1. (8 points) Do Problem 8.28 on page 281 of our text. An algorithm is efficient if its execution time is a polynomial function of the number of symbols in the input string \(x \). (Hint: For each substring \(x_{ij} \) of input string \(x_1 \ldots x_n \), it would help to know which symbols of \(\{a, b, c\} \) could be achieved with appropriate parenthesizations of \(x_{ij} \).)

2. (5 points) (Extension of Problem 8.17 of our text) Describe a polynomial time algorithm (a program is not necessary) to test if a graph has a negative cycle, that is, a cycle such that the sum of the lengths of its edges is negative.

3. (6 points) Let \(A \) be an \(m \times n \) array of 0s and 1s, and we seek a path from \(A[1,1] \) to \(A[m,n] \) such that every element on the path has an entry of 1 and one entry can follow another on the path if one is above the other or below the other or left of the other or right of the other. For example, in array \(A[7,7] \)

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

a path is

\((1,1), (1,2), (1,3), (1,4), (2,4), (3,4), (4,4), (4,3), (5,3), (5,2), (6,2), (7,2), (7,3), (7,4), (7,5), (7,6), (7,7)\).

\(a \) Describe an algorithm (a program is not necessary) with execution time in \(\Theta(mn) \) to find a path from \(A[1,1] \) to \(A[m,n] \).

\(b \) Describe an algorithm (a program is not necessary) with execution time in \(\Theta(mn) \) to find a shortest path from \(A[1,1] \) to \(A[m,n] \).