1. The algorithm does not always construct a minimum spanning tree because for the graph

![Graph Image]

it would never even find a spanning tree.

2. **Conjecture 1** is false. For graph

![Graph Image]

the algorithm would return the path v, z, w, although the path v, w is shorter.

Conjecture 2 is true. Choose v and w such that the arc between v and w is a shortest arc in the graph. It will belong to a minimum spanning tree, and hence is the shortest path from v to w in the minimum spanning tree.

3.

 $n \leftarrow 1$

 while $(x > T[n]) n \leftarrow 2^n;$

 $BinarySearch(T[(n/2) + 1..n], x)$

 The second and third instructions take time in $O(\log n)$.