(O(n) \), and HEAPSORT takes worst-case time in \(O(n \lg n) \)

(b) false For \(k=n \), the time constraint is \(O(n \lg n) \), and INSERTIONSORT takes worst-case time in \(O(n^2) \).

(c) true The best-case execution time of INSERTIONSORT is \(O(n) \), and for any \(k \) between 1 and \(n \), the time constraint is at least linear. That is, \(n \in O(n + k \lg n) \).

2. The conjecture is false, although it is true for all graphs in which a longest arc belongs to a cycle. To see that it is false, we note that removing the longest arc from \(G \) disconnects the graph (\(H \) would not have a spanning tree).

3.
 \[
 \begin{align*}
 \text{construct}(Q) & : \Theta(1) \\
 \text{insert}(x, Q) & : \Theta(n) \\
 \text{delete}_{\text{min}}(Q) & : \Theta(1)
 \end{align*}
 \]

4. (a) false If it were true, there would exist \(c, n_0 \) such that \(\frac{n^2 + n}{2} \leq c6n \) for all \(n \geq n_0 \).

Dividing both sides of the inequality by \(6n \), this would imply that for all \(n \) sufficiently large, \(\frac{n}{12} \leq \frac{n}{12} + \frac{1}{12} \leq c \). But this is impossible. For any \(c \), simply choose \(n > 12c \) to derive a contradiction.

(b) true We must show that there exist \(c, n_0 \) such that \(6n \leq c \frac{n^2 + n}{2} \) for all \(n \geq n_0 \).

Dividing both sides of the inequality by \(6n \),

\[
1 \leq c \frac{n}{12} + \frac{c}{12}
\]

Choosing \(c=12 \) and \(n_0=1 \) yields the desired result.