1. (30 points) Suppose that you are given a weighted graph $G = (N, A)$, vertices $\sigma, \tau \in N$, function $\text{length} : A \rightarrow \mathbb{R}^+$, and function $d : N \rightarrow \mathbb{R}^+$ such that for each $v \in N$, $d(v)$ is the length of a shortest path from $\sigma \rightarrow v$. Show how to construct a shortest path from $\sigma \rightarrow \tau$ in time $O(|N|+|A|)$.
2. (35 points) Suppose you are given a directed graph $G=(N,A)$ with function $\text{length}: A \rightarrow \mathbb{R}^+$, and you seek the length of a shortest cycle in G. Find an algorithm with worst-case time complexity in $O(n^3)$ to solve this problem.
3. (35 points) A graph \(G = (N, A) \) is a Maia graph if it consists of two components and every vertex has degree 3 (every vertex has 3 edges incident with it). For example,

is a Maia graph. Give an algorithm to test if \(G \) is a Maia graph. Your algorithm should have worst case execution time in \(O(|N| + |A|) \).
1. To print the path in reverse order,
 \(v = \tau \),
 while (\(v != \sigma \)) {
 print \(v \);
 for each x adjacent to v /* find v's predecessor x on shortest path */
 if (d(v)==d(x)+length(x,v))
 break; /* break the for each loop*/
 v=x;
 }
 print \(\sigma \);

2. Use Floyd's Algorithm, but start the computation with \(\infty \) along the main diagonal, that is, \(D[k,k]=\infty \) for \(n \geq k \geq 1 \). When the algorithm finishes, for each \(k \), \(D[k,k] \) is the length of a shortest cycle including node \(k \), and in linear time (time in \(O(n) \)), we can find the answer, which is the value of \(\min_{n \geq k \geq 1} \{ D[k,k] \} \)

3. Do a depth first search of \(G \) to check if it has two components. While each vertex is visited, check that its adjacency list has 3 vertices on it. Return true if and only if all the tests return true.