Consider the data structure search tree (described on pp. 157→159 of our text) to implement the abstract data type set. Note that listing the nodes of a search tree in inorder yields a sorted list. Hence, we can sort a list of n objects, $x_1...x_n$ by the following:

```
SEARCHTREESORT(x_1,...x_n)
MAKEEMPTYSEARCHTREE(T)
for k←1 to n do INSERT(x_k,T)
Output T in inorder
```

(a) (2 points) What is the smallest possible height of a search tree of n nodes?

(b) (2 points) What is the largest height possible for a search tree of n nodes? Describe an input permutation which yields this worst-case height.

(c) (4 points) Using Θ–notation, what is the worst-case time to execute the step

```
for k←1 to n do INSERT(x_k,T)
```

of the preceding algorithm?

(d) (8 points) Test the average-case execution time of the preceding algorithm in the following way:

- Program and test the algorithm. Provide evidence that your algorithm works correctly.
- For several values of n, time your program for a random set of n integers.
- Try to fit a curve to your pairs (n, t_n), where t_n is the time to sort n integers. For example, you could try curves such as $t_n=c*n^2$ and $t_n=c*n*\log n$.