1. (10 points) Suppose you have an array A of n elements, but each element is a member of the set $\{0, \ldots, k-1\}$ for some fixed $k \geq 1$. That is, $A[i] \in \{0, \ldots, k-1\}$ for $1 \leq i \leq n$.

Consider the problem of sorting A.

a Show that the complexity of sorting A is $O(n)$.

b Show that the complexity of sorting A is $\Omega(n)$.

2. (6 points) Suppose that $A[1..n]$ is a list of integers, and $B[1..n]$ is a list of integers, and m is an integer. We want to know if there exist $i, j, 1 \leq i, j \leq n$, such that $A[i] + B[j] = m$. Show a worst case $O(n \lg n)$ upper bound on the complexity of solving this problem.

3. (4 points) Do **Problem 6-1 a** on page 142 of our text.
1. **a** To get a linear time upper bound, we use an algorithm which counts the number of
occurrences of each $i \in \{1, \ldots, k\}$.

   ```
   for $i \leftarrow 0$ to $k-1$ do
     $Count[i] \leftarrow 0$
   for $i \leftarrow 1$ to $n$ do
     $Count[A[i]] \leftarrow Count[A[i]] + 1$
   $j \leftarrow 1$
   for $i \leftarrow 1$ to $k$ do
     for $l \leftarrow 1$ to $Count[k]$ do
       $A[j] \leftarrow i$
       $j \leftarrow j + 1$
   ```

 b To get a linear time lower bound, we assume there is an algorithm which solves the
problem with $<n$ steps. The algorithm can't have examined at least one member of A, say
$A[i^*]$. Form B from A by $B[i] = \begin{cases} A[i], & \text{if } i \neq i^* \\ A[i] + 1 \mod k, & \text{if } i = i^* \end{cases}$. Because the algorithm never
examined $A[i^*]$, and $B[i] = A[i]$ for $i \neq i^*$, the algorithm sees exactly the same values in B as it
saw in A. Hence, it must return the same answer in B, which is now incorrect. By this
contradiction, there can not be an algorithm which solves the problem with $<n$ steps.

2. **HEAPSORT**

   ```
   HEAPSORT(A)  $O(n \log n)$
   HEAPSORT(B)  $O(n \log n)$
   $j \leftarrow n$
   $i \leftarrow 1$
   repeat
     if $A[i] + B[j] = m$ then return $i, j$
     else if $A[i] + B[j] > m$ then $j \leftarrow j - 1$
     else $i \leftarrow i + 1$
   until $i > n$ or $j < 1$
   ```

 The body of the **repeat**-loop takes time in $O(1)$, and it is executed $O(n)$ times.

3. **BUILD-MAX-HEAP** and **BUILD-MAX-HEAP’** do not always construct the same heap
when run on the same input array. On input array
$\text{BUILD-MAX-HEAP}(A)$ constructs

\[
A = \begin{bmatrix}
1 & 2 & 3
\end{bmatrix}
\]

but $\text{BUILD-MAX-HEAP}'(A)$ constructs

\[
A = \begin{bmatrix}
3 & 2 & 1
\end{bmatrix}
\]