CS2223
MIDTERM EXAM

Name____________________

Date: November 20, 2003
All documentation permitted

1 ________

2 ________

3 ________

4 ________

TOTAL ________
1. (25 points) Suppose that you are given an array $A[1..n]$ of numbers, and you seek a maximally distant pair of numbers in A. That is, you seek i and j, $1 \leq i, j \leq n$ such that for all k and l, $1 \leq k, l \leq n$,

Show how to solve this problem in worst case time in $O(n)$.

2. (25 points) Suppose that you are given an array $A[1..n]$ of integers, which is partially sorted in the sense that there exists an integer m, $1 \leq m \leq n$, such that $A[1] \leq A[2] \leq \ldots \leq A[m]$ and $A[m+1] \leq A[m+2] \leq \ldots \leq A[n]$. However, you do not know the value of m. Show that A can be sorted in worst-case time in $O(n)$.
3. (25 points) Assume we are given as input a binary array $A[1..n]$, that is, $A[i] \in \{0,1\}$ for all $1 \leq i \leq n$.

a. Prove an upper bound on the complexity of sorting A by showing that it is in $O(n)$.

b. Prove a lower bound on the complexity of sorting A by showing that it is in $\Omega(n)$.
4. (25 points) Prove or give a counterexample to the following.

CONJECTURE: For any connected graph \(G = (V, E) \) with \(|V| \geq 3 \) and one-to-one function \(w: E \to \mathbb{R}^+ \) which associates a unique weight with every edge \((e \neq e' \to w(e) \neq w(e'))\), the two edges of minimum weights belong to a minimum spanning tree of \(G \).
1. This problem is solved when \(A[i] \) is the minimum element of \(A \) and \(A[j] \) is the maximum element. Both of these values can be computed in linear time.
 - Set \(i \) to index of minimum element
 \(i ← 1 \)
 \(\text{for } k ← 2 \text{ to } n \text{ do} \)
 \(\quad \text{if } A[k] < A[i] \text{ then } i ← k \)
 - Set \(j \) to index of maximum element
 \(j ← 1 \)
 \(\text{for } k ← 2 \text{ to } n \text{ do} \)
 \(\quad \text{if } A[k] > A[j] \text{ then } j ← k \)

2. \(m ← 1 \)
 - Find \(m \)
 \(\text{repeat } m ← m + 1 \text{ until } (A[m] > A[m + 1] \vee m = n - 1) \)
 \(\text{if } m < n \text{ then MERGE}(A[1..m], A[m + 1..n]) \)

3. \(a \) We establish the upper bound by providing a linear time algorithm.
 \(\text{num0s ← 0} \)
 - count the 0s in \(A \)
 \(\text{for } i ← 1 \text{ to } n \text{ do} \)
 \(\quad \text{if } A[i] = 0 \text{ then } \text{num0s ← num0s + 1} \)
 - fill in the 0s, then the 1s in \(A \)
 \(\text{for } i ← 1 \text{ to num0s} \text{ do} \)
 \(\quad A[i] ← 0 \)
 \(\text{for } i ← \text{num0s} + 1 \text{ to } n \text{ do} \)
 \(\quad A[i] ← 1 \)

\(b \) To establish a linear time lower bound, we note that if an algorithm existed to sort \(A \) without examining some element, say \(A[i] \), then we could change \(A[i] \), leaving the other \(n-1 \) elements of \(A \) unchanged, and the algorithm would have to yield the same result, which is now incorrect.

4. The CONJECTURE is true. Neither edge can introduce a cycle (two edges can’t form a cycle) when considered by Kruskal’s Algorithm, so each would be added to the minimum spanning tree.