1. (9 points) One possible data structure to implement the abstract data type *priority queue* is a *binary search tree* (described in Chapter 12 of our text). If a node η in a search tree contains x and a node in the left subtree of η contains y then $y \leq x$, and if a node in the right subtree of η contains y then $y \geq x$.

 a What is the smallest possible height of a search tree of n nodes?
 b What is the largest height possible for a search tree of n nodes? Describe an input permutation which yields this worst-case height.
 c In order to estimate the average height (assuming all input permutations occur with equal probability) of a search tree of n nodes, program and test routines to MAKE a search tree, to INSERT a node into a search tree, and to compute the height of a search tree.
 - Grow random search trees of $2^3, 2^4, 2^5, \ldots$ nodes.
 - Compute the heights of your trees.
 - See if you can find a constant c such that the heights are approximately $c \lg n$.

2. (6 points) Assume array A is *partially sorted* in that it consists of two increasing runs. That is, there exists a r, $1 \leq r \leq n$, such that $A[i] \leq A[i+1]$ if $1 \leq i < r$ or if $r < i < n$. **However**, you **don’t know** the value of r. Prove that if you know that A is partially sorted, then you can sort it in worst-case time in $O(n)$.
1. \(a \ lceil \lg n \rceil \)

\(b \) If the input is sorted, in increasing or decreasing order, the height is \(n-1 \). Note that these are not the only worst-case instances.

2. The idea is to find \(r \) in linear time, and then \text{MERGE} \(A[1..r] \) with \(A[r+1..n] \), again in linear time.

\[
\begin{align*}
r &\leftarrow 1 \\
\textbf{while} \ (A[r] \leq A[r+1] \textbf{ and } r < n) &\textbf{ do } r \leftarrow r + 1 \\
\text{MERGE} \ (A[1..r], A[r+1..n]) &\quad O(n) \\
\text{MERGE} &\quad \Theta(n)
\end{align*}
\]